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Computation of High Reynolds
Number, Parabolized Navier-Stokes
Equations Based on Upwind Algorithm

H. Emdad*, M.M. Alishahi! and E. Goshtasbi Rad'

A three-dimensional Parabolized Navier-Stokes (PNS) code has been developed for calculating
supersonic turbulent flow. The code employs an upwind algorithm throughout the subsonic and
supersonic zones. The algorithm is implicit and uses a cell centered finite volume scheme. To

validate the code, turbulen

supersonic flow around Secant Ogive Cylinder (SOC) and Tangent

Ogive Cylinder (TOC) is camputed and compared with experimental measured data. Results are
acceptable up to 6° angle of attack. By increasing the angle of attack to 10°, the separation
zone becomes dominant and the pressure distribution would have an error up to 20% of the

experimental data.

INTRODUCTION

PNS equations have been used successfully in comput-
ing complex steady supersonic viscous flow fields. A
nonlinear, implicit, space marching, finite difference
algorithm based on the viscous subsonic layer method
has been proposed by Schiff and Steger [1]. This
method has been used by Sturek et al, [2,3] to compute
the flow field about spinning and non-spinning secant
ogive cylinder with and without boat tail. Sturek also
has used Baldwin-Lomax turbulence model with and
without modification. It concluded that the computed
pressure distribution is in good agreement with the
experiment up to 6° angle of attack.

Another scheme has been proposed by Vigneron
et al. [4] using pressure splitting flux tensor for
simplifying the decoding of the fluid dynamic variables
from the marching direction flux vector. This scheme
is based on a class of Alternating Direction Implicit
(ADI) schemes developed by Beam and Warming [5],
which solve time dependent equations such as unsteady
Navier-Stokes equations. A new application based
on the MacCormack explicit two step finite volume
predictor corrector has been employed by Deese et
al. [6]. Onme of the major drawbacks of the previous
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schemes is that central differencing of fluxes across flow
field discontinuities tends to introduce errors into the
solution in the form of local flow property oscillations.
To control these oscillations, some types of artificial
dissipation are required. The user must specify the
correct smoothing parameter magnitudes through a
trial and error process.

Another new application of the upwind algorithm
in three-dimensional PNS equations has been proposed
by Lawrence et al. [7-10]. This algorithm is implicit,
using finite volume, and is validated through appli-
cation to laminar hypersonic flows. In their study,
the spatial propagation of flow field information is
locally modeled using a steady version of Roe ap-
proximation of Riemann problem. In addition, the
upwind algorithm is applied only outside the sonic
line of the flow field and the subsonic region of the
boundary layer is treated with a central differencing
approach. This approach is taken because, in two
dimensions, a degradation in stability was encoun-
tered when applying upwinding in a subsonic zone
[8]. This work is an extension of the Lawrence
scheme to turbulent flow field at supersonic speeds and
implimentation of upwinding in a subsonic zone. The
turbulence model developed by Baldwin-Lomax [11]
and modified by Degani and Schiff [3] is employed.
The resulting computer code has been validated by
computing turbulent supersonic flow about two flying
bodies, SOC and TOC. The flow about these models
has been calculated at different angles of attack up
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to 10° and are compared with experimental data
[12].

GOVERNING EQUATIONS

The motion of a fluid is governed by conservation laws
of mass, momentum and energy. The non-dimensional
form of Navier-Stokes equations is,

au =

SS+AH) =0, 1
where,

H=H,—H, . (2)

U is the vector of the conservative variables (i.e.,
density, momentum and total energy) and is expressed
as:

Q: {pvpﬂa Et}T - (3)

I;Ti and }fv represent the inviscid and viscous flux
tensor, respectively, and are defined as:

: = {pu, pun + PI, (E, + Pyu}T | (4)
I:{'u = {07 -7, —TU+ q}T ) (5)

where p is the density, P the pressure, T the identity
tensor, E; the total energy and u the velocity vector
given by:

w=ui+vj+wk. (6)

Pressure and temperature are related to the conserva-
tive variables by the equation of state for a perfect gas:

P = pT, (7)
P=(y-1) [Et - glulz] ; (8)

with v being the ratio of the constant specific heats.
The stress tensor is given by Newton law:

T= plgrad u + (grad u)7] + Adiv (g)? ) (9)

These viscosity coefficients are related by Stokes hy-
pothesis also for a polyatomic gas:

A=—zu. 10
3H (10)
The viscosity coefficient is obtained from Sutherland
formula:
it 2 1+ 8
L 11
e L (T+S> ’ (1)
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where S = §/T,, with Sutherland constant in air being
S =1104K.

The g in Equation 5 is obtained through Fourier
law for the heat flux:

g=-Kgrad T . (12)

Also, the following relation between the dimensional
heat conduction coefficient and viscosity coefficient is
used:

LS

2
Ky oo

(13)

In three-dimensional Cartesian coordinates, the spatial
coordinates are denoted by z, y and z and their
corresponding velocity components by u, v and w. The
equations have been non-dimensionalized (dimensional
quantities are denoted by tilde and free stream values
are denoted by oo) in the following manner:

, 2 @, 0,10

’ u,v,’w:f—,

p=p/pos, P=P|Ps, T=T/Tw, E,=E,/P, .
(14)

T,

a2y

LY, 2 =

(i}

The dimensional free stream speed of sound (C,) and
free stream Mach (M), Reynolds (Re,) and Prandtl
numbers (Pr) are defined by the following reference
quantities:

Coo = Poo ~oo’ =
YPso [P c

Re,, = Miﬂ pr = FeCP (15)
oo K

Cp is the dimensional specific heat at constant pres-
sure, V.o the free stream velocity and Prandtl number,
Pr, is assumed to be constant and equal to 0.72.

For a parabolized approximation, it is assumed
that the Navier-Stokes equations are steady, the ve-
locity outside of boundary layer is supersonic, the
streamwise velocity component is everywhere greater
than zero and the pressure gradient in the streamwise
momentum equation is either omitted or treated with
some other technique suitable to avoid a departure
solution.

The scheme, which is developed by Vigneron et
al. [4], is used in this study. This approach involves
separating the streamwise flux vector (E) into two
parts:

E=E*+E? (16)
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where,

E = {pu, pu® + P, puv, puw, (E; +

P)u}",

E* = {pu, pu® + wP, puv, puw, (E,|+ P)u}7,

EP ={0,(1 - w)P,0,0,0}7.

(17)

Based on this marching scheme, PNS equations
are parabolic-hyperbolic and are stable in the subsonic

region, if:

oYM}

W = min. l:l,w} s

(18)

where M; is the streamwise Mach number and o the

safety factor equal to 0.8.

The gradient of E¥ is

usually neglected so that the steady form of Equation 1
becomes hyperbolic-parabolic in nature [13,14].

TURBULENCE MODEL

The two layer Baldwin-Lomax turbu
been used successfully throughout m
PNS and thin layer Navier-Stokes ¢
inner layer, u;, the eddy viscosity cc
by:

(1t )inner = P29,
where [ is the mixing length equal t
I = ky[l —exp(—y*/AT)],
where k and AT are constant and eq

respectively, || is the magnitude of
vector and is defined as:

lent model [11] has
any applications of
quations. For the
efficient is defined

(19)

e

(20)

ual to 0.41 and 26,
the local vorticity

(22)

1 =
(e )
dy Oz 9z Oy dr 0Oz (él)
and:
VPwTw
yt = Youle,

fhw

where, pu, Tw and p, are density, shear stress and
viscosity coefficient of the wall, respectively, and y is

the distance from the wall to the b

undary layer edge.

In the outer region for attached boundary layers,

the turbulent eddy viscosity is defin

(Ht)outer = KCcppFwakeFkleb(y) y

ed by:

(23)
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where K and C,, are constant equal to 0.0168 and 1.6
and Fiieb(y) is Klebanoff intermittence factor:

C 17
Fueb = |:1 +5.5 <———‘kleby> ] y (24)
Ymax
and:
Ymax Fmax
Fyae = min . 25
wak {ka Ymax u%)iﬂf/Fmax . ( )

Ciep is Klebanoff constant equal to 0.3, Cui is a
constant equal to 0.25 and:

UDiff = (V u? +v? +w2)max - (V u? + 02 +w2)min .

(26)

Foax and ymax are determined from the following
function:

F(y) = yQI[1 — exp(-y*/A")], (27)
such that the peak value of F(y) between the wall and

the boundary layer edge is defined as Fnax and the
value of y at this point 1S Ymax-

TURBULENCE MODIFICATION

A problem with Baldwin-Lomax model is encountered
when it is applied in treating flow about slender bodies
at incidence [12]. In the separated flow region, it
becomes difficult to determine the correct value of
Fax, which is necessary for evaluating p:outer- In
attached flow, there is only one maximum for F(y)
in the radial direction and Fpa.x is simply found.
When separated flow occurs, two maxima for F(y) are
encountered. The first peak occurs in the boundary
layer and a second layer peak exists due to the presence
of vortex sheet. If Baldwin-Lomax model is used to
obtain Fiax, the second maximum in F(y) is obtained.
This provides values of fi¢ outer that are much too high,
resulting in distortion or a washout of the features in
the computed flow [15]. A modification to Baldwin-
Lomax model has been proposed by Degani and Schiff
and applied by Sturek et al. [3]. For each axial station,
a maximum value of the scaling length, ymax, is defined
as 1.8 times the value of ymax On the windward ray.
A peak in F(y) is defined, if the value of F(y) drops
below 90% of the local maximum. Where two separate,
distinct peaks in F(y) exist, the peak closer to the body
is chosen. If the two peaks in F(y) merge into one
abnormally large peak (or a peak cannot be found at
all), the value of Fiax is frozen at the value used for
the previous roll angle.
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NUMERICAL SOLUTION PROCEDURE

Equation 1 is discretized in hexahedrons using the cell
centered finite volume technique (Figure 1). Since the
conservative variables are assumed to be defined by
their cell averages, the volume integral over a cell is
expressed by:

%—UdV + / (Hn)dS =0, (28)
and for steady flow reduces to:
— 6 -
/ (Hn)dS =Y Hym. / ndS =0, (29)
s m=1 Spm

where I:Tpm = %(flp +Hpy).
In this equation, p represents the central cell and
m is the number of neighboring cells. If it is assumed

that the tensor H remains constant across each face of
the cell and that cell face area vectors are oriented in
the positive coordinate directions, Equation 29 may be
written as:

sz d‘skl + Hk+1/2! d5k+1/21

=n+1/2 n =n

+ Hypy1/0 dSpri 00y — Hyy dSE
=n+1/2 n+1/2 =n+1/2 nt1/2
- H_ 1/2ldsk+1/2z Hk,l—l/Z'dSk,Tj{/Z

0, (30)
where n, k and ! represent streamwise, tangential and

radial directions, respectively, and dS is the cell face

Figure 1. Basic hexahedron p and neighboring cells 1 to
6 (2 and 5 are set apart).
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area vector in the relative direction. With conservative
variables given at the first cell face (n), all terms
of the flux tensor are available in cell P (Figure 1),
except for the gradients of the velocity components and
temperature as well as div.u. The gradient in cell P is
defined by the following definition of the conservative
variables as cell averages [16]:

grad ¢, =/v grad ¢ dV//v av, (31)

where ¢ = u,v,w, or T.

Using the gradient theorem, the integral in Equa-
tion 31 can be expressed by a surface integral, which is
approximated as:

grad ¢, = / ondS/ / dv
‘/p ‘/p

[}
=n§¢pm/smﬂds//vpdv, (32)
where,
1
¢pm = §(¢p +¢m) .

The discretization of viscous terms in these flow equa-
tions, which is derived by Muller and Rizzi [16] (based
on the above relation), is not suitable for this computa-
tion because it introduces false shear stress in the free
stream, consequently, producing large error in calcu-
lation of eddy-viscosity, especially in the calculation of
Fiax. Since this approach is grid dependent, especially
for calculating the turbulent eddy viscosity coefficient,
it is better to change the average of properties by
difference to:

- l/nds+/ ndS]/ dv.
- 2 v,

In the space marching procedure, it is necessary to
prevent the departure solution that is inherent in the
physics of the boundary layer. This is conducted
through using Vigneron technique with the following
substitutions:

grad ¢, =

m

(E)}, = E*(dSE,,UR) + EP(dSE,, Ugih) .
33

where the form of E* and E¥ are given by Equation 17
and dS7, and Uy, indicate the location where the
geometry and the physical variables are evaluated,
respectively.

To extract the required flow properties from the
flux vector E*, it is better to change the dependent
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variable from E* to the vector of conserved variable U

through the following linearization:

E* = A*n—lUn , (34)
where,
n yrn—1
o1 OEWS™, U™ (35)

dUT

The discretized conservation law Hquation 30, then

takes the following form:

1
AUy = — (A -

*n—1 n
A U

— [(B.dS)Y2 — (H.AS)IH2 )

k+1/2,0

_ [(E—'d‘s)n+l/2 _ (I n+1/2 ]

kl+1/2

— [EP(dSg, U) -

where 6"H1U = Ut — U,
The algorithm developed in this
Lawrence application of Roe scheme

H..

kl 1/2

EP(dSE, URTH)

(36)

study is based on
which is suitable

for space marching calculations [7,8,17].

In this scheme, the inviscid port
ical fluxes are defined according to

ions of the numer-
solutions of what

will be referred to as steady apprpximate Riemann

problems (StAR problems).

H k1+1/2 are determined separately
into two one-dimensional StAR proh

The fluxes ITIHI/N and

by splitting them
lems as follows:

OE* OE™*
e + Dpt1/2—7 EP =0. (37)
The initial conditions are:
E*(k) =
(dSm+1/2’ U ) where ki< km+1/2
E* (dSm+l/2’ Unt+1) where k> km+1/2 (38)

where the index m signifies the dire
coefficient matrix D,/ is defined

OH
Dpyip2 = (@7) ASmi12 -
m+1/2

The solution to the above approxima
lem consists of four constant property

ction k£ or . The
by:

(39)

te Riemann prob-
regions separated

by three surfaces of discontinuity coming from the cell
edge and having slopes given by the eigenvalues of

Dm+1/2 .

The first order accurate inviscid flux consists
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of a central differencing component plus a first order
upwind dissipation term and is given by:

Heypy12 = ‘2‘(Hm +Hm+1)

1 =
- 5(SgnD)m+1/2[AHi-dsm+l/2] ) (40)

where AI={,~ = I={m+1 -H,,.
In this equation, the matrix, Sgn D is defined as:

SgnD = R(SgnA)R™! (41)

where R is the matrix of right eigenvector and R7!,
which is the inverse of the right eigenvector, is the
matrix of left eigenvector and SgnA is the diagonal
matrix which has the following elements:

1

SgnA = (42)
AT
The eigenvalues are defined as:
)\1’2,3 = V/U y (43)

A4 and As are the roots of the following second degree
polynomial:

alx\if, + a5 +a3=0, (44)
where,

a1 = (Y(1 - w) +w)u? —we?

az = w[nzc2 - Vu(]- - 7)] + 77102 - Vu(’y - 1) )

ag=V? -2 + 02 + 72, (45)
and:

ds,,
V = (dSmi1/20)/dS™ Mayy,e = | —rorl?
dsn» ez

¢ is the local speed of sound. The left eigenvector is
derived from the following equation:

RY(C-X)=0. (46)
where:
aI{mﬁ—l/ﬁ

8E*
The right eigenvector is the inverse of the left eigenvec-
tor.

C=

In order to help Roe’s Riemann solver to
avoid expansion shocks, only at sonic rarefaction
[)\ (Um,dSm+1/2) < 0. < /\( m+1,dSm+1/2)] the
corresponding positive and negative projections are
redefined as [18]:

i * i +
’\m+1/2 =’\m+1/2
[/\( Um+1,dSm41/2) = A (Um, dSmt12)]

4 (47)
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IMPLICIT ALGORITHM

The first order numerical flux is linearized as follows:

(HYMH, = (H) e

m+1/2 =
O H) o2 | con
+ | S | 64U
[ O() 12 ]
m+1/2 n+1
| e, (48)
L J

The Roe averaged SgnD matrix is assumed locally
constant for the evaluation of the numerical flux Jaco-
bians of this equation. The resulting block system of
algebraic equations is approximately factored into two
block tridiagonal systems in the conventional manner
and the algorithm is then written as:

{

A+

O(Hygrp20 = Himappd) | g
aUk,l Uk'l

3f1k+1/2,z ntl 8ﬁk—-1/2,l

+ Ugra — "ty
aUk-}—l,l k41,1 aUk—l,l k—1,1

= RHS of Equation 36,

8(H —Hiyi1s)
{ et ( k’ngUk, = ]‘““u“
aflkm/z 551:1—1/2
3 6n+1 _ ) 6n+1
+ U141 Ukt OUg 11 Uk-1
= A},.60, . (49)

BOUNDARY CONDITIONS

In general, the initial condition of data plane for the
marching method must be supplied from an auxiliary
computation. A conical grid is selected and the
flow variables are initially set equal to free-stream
values. The solution is marched downstream from an
initial station and after each step, the new solution
is reselected as the initial values. When changes
in the total density are very small (e.g. less than
1073), the variables are constant along rays and conical
solution is generated. The solution is then marched
along the streamwise direction. For the ogive cylinder
computations, the tip of the ogive is replaced with a
cone tangent to the ogive at z = 0.71 cal.

The no-slip conditions are applied at the wall by
allowing no flux through the boundary cell interfaces.
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Viscous stresses and the wall pressure are extrapolated
using zero-gradient extrapolation as follows:

Tk,wall = Tk 1,
Py want = Py . (50)

In this study, the wall is adiabatic, the temperature
at the wall is also extrapolated and the wall heat
conduction is set to zero.

GRID GENERATION

The primary grids are generated by the simple alge-
braic method. To set the domain limits approximately,
the outer shock is defined by Taylor-MacColl solution
and the outer boundary is set at 1.2 times the distance
between the shock and body surface. Therefore,
there are enough grids at the free stream zone to
capture shock. Finally, grid points are clustered along
the radial direction according to Roberts stretching
function [19]:

B+1-[8-1][gH] - (51)
(G141
The positive vectors of the grid points are then given
by r = ro + z (R —rg), where rq and R represent
the body and the outer boundary radius and 3 is the
stretching parameter. In the circumferential direction,
the spacing is constant.

ADAPTIVE GRID

An adaptive grid capability [2] is used in this work
for PNS code in order to maintain adequate resolution
of the viscous layer. The strategy involves checking
for the value of y*, Equation 22, at the first grid
node above the body surface and adjusting the grid
stretching parameter to maintain this value of y*
within the desired range, 5 < y* < 10. This check is
made only at wind and lee sides of the model. The
stretching parameter is varied linearly between the
extremes determined at the wind and lee sides for grid
nodes at circumferential stations of the pitch plane.

RESULTS
Model Geometry

The dimensions of the ogive cylinder models are shown
in Figures 2 and 3. The length of these models is
six calibers with a cylinder diameter of one caliber.
The grid for these computations consists of 77 points
radially, which are stretched between the body and the
outer layer and an equal spacing of points circumfer-
entially at increments of 3 degrees. The marching step
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Figure 2. Secant ogive-cylinder model configuration.
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Figure 3. Tangent ogive-cylinder model configuration.

size required at the nose tip is 10~ caliber in order to
resolve the boundary layer profile. When the solution is
converged, the step size can be enlarged to 103 caliber
and marching will be continued down stream.

Comparison Between Computation and
Experiment

The flow field and sectional pressure distribution
around SOC and TOC are computed at 10° angle of

two results. The reason for this
attached flow portion might be due|to the dissipative
nature of the first order upwinding. In addition, in the
separated zone, the error will increase further and the
separation incipient point will occur later than in the
experimental results.

Figures 5 and 6 demonstrate the comparison
between pressure distribution at 6° angle of attack and

1.8 2 o
4 «— Comp. 1 — Comp.
14y 4 Exp.[12] 14:"\ A Exp.[12]
® i g o
s Tos]
0.64 0.8
0.2 byl — 0.2 ———r —
0 60 120 180 0 60 120 180
Wind Roll angle Lee Wind Roll angle Lee
(a)-50C (b)-TOC

Figure 4. Circumferential surface pressure distribution
for SOC and TOC configurations; M = 4, a = 10°,
Re =213 x 10" /m, X/D = 3.13.
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1.2 1.3

] — Comp. — Comp.
1] A Exp.[12] 4 A Exp.[12]
o 1]
('3 4 A 2 )
£0.81 N S ]
& D 0.7]
0.6 1 4
0.4 e 0.44— ——r
0 60 120 180 0 80 120 180
Wind Roll angle Lee Wind Roll Angle Lee
(a) M =3 (b) M =4

Figure 5. Circumferential surface pressure distribution
for SOC configuration; M =3 and 4, a = 6°,
Re=213x 10" /m, X/D =5.77.

1.2 1.3
1 — Comp. 1 — Comp.
1] 4 Exp.[12] 1] A Exp.[12]
20.8] g ] '
I B Bo7]
0.6 4
Y E— 3
0 60 120 180 0 60 120 180
Wind Roll angle Lee Wind Roll angle Lee
(a) M =3 (b) M =4

Figure 8. Circumferential surface pressure distribution
for TOC configuration; M = 3 and 4, o = 6°,
Re =213 x 107 /m, X/D = 5.71.

Mach 3 and 4 and the experimental data [12]. The
maximum local difference between the experiment and
computation are below 10 percent.

As the angle of attack increases, the separation
region becomes dominant. At 10° angle of attack
and Mach 3, the discrepancies between the present
calculated pressure distribution results increase. As
is evident from Figures 7 and 8, these differences are
about 30-40 percent at 110° roll angle. This is mainly
due to the dominance of the separation zone in the flow
field. Some reasons for the above differences are:

1. The turbulence model has not correctly captured
the physical phenomena.
2. The number of grids employed are not sufficient.

3. In a separated zone, the subsonic region will grow
possibly invalidating the application of PNS equa-
tions.

1.4 1.8
] — Comp. 1 — Comp.
1 4 Exp.[12] 1.44 4 Exp.[12]
8 s 1]
~ 1 a 14
o O
0.6+ o 0.6 1
0.2 v - - 0.2. T r r v
0 60 120 180 0 80 120 180

Wind Roll angle Lee Wind Roll angle Lee

(a) M =3 by M =4

Figure 7. Circumferential surface pressure distribution
for SOC configuration; M = 3 and 4, a = 10°,
Re =213 x 10" /m, X/D = 5.77.
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14 —Gomp 1.8
] ; 3 — Comp.
N A Exp.[12] 1.44 A Exp.[12]
s 2,
S~ b ~
a 0.6 a,
] 0.6- i
0.2 S S B A— 0.2 . ——
0 80 120 180 0 60 120 180

Wind Roll angle Lee Wind  Roll angle Lee

(a) M =3 (b) M =4

Figure 8. Circumferential surface pressure distribution
for TOC configuration; M = 3 and 4, a = 10°,
Re =213 x 10" /m, X/D = 5.77.
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Figure 9. Vortex structure for SOC configuration.

Figure 9 shows a well-defined vortex structure and the
secondary flow for Mach 4 at z = 5.99. To predict
the onset of separation, the grid resolution plays an
important role. In this test case, when using coarse
grid (i.e., 36 grids circumferentially are used), the
separated zone will not be captured, but increasing the
grids (120 grids circumferentially) makes the separated
region apparent. In addition, the obtained pressure
at wind and leeward are in good agreement with the
experimental data. The time of computation increases
about four times the coarse grid calculation time.

In the present method, the upwinding in the
subsonic zone is not eliminated. Actually, in contrast
to Lawrence [9], which eliminated upwinding in the
subsonic zone, here, the first order upwinding is kept
in that zone. The problem with ill conditioning of the
eigenvectors did not affect the pressure distribution.

CONCLUSIONS

A 3-dimensional parabolized Navier-Stokes code is
developed by using an upwinding scheme throughout
the subsonic and supersonic zones. Computational
results for the SOC and TOC shell configurations
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have been generated at attack angle of 6° and 10°.
By increasing the angle of attack, the separated zone
becomes dominant and the computed pressure distribu-
tion would have some discrepancies with experimental
results. When the number of grid increases from 36 to
120 circumferentially, the results have better agreement
with the experimental data and the separated zone is
captured, however, the computation time increases four
times with respect to the coarse grid calculation.

NOMENCLATURE

C speed of sound

Cp specific heat at constant pressure

ds cell face area

E, total energy

E,F,G  streamwise, tangential and radial flux

tensors
Klebanoff intermittence factor

wake function

inviscid flux tensor

-,

viscous flux tensor

<

identity tensor
heat conduction coefficient
mixing length

B 7 ) o~ e e

reference length
free stream Mach number

oh

streamwise Mach number

3
>

streamwise, tangential and radial
directions
normal vector

pressure

R
<

Prandtl number
heat flux
outer boundary radius

=il =< B

right eigenvector

o)
o

Reynolds number
body radius
Sutherland’s constant
time

temperature

velocity vector

SR NI

@
S

velocity components
conservative variables
cell volume

NS

free stream velocity
Cartesian coordinates axes

t e
2

distance from wall in law of the wall
coordinates

@ 8



ing factor
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B stretching factor
5 constant specific heat ratio
A eigenvalues
A diagonal matrix of eigenvalues
I viscosity coefficient
it eddy viscosity coeflicient
P density
o safety factor
T shear stress tensor
w streamwise pressure splitt
~ tilde for dimensional quantities
00 free stream quantities
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