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Optimal Gain in CO,-N,;-H,O Gasdynamic
Lasers with Shock Free Active Medium

A .R. Bahrampour*, R.-M. Farrahi' and M. Radjabalipour?

In this paper, the method of calculus of variation is used for finding the supersonic part of the
nozzle of a gasdynamic laser with optimal gain in which Mach lines intersect at some points
outside the active medium. This will control the position of shock occurrence and also will
ensure the optical uniformity of the active medium. The interesting result is that the supersonic
part of such a nozzle consists of a wedge and channel joined by a smooth surface characterized
by the geometric locus of points, whose Mach lines are concurrent at a certain point. It is also
shown that, overlooking minor differences in gain, the nozzle can be chosen to be shock free

with ultimate optical uniformity.

INTRODUCTION

Gain optimization in carbon dioxide Gasdynamic
Lasers (GDLs) has been studied by several inves-
tigators [1-12]. The optimization problem depends
on some numerical variables such as molar fractions,
stagnation pressure and temperature as well as some
functional variables such as the shape of the subsonic
and supersonic parts of the nozzle. In these papers,
special families of parametric functions were selected
for the shape of the supersonic part and gain was op-
timized by solving a parametric optimization problem.
In particular, to postpone shocks, the authors of [9-
11] studied smooth and convex curves whose second
derivatives were bounded below. As a result, they
showed that the supersonic part consists of a wedge
and channel joined by a parabolic surface.

In this paper, z;, the first point at which the
two different Mach lines meet will be also controlled.
(For detail see Appendix II.) This is the point after
which the non-uniformity of the media begins. A new
parameter ¢ = zs/z is defined as an index of the
uniformity of the media. Here, the variable z; denotes
the length of the supersonic part of the nozzle. To
have uniformity throughout the media, it is necessary
to have 0 < a < 1. The calculation shows that if & = 1,

*. Corresponding Author, Department of Physics, Vali-Asr
University, Rafsandjan, I.R. Iran.

1. Department of Physics, Shahid Bahonar University,
Kerman, L.R. Iran.

2. Department of Mathematics and Computer, Shahid Ba-
honar University, Kerman, I.R. Iran.

the highest gain is obtained but, instead, the optical
uniformity is disturbed; on the other hand, if @ = 0,
then z; = oo and perfect optical uniformity is reached.
Further calculation reveals that the difference between
optimal gains for various values of « is insignificant.
Under the new assumptions, for each «, the optimal
shape of the supersonic part consists of a wedge and
channel joined by a smooth surface, along which Mach
lines are concurrent at z;. In the case of 27 = oo,
the optimal nozzle shape is the well-known shock free
nozzle [13,14].

FORMULATION OF THE STATE
VARIABLE EQUATIONS

Throughout this paper, the gas mixture will be CO,,
N, and H,O. It is assumed that the nozzle has a non-
equilibrium quasi one-dimensional steady-state inviscid
ideal gas flow with no change in its chemical com-
position. Following Anderson bimodal model for the
relaxation of the vibrational phenomena, the governing
equations of the flow are as follows [1,9]:

p = p R T (State equation of an ideal gas), (1)
pv A = q (Conservation law of mass), (2)

dp/p + dv = 0 (Conservation law of momentum),

(3)
Ho =v*/2+ Ry(y = 1)7'T + e1(Th) + e2(T2)

(Conservation law of energy), (4)
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(Relaxation equations).

(5)

Here q, v and R denote, respectively, net flux of mass,
specific heat capacity ratio and universal gas constant.

Also, p, p, v, T, A, €, T; and 7
pressure, density, velocity, translati

are, respectively,
onal temperature,

cross sectional area (shape function), vibrational en-

ergy, temperature and relaxation li
mode, at a point in the supersonic
distance z from the throat plane [11]
state vector z € R5, one can write t
as follows:

iT = (

Ty,%2, T3, T4, T5)
— —1 -1 -1
‘“(% fixg fo,xy (fazs + f
+(0,0,0,0,1)u = F(z)T + b7

where zy = T1, 22 = T, 23 = T, 24
and u = d?f/dz?. Here, a is the
function A/A*, where A* is the t

fe time of the sth
part of horizontal

By introducing a
he state equations

),1‘5,0)

, (6)

=a, x5 = da/dz
normalized shape
hroat area. The

variable u = d? f /dz? is taken as the control function.

The functions f; (i = 1,2,3,4) are
their exact forms are given in Appe

differentiable and
ndix I. The initial

values of the state variables z1, 2o and x3 are denoted
by 1(0), z2(0) and z3(0), which are determined by
the reservoir conditions and the subsonic structure of

the nozzle and that of x4 by x4(0)
value for zs is z5(0) = (2/h*) tan (
the throat height and © is the op
value of z5(0), depending on ©, w
in the optimization process. To avo
from the walls, it is assumed that x5
a positive constant depending on th
[15]. Also, to terminate the nozzle i1
further assumed that z5 > 0 and

u < 0.
In particular,
0<z5 < 6.

Shock waves introduce disco
changes in not only the thermodyng
as the density of the gas mixture, but
refraction coefficient of the gas. The
of shock waves in the active and
destroys the optical uniformity an
Hence, to maintain a more uniform

= 1. The initial
©/2), where h* is
ening angle. The

id gas detachment
0) < 3, where 8 is
e fluid parameters
n1to a channel, it is

(7)

(8)

ntinuity or rapid
mic variables such
also in the optical
orefore, occurrence
immediate areas
d gain coefficient.
active media, it is

necessary to postpone the formation of such waves to
a region faraway enough from the end of the nozzle. It

follows from approximation of the ch

aracteristic curves

by Mach lines that curved shock waves occur at each

rill be determined -
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point z; = 25(z,z,u) = z + 1/ [hi(z,x)u + ho(2,z)] at
which two close Mach lines intersect. (See Appendix II
for the exact form of z,(z,z,u).)

To avoid occurence of curved shock waves in the
active media, z;(z,z,u) must be either less than z or
greater than (1/a)zf for each z (0 < z < 2zf) and a
certain constant 0 < o < 1 not depending on z. This
can be achieved by setting a constraint of the form:

(9)

The problem is now to optimize the small signal gain
g6 = go(T1,72,73) (see Appendix I for detail), where
71, T2 and z3 satisfy state Equation 6 with Constraints
7, 8 and 9 and the initial conditions:

h(z,x,u,25) = (2, — 2) (@™ tzp — 2,) 0.

21(0) = 210, (10)
22(0) = 230, (11)
23(0) = 230, (12)
24(0) = 240 = 1 (13)

Since Constraint 9 depends on w, it is not possible
to imitate the method of [9-11] to solve the optimiza-
tion problem via Pontryagin’s principle. To avoid this
difficulty, the calculus of variation is applied directly.

GAIN OPTIMIZATION WITH RESPECT
TO NOZZLE SHAPE

By introducing new variables gy, ¢2 and g¢3, the inequal-
ity Constraints 7 to 9 can be rewritten as follows:

y = (25 (w5 — B)+a2, h(z, 2w, 77) + g3, u + ¢3)

=0
(14)

Let p € R% and A € R® be Lagrange multipliers
corresponding to state Equation 6 and Constraint 14,
respectively. Now, the optimization problem is reduced
to optimizing the following generalized cost function
without any constraints,

9o = go (x(zf))
+ /zf [pT (F(z) + bu — &) + ATy)dz. (15)
0

Applying the variational method [16], the equation
69, = 0 for the optimal case yields:

>\iq~£ =0 (’l = 1,2,3), (16)

y =0, (17)
oh

pTb+ A= + A3 =0, (18)

Ju
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i = F(z) + bu, | (19)
oF oh

I')T:— pT—+/\2'—+)\1bT(2m5_B) ) (20)
oz Or

(pT (F(z) + bu) + ATy) 2=z,

2f Oé_l/\z
+ - —dz =10, 21
/o (h1u + h2) ‘ (@1)
15)
plzg) = ng_" =, - (22)

The optimal solution is now obtained by solving
Equations 16 to 22 for z, p, A, ¢ and u. If ¢; = 0 for
all z in some interval, then it follows from Equation 14
that either x5 = 3 or x5 = 0 which yields a wedge
or a channel, accordingly. In both cases, u = 0.
For the remainder of the nozzle, it is proceeded as
follows. If A or A3 is non-zero on some interval, then
u is determined by either u = 0 or h{z,z,u,z5) = 0.
The first conclusion implies that the concerned part
of the nozzle is again either a wedge or a channel.
The second conclusion implies that zs = a~'z and,
hence, z, is constant on that interval; i.e., all Mach
lines pass through the same point. Finally, if Ay and A3
vanish simultaneously on an interval, then singularity
is encountered and, hence, u cannot be determined
directly. In this case, using Equation 18 and its first
and second derivatives with respect to z, the optimal
control u can be determined at each point of singularity
as a function of the state variable z; ie., v = us(z)
with v < 0 and h(z,z,u,z5) < 0. (See Appendix III
for detail.)

Summing up, in the absence of singularity and in
view of the fact that u < 0, the following assertions are
true in the optimal case:

e The channel part will occur only at the end part of
the nozzle.

e Due to the smoothness of the shape function, the
wedge and channel can not be adjacent.

e Since yu = sin™! (1/M) is decreasing and Mach lines
initiating from the curved parts all pass through the
same point 21 = a~!zy, it follows that disjoint wedge
parts do not occur. (Here M = v//vRT is the
freezing Mach number and g is the angle between
the stream line and Mach line.)

Thus, the nozzle is divided into three distinct
parts. The first part is a wedge, the second part is a
curved surface with the property that all Mach lines
concur at the point a='z; and the third part is a
channel. Theoretically, one may argue that the wedge
part or the channel part may vanish. However, the
nozzle shape depends on a set of numerical parameters
1,25 and z5(0), in which ¢, is the end of the wedge
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part. Note that the end of the curved part c; is not an
independent parameter and is determined by equation
z5(cz) = 0. To find the exact shape of the optimal
nozzle, it is necessary now to solve a multi-factor
optimization problem through numerical methods [5].

It should be noticed that throughout the paper,
the smoothness of the shape function is guaranteed by
enforcing the existence of z4.

NUMERICAL RESULTS

The optimal nozzle parameters are determined by
numerical solution of Equations 16 to 22, since the
exact solution of the governing non-linear system of
differential equations of the gasdynamic laser is not
possible. For example, choose ©® = 40° and h* =
0.3 mm and assume the GDL of the CgHg-O5-Ny
combustion-driven type. Then, 8 = 6720, X¢co, =
0.1, Xy, = 0.85 and Xu,0 = 0.05. Arrange the
stagnation condition in such a way that pp = 20 atm
and Ty = 1220 k. The optimal shape corresponding to
o = 0.5 is given in Figure 1. As shown in this figure,
the nozzle shape has no singular part and its curved
part is in the interval ¢y, ¢2]=[0.18, 45] cm and the
nozzle terminates at zy = 8.3 cm. In Figure 2, the
corresponding gain function is shown. To verify the

existence of the singular branches, the singular control

function wu, is obtained in Appendix III. If singularity
begins at z, then wu(z) is calculated for the above
example, for which the values are shown in Figure 3.
Now, us(z) being positive contradicts Statement 7.
Hence, singular branches do not occur and the shape
function has a definite structure as described in the
preceding section. To determine the effect of variation
of a on the optimal gain, the maximum of the optimal
gain function is plotted versus « in Figure 4. The
variation of the maximum gain with respect to « is
insignificant, as seen in Figure 4. Thus, by overlooking
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Optimal area ratio
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z(m)

Figure 1. Optimal nozzle area ratio versus z, where z is
the coordinate along the nozzle. The operation parameters
of gasdynamic laser are: po = 20 atm, Xco, = 0.1,

Xu,0 = 0.05, Xn, = 0.85, ¢ = 0.0018 m, opening angle
=17°, « =04, zy = 0.8 m and ¢z = 0.45 m.
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Figure 2. Gain and Mach number (dash
the optimal nozzle versus z, where z is the

line) profiles of

coordinate

along the gas flow axis. Operation parameters are:
po = 20 atm, Xco, = 0.1, Xu,0 = 0.05, Xn, = 0.85,

opening angle = 17° and a = 0.4.
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Figure 3. Control signal at the begining
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of the singular

path. Since it is positive everywhere, no singular branch

exists. po = 20 atm, Tp = 1220, Xco, =0

1, Xu,0 = 0.05,

XN, = 0.85, opening angle = 17° and o = 0.4.
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Figure 4. Maximum gain of the optimal
dimensionless parameter a. The operating

nozzle versus

parameters of

the gasdynamic laser are: po = 20 atm, X¢o, = 0.1,
XH,0 = 0.05, Xn, = 0.85 and opening angle = 20°.
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Figure 5. The total length of the maximum gain nozzle
(dash line) and the length of its wedge part (solid line) as
functions of the dimensionless parameter «. The operating
parameters are: pg = 20 atm, Xco, = 0.1, Xu,0 = 0.05,
Xn, = 0.85 and opening angle = 20°.

minor differences in gain, the nozzle can be chosen
to be shock free with the ultimate optical uniformity.
Therefore, one can improve the optical uniformity of
the active medium against a slight loss in gain. In
Figure 5, the starting point of the curved part and the
length of the nozzle are presented as functions of a.
The case @ = 0 corresponds to the well-known shock
free nozzles (SFNs) [13].

CONCLUSION

The optimal nozzle shape in a general gasdynamic laser
consists of a wedge and channel joined by a smooth
surface which is the geometrical locus of the points for
which their Mach lines concur at a certain point. There
exists a weak trade-off between the optical uniformity
of the active medium and its maximum gain. In the
case of highest optical uniformity, the nozzle has the
shape of the well-known shock free nozzle. Finally, it
has been shown that the gain optimization problem
in gasdynamic lasers is reduced to a multi-parametric
optimization problem.
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APPENDIX I

The vibrational model used in this work is Anderson bi-
modal model [1]. According to this model and the quasi
one-dimensional inviscid non-chemical reacting ideal
gas flow assumptions, the functions f;(z = 1,2,3,4)
are as follows:

glei(z:) —ei(x3)) .

i = , =1,2), Al
f ’)’sz'Tie’-(iL'i) (1 2) ( )
f _Q(7_1 'YMZ‘“I)Zez T;) — (m3)

3T VI MTR(M?2-1) " (A2)

(v = 1)M? x4
=l T A3
The gain function for non-lasing operation is given by:
—3383
g = erz —e oy 00977
TTaRE
Ts/zXCOZ

(A4)

" Xco, + 0.7589Xn, + 0.3236Xy,0 |
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where the energy of the ith vibrational mode and its
relaxation life time, as a function of the state variables
and gas fractions, is given in [1].

APPENDIX 11
Curved Shock Waves Formation Position

Oblique shock waves are two-dimensional phenomena;
their formation positions are the intersection points of
the characteristic curves of the governing hyperbolic
partial differential equations [13,17}. In this work,
Mach lines are used as an approximation of the char-
acteristic curves. The equations of Mach lines, which
start from points (z, z4(2)) and (z + dz, z4(z + dz))
on the boundary of the nozzle, are as follows:

(Y — h*z4(2)) = (X — z) tan (6 — p), (A5)
(Y — h*zy(z + d2)) =
(X — z—dz)tan (6 — p + df — dp), (A6)

where tan@ = A*x5, sinp = 1/M and (X,Y) is a point
on Mach line.

After some mathematical manipulations, the z-
coordinate of the intersection point of the above lines
(25) is given by:

1
s = y 7
¢ 2t hl(Z,]?)’U,-i-hg(Z,f) (A )
where,
hl(z,z) =

[-h*]/ [zs R (VM2 —141)+2(vV/M2 -1~ 1)] ,
ho(z,2) =

[~4+(z5h*)?)] .
2MVM? = 1(zsh* (VM2 -1+1)+2(vM?-1-1))]

[1/(\/7Rx3) dv/dz —v/(24/yRx3) dms/dz]

s 18 an increasing function of z in the compression
region and its positive minimum in this region is
denoted by z;.

APPENDIX III

The Singular Part of the Nozzle Shape

A singular part of the nozzle appears when A = A3 =
A3 = 0 on some interval. In this case, it follows from
Equation 18 that:

s = 0. (A8)
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It is obvious that ps is also zero on tk
hence, by Equation 20:

Ty Ts Ps =I5 f3 p3+ T5 Ta Py =
Aipy + Aapy + Asps =0

Obviously, the first and second d
above equation are also zero on that in

Bip1 + Bap2 + Bspsz =0,
(Cl + Dlus)pl + (Cz + D;)us)pg
+ (03 + D3U5)p3 =0.

The above homogeneous system
tions A9 to All has non-zero solution

Ay Az Az
By B, Bs
C1 + Dlus Cz + Dgus C3 + D3

Then, by solving the above equation wi

rat interval and

(A9)

erivatives of the
terval and thus:

(A10)

(A11)
of linear Equa-
if:

=0
lLs (A12)

th respect to us,

the control function on the singular path, it is obtained
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that:
A1 Ay Aj
B, By Bj
C, Cy Cs
us - - Al A2 A3 ’ (A13)
B, By, Bj
Dy Dy D3
where A;,B;,C; and D; (1 = 1,2,3) are given as
follows:
=-f; (A14)
2. 04,
B; :Za—F +ZAJ- B (A15)
Jj=1 j=1
3 3 3
0B, OF,
Ci= G Bt B, 24> 1B,
1=1 8 7=1 7=1 (9234 (A16)
9B;
D; = ==t
92 (A17)





