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Research Note

Upper Bound Analysis of Cylindrical
Shells Subjected to Local Loads

G.H. Rahimi!

The investigation is concerned with plastic behavior of cylindrical shells, with rectangular
attachments well removed from the ends subjected to local radial loads. In the analysis, the
upper bound technique is employed to provide the minimum upper bound to the plastic limit
load for shell when it is subjected to a local radial load over a rectangular area of the cylindrical
shell surface. Furthermore, a two-moment limited interaction yield surface is used. The results
are presented for a range of practical geometrical parameters. Alternative collapse mechanism is
examined. The limitation of the employed yield surface is also discussed.

INTRODUCTION

In design and analysis of pressure vessels, the problem
of externally applied loads has long been of impor-
tance to designers and stress analysts. Such loading
conditions may occur at nozzles (where they may
arise due to reactions of piping system), supports
and other attachments. In practice, the analytical
methods based on the theory of elasticity are most
frequently used in solving this class of problems though
many procedures are empirical. Although many elastic
formulations have been obtained, probably the most
widely used is the shell solution provided by Bijlaard
(1-4]. Wichman et al. [5] summarized this work by
providing analytical design curves for cylindrical and
spherical shells subjected to external loads. However,
in pressure vessels with some special conditions, for
example nuclear vessels, elasticity solutions are often
inadequate. This is particularly true when considering
the extremely large loads often defined for emergency
and fault conditions. For most of these conditions, an
elastic analysis greatly underestimates the load carry-
ing capacity of the vessel. Therefore, for an adequate
assessment, an analysis taking into consideration the
plastic behavior of the structure must be performed.
Cylindrical pressure vessels invariably have at-
tachments such as supports and branches welded to
them. A vessel must be designed in a way that would
withstand any local loads which may be transmitted to
it through such attachments. The loads may be com-
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binations of normal or shear forces, circumferential or
longitudinal bending moments and twisting moments.
Here, the analytical bases are concerned with loads
being applied over square or rectangular areas of a
cylindrical shell. This is because the boundaries of such
areas are easier to specify mathematically than, for
example, that of a circular area, for which an analysis
would be difficult.

The present work is concerned with the plastic
behavior of cylindrical vessels when subjected to local
radial load through a rectangular attachment.

The upper bound theorem of plasticity has been
used by Miller [6] to calculate an upper bound solution
for the limit pressure of a sphere with a protruding
nozzle, with a partial penetration defect in the sphere
running round the junction of the sphere and cylinder.
An upper bound to the limit pressure has been de-
termined by considering four independent mechanisms
and compared with a lower bound solution in [7] for the
same physical situation. In both the upper and lower
bound solutions, the two-moment limited interaction
yield surface is used. An upper bound analysis for the
plastic limit moment of a cylindrical shell subjected
to a circumferential bending moment through a square
attachment was reported by Kitching et al. [8], along
with the experimental behavior of 12 mild steel shells
subjected to this type of loading. A similar analysis for
cylindrical shells with square attachments subjected to
longitudinal moments has been reported by Kitching
et al. [9], as well as the experimental behavior of 14
specimens. Both analyses have used a two-moment
limited interaction yield surface. These analyses [8,9]
have been extended for rectangular attachments by
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the author [10] with a modified collapse mechanism.
A simple lower bound analysis for a cylindrical shell

when it is subjected to local radial

load through the

rectangular attachments is given in [11].
The experimental and theoretical work on elastic
behavior of cylindrical shells subjected to local radial

load can be found in more recent liter
[12,13], but reports on plastic tests
rare.

ANALYSIS

ature, for example
and analyses are

The analysis is similar to that of a cylindrical shell

subjected to circumferential or lon
moment [10].
principle directions are longitudinal

situdinal bending

It is simplified by assuming that the

and circumferen-

tial. The notation and sign convention for the surface
of the attachment along with relevant hinge patterns

(eg. hinges are implied at BC, EF,
in Figure 1.

ptc) are presented

Due to the symmetry of the problem,

it is only necessary to consider the internal energy
dissipation of the collapse mechanigm viz Regions 1,

2, and 3 of Figure 1c. The direct
the plastic regions are compressive.

stresses in all of
For any point on

the shell, the components of displacement in the z, 8
and z directions are u, v and w, respectively. It is
assumed that u = 0 throughout the paper and v and w

are small. Strains and curvatures a
middle surface will be given by:
ez =U; €= (Vg+w)fa 2ez=

)

kg = (ve — w,(,ug)/a2 2kzp = (v —
Using o, as the yield stress in simpl
No, M, as N, = 0.t and M, = o
where t is the shell thickness, and

l.P

t any point of the

kz = —Wgze

]

(1)

e tension, defining
t? /4 respectively,
employing a yield

Zwyxg)/a.

¢ (b)

b 2¢p (C)

Figure 1. Radial loading.
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surface with stress resultants provides that:

1N0|=N0a |Nz0|:No/2a

|Mg| = Mo, |Mazo| = M,/2. (2)
N, and M, are assumed equal to zero within all regions
(but not at the hinges). The energy dissipation within

any region is given by:

Di=// Noleo[dxad8+//2%|ewldwad9
A
M,
+//Mo|ke|dmd9+//2—|kw|dmd9,
? ®)

where the limits of the integrals are appropriate for the
regions.

The analysis for each of Regions 1, 2 and 3 is now
given separately. Here, the different suffixes attached
to u, v, w and D will refer to the appropriate region.

Region 1
It is assumed that v = 0 and for ¢; < x < b+ ¢2 and
0<af <c.

(4)

where v(= w/b) is the angular rotation of Region 1,
w is the maximum radial displacement and b indicates
the extent of plastic deformation. This formula gives
w; = 0 at hinge BC. Inextensibility is assumed within
Region 1 and this gives eg = 0 or vy = —w which
results in:

wy = —y(b+ ¢z — ),

m :a0(b+02—a:)+A,

but v; = 0 at hinge BC. Inextensibility is assumed

within Region 1 and this gives A = 0. Hence,
circumference movement will be:
vy = ab(b+ ¢y — z). (5)

In this region, one can also write w; sinf+v; cosf = 0,
if 0 < 8 < c1/a << 1 then tgf = 6, hence, v; = —w 6.
Substituting Equations 4 and 5 into Equation 1 gives:

e-”?:eo:kmﬂzov 629:"7—9
2
PO (Gl Tk N (4
a 2a

where rotation at hinges AD and BC is v = w/b.
Thus, the total energy expended in Region 1 (and
for hinges) after integration is:

Novbe? Moybc;
4a 2a2

M,~bc? .

Dy, =2M.ver + 122

(6)
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Region 2
Continuity with Region 1 at af = ¢; requires:

w2 = —y((b+ c2 — z) + (c2 — ab)), (7)

which gives w; = 0 along inclined hinge EC, (z — ¢3) +
(af — ¢1) = b. It may be shown that:

vy = %((H ca — z) + (¢1 — ah)), (8)
which can be constructed from the requirements that
vo = 0 along the inclined hinge and v, = v; at
af = c; for continuity with Region 1. Alternatively,
if it is assumed that vo = Aw,, where A is a constant,
by using the continuity condition at the common
boundary with Region 1, A = ¢;/a and Relation 8
is again derived. Substituting Equations 7 and 8 into
Equation 1 gives:

e; =ky =0, eo=—%(b+02-x+2cl—a0),

__av _ a7 _ Ay

610—_’%‘, ko——a—z, kzg——m,
where rotation at boundary with Region 1 is % =7,
rotation at boundary with Region 3 is % = v and

rotation at inclined boundary is %(f—(_ﬁ;"é + %) = %
Therefore, the total energy dissipation in Region
2 and for hinges will be:

3Mob201’7

3b261
4a? )

Dy = 4Moby + ia
9)

b3
+ Noy(— +
a

It may be noted that the limit of integration along the
axial direction can be derived from the geometry of
Region 2 which gives:

a—c; btc—=x

5 b or t=b+c +cy —ab.

In this region, for example, e,q, ko, k-0 and eg (if ¢; >
b) are always negative, therefore, the stress resultants
have the limit values of Ny = —N,, Nz = —N,/2,
My =M, and M,e = —M,/2.

Region 3

Compatibility of the common boundary with Region 2
demands:

w3 = —y(b+ ¢ — ab), (10)

which gives w3z = wy at DE. It can also be shown that:

v3 = %(Hcl — ab), (11)
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which again gives v3 = v, at DE, v3 = 0 at FE and
vz = byci/a at af = ¢;. Substituting Equations 10
and 11 into Equation 1 gives:

€z =ky =kpg=e9=0, €9 = —_a—’y(b+2c1 — afl),

where rotation at hinges GD and FE is v = %.
Energy dissipated in Region 3 including that of
hinges will be:

Noyea b2
ZCZ — +bey) +

( Moyciesb
5 —_—

D3 = 2M,yey + >
a
(12)
Hence, the total energy dissipation in one quadrant is
D; = Dy + Dy+ Ds. Substituting M, = N,t/4 into the
energy dissipation equation, it is obtained that:
C1 C% 5b01 b2

2

C
D; = Nywt(L + & 1420, O
W+ 1t T e T 6w T 6at

3bc1 Co C1C2 bC2 C1Co

T "t Tt ) (13)

Now, equating external work done to the energy dissi-
pation in four quadrants, Pw = 4D,. Using the non-
dimensional geometric parameters:

2

provides:
P*:£t=(4+%+%
+p2(1+3ﬂ+%(£2—+?§+%)
(G gt g (14)

where P and P* are the plastic limit load and non-
dimensional limit load, respectively. The terms within
the first bracket arise from the work done at the hinges,
those within the second bracket from internal work due
to direct strains within the regions and those within the
third bracket are due to curvature and twist changes
within the regions. Parameters a, v and p are given,
so that the minimum value of P* is given by 22 =0,
or:

16p%a02® + 3(12ap? + 8p? + 5av%)Q?
- 24(1+a)=0. (15)

Solution of the cubic Equation 15 for different values
of @ and v gives Q for the minimum value of P*.
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Figure 2a. Limit load versus p(c1/v/at), for
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Figure 2b. Limit load versus p, for o = 0.25.

The solution of Equation 15 for particular values of
the parameters a, v and p was obtained by writing a
standard computer program.

Figures 2a to 2g demonstrate the curves of min-
imum P* against p for various values of v and a.
Plastic hinge length parameter £ and corresponding
minimum P* for various values of p, [y and «a are given
in [10].

ALTERNATIVE COLLAPSE MECHANISM

An alternative collapse mechanism |is now examined
to see the probable improvement of the limit load.
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Figure 2c. Limit load versus p, for a = 0.5.

50

40 |~

30 |-

pP*
1

10 o718

c1/eg = 1.0
] /| 1 1 1 1 i
0.00 0.50 1.00 1.50 2.00

P

Figure 2d. Limit load versus p, for a = 1.0.

The hinge pattern is shown in Figure 3, for which the
extent of the plastic zone is b in the radial direction
and d in the circumferential direction. This involves
an extra unknown parameter of that in the analysis
of the previous section. Since the same relations
and similar procedure of the analysis are employed as
before, hence, the details of the calculation are not
given here.

Region 1

In this region the velocity field is defined as:
wy = —7(b+ca—2x) (16)
v1 =nb+c —z), (17)
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Figure 2e. Limit load versus p, for a = 2.0.

where v; (= w/b) is the rigid body rotation of Region 1.
The final expression of energy dissipation in Region 1
is:

Nobnc?  Momb?er  Moyibc?

Dy =2M,vy1c1 + 5 )
4a 2a 4a (18)

Region 2
Continuity of common boundary with Region 1 and
also vy = wg = 0 at the inclined edge (z—c3) = —b(ab—
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Figure 2f. Limit load versus p, for o = 4.0.
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¢1)/d + b demands:
b
w2 =-7((b+c2~1x)— E(aa—cl)), (19)
c b
vy= 2L (btey—g) - 2(a6 —c1)). (20)
Rotation at common boundary with Region 1 is ‘Z’go =

b—;ﬂ; rotation at common boundary with Region 3 is
%ﬁ = v and rotation at inclined boundary EC is:

b_Odw,  d_ dus __2m
VB2 +d? 0r B2 +d2adl b2 +aZ

Therefore, the total energy dissipation in Region 2 is:

M,b? Nob
Y1 + V1

D, = 3M.by +
d a
b2c2 b bPe;  bey  3be
2_‘91 7 _ 749 e SV
C-F T E Tt
bt bZ b bPcy  becy
taetert Tt T )
Moy b b M, b2 b
a2d 2d 2a 2d (21)
Region 3

Compatibility at common boundary with Region 2
requires ws = wp and v = v3 at £ = ¢y, hence:

wsy = —’}’2(d +c — a0), (22)

vy = —%(m ¢1 — ab), (23)
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where y2(= w/d) is the rigid body rot
Rotation at GD and FE are 72 = u
dissipation in Region 3 will be:

Noyacab
D3 = Myvy2c + Moyaca + ——%2‘2“
b M,vy2bcyca
d - - —_
( +C1 2) -+ d

Therefore, the total energy dissipatia
is D; = D1 + Dy + Ds.

af

ation of Region 3.
/d. Total energy

(24)

n in one quadrant

Substituting M, = o.t2/4

and N, = 0.t into D; equation and equating the total

energy dissipation in four quadrant
work done (D. = Pw) gives the ap
equation.

s to the external
propriate balance

Using the non-dimensional geometric parameters:

b d a &1 o C
QI—,Q—-——, = —_, = T, = —,
! c1 2 c1 « Co a p at
yields:
2 O 2 9 2
P —_ 4 — 1440
(3+Q1+Qz+aﬂz)+p + 48
4 402 403 49 6Q
6 4+ - — o 2 2 A
ot Q02 92 G e
L2004 ot a0t
3Q% Q, Qs afls
1 Q 3 302
224+ + — — L 4 1y 2
g+t e, Tz T, (25)

Values of a, v and p are given and the minimum values
of P* occur at a point where the first derivatives of P*

with respect to £2; and (2 simultang

oP* oP*
—(,)—Q—I—O and 59—2—0

ously vanish [14]:

(26)
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Solving this system of nonlinear equations requires
the application of a linearization technique. Several
classical procedures for solving such systems exist. A
typical procedure is Newton-Raphson method, which is
chosen here. A computer program is written for finding
the upper bound plastic extent parameters ; and (2,
corresponding to minimum P* for certain values of
parameters a(= 0.25), (= 0) and p(= 0.2 to 2.0),
which are tabulated in Table 1. Table 1 also shows the
corresponding values of 2 and P* calculated according
to the analysis of the previous sections (1 = Q2 = Q).

DISCUSSION OF RESULTS

The upper bound of the non-dimensional limit radial
load for an open-ended cylindrical shell is plotted in
Figure 2 against the parameter p(= ¢/ Vat) for various
values of v(= ¢;1/a) and a(= ci1/cz). The results
have been computed using Equation 14. It has been
assumed that the cylindrical shell is long enough for the
influence of the ends to be neglected. The theoretical
work indicates that when the shell is subjected to
a local load, only a small local region consequently
becomes plastic. The position § = (b + ¢1)/a in the
circumferential direction (and also £ = b + ¢z in the
axial direction) of the boundary, separating the plastic
from the rigid region is one of the unknowns of the
problem.

The most significant results of the analysis are
outlined as follows:

1. Figure 2 suggests that there is a continuous and
consistent relationship between applied load and
p. The figure also indicates that as parameter p
becomes greater the value of the corresponding limit
load increases.

2. For many practical situations, 4? is small enough
to make the third term in Equation 14 negligible.
The resulting values of P* will still become upper
bound to the limit load. Of course, it appears that
neglecting energy dissipation due to loading within
the plastic zones, provides results only marginally
different from those with v # 0. Neglecting v
for simplifying calculations is of the same order as
ignoring bending strain energy within the Regions .
Figure 2 illustrates that for each fixed value of o, the
change of 7 has little effect on the limit load, though
as v rises, the limit load increases a little. The
influence of v becomes smaller as p increases and
sometimes the curves are coincident for the range of
~ investigated.

3. For high values of a (i.e. 2, 4 and 10), increase of
p has less effect on the increase of the limit load.
This means that as « rises the slope of the curves
decreases. The reason is thought to be that when
the circumferential dimension is small, a higher load
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Table 1. Comparison of results of different collapse mechanisms.

Results of the Alternative Collapse Results of the Assumed
" Mechanism (a = 0.25) Mechanism (b = d)
—_ b — d ™ _ b *
Ql = oL 92 = o P = e P
0.2 3.46 10.86 9.708 3.92 9.37
0.3 2.139 6.493 12.981 2.752 12.342
0.37 1.747 4.944 15.472 2.25 14.83
0.6 1.085 2.615 24.848 1.464 23.262
1.0 0.645 1.342 46.127 0.905 42.55
1.23 0.511 1.011 61.422 0.731 57.363
1.5 0.422 0.807 79.508 0613 74.298
2.0 0.311 0.571 122.413 0.464 114.541
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APPENDIX

Discussion on Yield Surface

Generally, the results of a 2-moment limited interaction
yield surface is a four-dimensional surface defined by
twelve planes. Generally, using this yield condition
needs some modification in calculating the limit load.
For example, it can be shown that this yield surface
reduced by a scale factor 0.618 is entirely within the
true interaction surface for a shell made of material,
which follows Tresca yield criterion [15]. Thus, the true
load of a shell for Tresca yield conditions is between
0.618 and 1 times the plastic collapse load calculated
using the limited interaction surface. Therefore, the
upper bounds calculated for this approximate yield
surface are also upper bounds for Tresca yield surface.
Experimental evidence exists which indicates that the
approximation of using a 2-moment limited interaction
surface is quite reasonable in most practical circum-
stances (e.g. [16]). However, a theoretical comparison
of the limit pressure obtained with 2-limited moment
surfaces has been made by Ellyin [17], who shows that
the approximation can be quite inaccurate for certain
extreme geometries. Now, the employed yield surface
is examined in more detail.

Approximation to the Tresca Yield Condition

Based on conclusions reached by Onat and Prager [18],
if all bending behavior except at the hinges is neglected
(i.e. v = 0) and all shear force effects are also ignored,
it can be readily shown that for ajl plastic zones and
hinges (except at inclined hinges) and for all cases of
loading, a yield stress of 0.618 o} (i.e., a reduction

G.H. Rahimi

factor of 0.618) would still give an upper bound since
the yield surface still circumscribes or touches the exact
one. Therefore, by introducing this reduction factor to
the evaluated limit radial load for certain geometries
of the shell and attachment, one can get an improved
limit load P = 1.854 kN which is still upper bound to
the limit load.

Approximation to the Mises Yield Condition

In this case, there is no need to neglect bending
behavior and shear forces, therefore, it is possible to
obtain a better yield surface than Tresca approximation
and, hence, an improved upper bound limit load. The
following Equation {19]:

(n? — nzng +n3 + 3n2y)
+ (mi —mgemg + mg + Smig) =1, (A1)

can be used to obtain a reduction factor corresponding
to this yield condition (n; = Nz/No,m, = M. /M.,
etc.). For this purpose, the yield surface is examined
for longitudinal bending moment of each region. It can
be noted that signs of the generalized stresses do not
alter the yield condition.

Region 1
In the interior zone, Npg = — &2, Myp = Y=, My = M.
If it is assumed that —]{,"—o = % =K, 3K*+K?+3K? =

1 is obtained giving 5K? = 1, so K = 0.632. At the
hinge AD, Nz = —%"-,Mxe = M2—°,Mz = ~M, and
My = M., therefore, SK? + K2 - K* + K> + §K* =1
so K = 0.632. At hinge BC, Nop = — 2, My = %2,
M, = M, and My = M,, again K =0.632 is obtained.

Region 2

Within the plastic zone, Ng = —No, Nzg = -‘—;Vﬁ, My =
—M, and M,y = _1\/21°. Hence, K = 0.534. At
the hinge DE, following the same procedure gives
K = 0532 and at the hinge DC, K = 0.534. At
the inclined hinges by assuming My = M, = Mz’
K = 0.557 is obtained. The same results are derived
for Region 3. Therefore, when o, is replaced by
0.632 0., a circumscribing yield surface is obtained
at all conditions considered. A reduction factor of
0.756 is suggested in [9] which leads to an improved
upper bound and results in a longitudinal bending
moment M* values for the upper bound curve being
reduced by an average of 13%. The same procedure
can be carried out for hoop moment [8]. If the same
analysis is followed for radial load, a factor of 0.707 will
still give an upper bound since the yield surface still
circumscribes or touches the exact one. In this case,
for a typical cylinder considered previously, P = 2.121
kN is obtained.






