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Discretization of Problems Whose
Weak Solutions are Uniquely
Determined by Inequalities

R. Ansorge!

Many phenomena in physics or engineering lead to problems where global solutions can be
expected to exist only in a weak sense. Examples are certain elliptic boundary value problems,
different types of conservation laws, etc. A Functional Analysis of Discretizations used for the
numerical construction of weak solutions was developed where the weak solutions are solutions
of equations, eventually completed by a so-called entropy condition inequality (see [1]). In this
paper, this theory is extended to problems where the weak solutions are uniquely determined by
inequalities only, as is often the case. Examples show the application of the theoretical results.

INTRODUCTION

Problems arising from applications often lead to bound-
ary or initial value problems; in this context, physicists,
engineers or scientists of other fields are interested
in global solutions which normally do not exist in a
classic manner. Hence, problems of this type are often
transformed into a weak form whose solutions exist
globally and coincide with a classic solution as far as
such a solution is sufficiently smooth. These global
solutions are then called weak solutions of the original
problems.

The weak form of an original problem is often
constructed by formal multiplication of the given equa-
tion by test functions ® and integration (by parts).
However, this procedure sometimes leads to a loss of
uniqueness of the {weak) solutions of the equation;
therefore, additional conditions (e.g., entropy condi-
tions) must be taken into account in order to select
from the set of weak solutions a unique physically
relevant one (called the entropy solution).

In this situation, it is the task of numerical
analysis to construct procedures which are able to
approximate this entropy solution.

Hints for minimal conditions discretizations of
equations must be fulfilled in order to achieve the
convergence which were mentioned by Stummel in [2].
This theory was later extended to more general prob-
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lems (nonlinear problems, optmization problems etc.)
resulting in establishment of a Functional Analysis
of Discretization. Furthermore, the discretization of
weakly formulated problems was included where the
weak form is represented by an equality {eventually
completed by an entropy condition inequality) (cf.
[1,3)).

The loss of uniqueness can often be avoided if the
weak representation of the original problem is given by
a suitable inequality instead of an equality from the
very beginning. In this case, the general theory needs
some correction in order to fit this variant also.

SOME BASIC DEFINITIONS AND
PROPERTIES

In order to formulate certain convergence results, some
relations between originally given operators and oper-
ator sequences, which are expected to approximate the
given operators, must be presented. (Some of these
definitions and properties can already be found in [4].)
Let X and Y be topological spaces. Assume
{X. | n € N} to be a sequence of subspaces of X . Let
C be a mapping from X into Y and {C, |n € N} a
sequence of mappings with Cp, : X, = Y (n € N).

Definition 1

The pair [{C,.} , C] is called asymptotically closed, if
the following implication holds:

v, = v and Chvp = w = Cv =w . (1)
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Definition 2

The sequence {C,} is called continy
to C, if:

Up = v = Cphv, — Cv.

Remark 1

ously convergent

(2)

Obviously, if Statement 2 holds, Statement 1 is also

fulfilled.

Definition 3
The sequence {C,} is called asymptq

{Cy vn} compactin ¥ = {v,

Compact in Z means that every infi
contains a subsequence convergent in

Definition 4

A sequence of sets {S,|S, C X}
totically compact, if every sequencg
(n=1,2,---)} is compact in X.

The set of limit points of the ¢
quences {u, |n € N' C N} is denoted

{S.}".

It is not necessarily expected that
solutions u, (for fixed n) are un
conditions under which the sequencg
such solutions will converge to the
solution ug are described in the follo

Definition 5

A sequence of sets {S,|S, C X
convergent to a set S C X, if it
compact with:

{S.}" C S,
and it is written that:
{Sn} — S.

Definition 6

A numerical method generating sets
solutions for every fixed n € N is cal

tically regular, if

(3)

nite subsequence
Z.

is called asymp-
2 {un|tn € Shp,

onvergent subse-
by:

the approximate
que. However,
> of sets {Sp} of
(unique) entropy
wing sense.

is called set-
is asymptotically

S, of numerical
ed convergent, if

{Sn} is set-convergent to a set S of (weak) solutions of

the original problem.

A CONVERGENCE RESULT
CONCERNING THE NUMERI
TREATMENT OF PROBLEMS

CAL
WEAKLY

FORMULATED BY INEQUALITIES

Let the topological space Y be linear
and let J be an index set.

and semi-ordered

} compact in X.
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Assume that there is a unique solution ug € X of
the problem:

B(@u>0,V &c¢€J, (4)

where B(®) maps X into Y for every fixed & € J.
The elements of J are called test elements.

ug is approximated by solutions u,, (n =1,2,---)
of equalities:

Bnun:l;n (n:1>2)"')7 (5)

where the mappings B, : X — Y do not depend
on the elements & € J (because computers do
not understand what test elements are) and with a
sequence { Bn} compact in Y.

Let,

S, ={un € X |u, solves Equation 5}

be the set of approximate solutions for every fixed n €
N and assume that:

Sn#0. (6)

It is also assumed that a weak inequality formulation
B (®un :=b,(®)>0,V® € J (7)

of Equation 5 exists for every n € N such that
every u, € S, fulfills not only Equation 5, but also
Inequality 7 (not necessarily vice versa).

Herewith, the B, (®) are also mappings from X
into Y, and the sequences {b,(®)} are assumed to
converge to certain elements b(®) for every fixed @ €
J and for every sequence {u,|u, € S,}. Based on
Inequality 7:

b(®) = 0. (8)
Convergence Theorem

If:

(i) {E’n} is asymptotically regular,

(ii) [{Bn(®)}, B(®)] is asymptotically closed for every
fixed ® € J,

then:
{Sa} — {ue} .
Proof

~

{ bn} compactinY = {Bnun} compact in Y. Because

(9)

of assumption (i), {u,} is compact in X (independent
of the particular choices of u, € S,).

Hence, after such a particular choice of {u,},
there is N’ ¢ N and @ € X such that:

{n|n €N} — 4.
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un (n € N') also fulfills
B, (®)u, =b,(®), VO € J,
which leads to:
Bo(®)u, — b(®),¥® € J,Vne N .
Because of assumption (ii},
B(®)i=b(®)>0,V®eJ,
ie.,
U =uUg
(independent of the particular choice of {u,}). ®

Remark 2

Assumption (i) was only needed in order to show the
asymptotic compactness of {S,}. Thus, in a concrete
situation, the theorem is also valid if this asymptotic
compactness can be shown by other arguments.

Remark 3

Since ug is unique, not only a subsequence of {u,},
but also the full sequence converges to ug.

EXAMPLES

Example 1
Consider the following problem:

~Au+g(z)u— f(x) =0 on G
u=0 on JG ,

with f, ¢ € C(G), ¢ > 0.
With the abbreviation:

Lu = -Au+q{)u,

L turns out to be a self-adjoint and positive definite
operator on C2(G) with respect to the scalar product,

{v,w) := /v(:v)w(as)dG . (10)

G

By means of the generalized energy functional:

T) = 5 (Lv.v) = {f,0), (11)

where (Lv, v) has (after partial integration and taking
the boundary condition into account) to be read as:

(Lv,v) = / {(Vv, Vo) + v} dG | (12)
G
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a weak inequality formulation of the given problem is
represented by:

B(®)u:=J(®) - J(u)>0 , Ve J, (13)

where X = J = H}(G) is a Hilbert space with respect
to the scalar product

(v, w); = /{q~v-w + (Vo, Vo)) dG,  (14)
G

and with Y = R.
However, Statement 13 is equivalent to the follow-
ing problem:

(v, @), = F(®), VdelX (15)
with:
F(®):=(f,®) .

This problem (hence Statement 13 as well) has a unique
solution ug due to Lax-Milgram theorem.

For numerical purposes, a projection method is
used. Let,

Xn = span (q)lv¢27" q)n> cX

be an mn-dimensional subspace where the basis
(®y, Py, - P,) is an orthonormal one with respect to
(-,-); , and p, : X — X, the projection operator.

Assume the numerical approximations u, € X,
to be the solutions of:

(’LLTL,‘DI')I—F(@-L‘)ZO (i=1,2,«--,n). (16)

This equation also fulfills the conditions of Lax-
Milgram theorem such that there is an {unique) ap-
proximate solution u,, i.e., S, # 0, for every fixed
n € N. (It is already known from classic results that the
method converges, however, it is endeavored to show
this fact by the arguments in this paper.)

Because of the fixed choice of the elements ®; (i =

1,---,n) for every particular n, Statement 16 can be
written as:
Bou, =0 (n=1,2,-), (17)

with operators B, independent of a general test ele-
ment & € J. R
In this example, {bn} = (0,0, ---), hence com-

pact. Obviously,

un =Y F(8,)®;,
i=1

such that:
) v4s
lwwss —wll,® = D" FX(2;))
j=v+1
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Statement 15 shows that F(®;) (j
Fourier coefficients of ug in X wit
system {®,,®;,---}. Due to the

{un} is a Cauchy sequence in X, hen
convergent) because X is complete

= 1,2,---) are
h respect to the
Bessel inequality,
ce compact (even
Thus, {S.} is

asymptotically compact in X (cf. Remark 2).
A weak formulation of Statement 17 reads as:

(panun y ‘p)l = (Bnun , an))l
:(Lun'_fvpn¢>:07

Veeld, (n=1,2,-),

(18)

where (Lu,, p,®) must be understood in the sense of

the right hand side of Statement 12.
Obviously, every approximate s

a solution of Equation 18 for its part

solutions of Equation 18 also fulfill:

olution u, is also
icular n. But the

Bn(@)un = J(pn®) — J(un) =1 b,(®) > 0,
VeeJ, (n=1,2). (19)
Because of:
T(w) = 3(w,w), ~ {fow) = gl - (fu)
it is obtained that:
[by+5(®) — b ()
= |5 (s s @l +lip @1} (o 1~ 21,)
—{f,Pv4s® - p.®)
1
= 5 Uwvslhy + sl {llwvs = el }
+ (frttors — )|
This leads to:
|by+5(®) — b, ()|
<@l ipo+s® — p. s
+ 11l Ipo+s® = po®lly
3 Al + ol s = sl
+ 1 f M s = wlly -
For all sufficiently great values of v and s,
bu+s(®) — b (P)]
<2l + 1LF ) e+ s @ - po@ll,
+ (c+ I fll) e, (20)
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where ¢ is an upper bound for the convergent sequence

{llunll}-

Again, because of the Bessel inequality, for every
fixed ® € J,

Ilpv+s® — 2. @1 < ¢,

for all sufficiently great values of v and s.

Together with Statement 20, {b,(®)} is a Cauchy
sequence in R with a limit b(®), and because of
Statement 19:

b(®) > 0,

i.e., Conditions 7 and 8 are fulfilled.

It is now necessary to show that assumption (ii)
of the Convergence Theorem also holds.

For this purpose, assume {v,} C X and {B,(®)
Un} C R to be convergent sequences:

veX, FJwelk:

w= lim B,(®)v, .

n-—oo

v= lim v, ,
It has to be shown that: B(®)v = w, Vo € J.
Indeed, in the example presented:

B(®)v —w=J(®)— J(v) - nli_rgo (J(pn®) — J(vn))

= lim (J(8)=J(pa®))— lim (J(v) = J(va)),
and both limits vanish because of the same arguments
by which the convergence of {b,,(®)} was shown.
This ends the proof of the convergence of the
projection method by means of the convergence result
described in the previous section.

Example 2
Let & = {{z,t)jr € R, 0<t < T} be a strip of the

upper z-t-halfplane and X C L{OC. Moreover, let Y =
R and:

J:{@:;(c,é)@ecg(n),ézo,cexf@} :

where CJ () is the set of C'!'-functions with compact
support in  (test functions).

As a weak formulation of the initial value problem
for the scalar conservation law which does not only
occur as simplifications of systems of conservation laws
in CFD but also as direct models in many other fields
(cf. [5,6] etc.).

0
ut+£f(u) =0, VY(z,t) € Q,

u(z,0) = uo(z) , Yz € R with ug € BV(R) N Lo (R),
(21)

now, Kruzkov approach (7] is used (see also [8]).
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Find u € X such that:

B(®) = /{]u - cl%% +sgn(u — ¢) [f(u)
Q

— £(0)] %}dg >0, V®elJ (22)

where X is the particular subset of Llloc, (hence a
topological space) the elements of which show the

property:
/ |u(z,t) — uo(x)|dz — 0 for ¢ — O+,

t€(0,T)\C, V¥r>0. (23)

Herewith, C C (0,T') is a set of measure 0.

In a paper with Panov, Kruzkov showed the
existence of a unique solution ug for Inequality 22
provided that f € C(R) (cf. [9]).

This assumption is much weaker than the proper-
ties of the flux f normally assumed to be valid. Because
of this weak assumption, Kruzkov result is really
important from the point of view of mathematical
models of certain problems of nonlinear elasticity, oil
prospection etc.

However, in this paper, such stronger conditions,
namely f € C! and f strongly convex with minimum
f(0) = 0 are only considered.

Let,

|15 = max {|f' ()], |u| < fluall,, } < oo

24)

Concerning the numerical procedure, explicit finite
(2k+1)-point difference equations of conservation form
are used, i.e.,

uu+1 _ g
J J 2 J
=0, 25
Az 1T At (25)
where u is expected to become an approximation of
u(zj,t,) with

z; =jAz,t, = VvAL;
7=0, +1, £2,--- , v=0,1,2,---,

and where g¥, 1 abbreviates
2

- —_— v v v v
Gy = 9 kg W WU U k)
with a lipschitz continuous numerical flux g : R%* — R.
k € N is fixed.

In order to make Equation 25 an approximation
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of Statement 21, g is assumed to fit the consistency
condition:

g(U,'U,"',’U):f(’U),V'UER'. (26)
The discrete initial values are:
(7+13)A=
u; = — uo(z) dx
(1—%)A=

and the step ratio is assumed to fulfill Courant-
Friedrichs-Lewy condition:

0< A= % = const < (27)

1flee
Assume Az = O(%) , n € N and put:
un(z,t) = uj for

(- HAr<z < (j+3)0z,j=0,£1,%£2,--

vAt<t < (v+1)At,v =0,1,2,.-- [—E?]—-l. (28)

If X, denotes the set of functions u : R x R} —
R, which are constant on the rectangles mentioned
on the right hand side of Statement 28 and which
fulfill Statement 23, obviously u, € X, C X and
Statement 25 or, equivalently:

v+1 v v v _—

(G=0,+£1,42,--, u=0,1,2,---[_T-]_1),

At
can be written as:

Boun=0 (n=1,2,---), (29)

with operators B,: X,— R

Thus, Statement 25 is of the form of Statement 5
and there is an (unique) approximate solution u, for
every n € N because the method is explicit (i.e.,: Sp #
0).

In the strictly convex case (i.e., f € C*(R) and
f strictly convex), the Kruzkov solution coincides with
the unique entropy solution in the sense of Lax/Oleinik
(cf. p.e. [8] , Theorem 3.5.); moreover, it is well-known
that Lax/Oleinik solution is of bounded variation with
respect to = for every ¢ > 0 provided that in the
strictly convex case under consideration, 1o fulfills the
conditions mentioned in Statement 21. Furthermore,
the bound is independent of ¢ € [0, T).

If g is constructed in such a way that the total
variation of a numerical solution is bounded as well, the
method is called TV-stable. Monotone schemes (which
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are of first order only) like Eng
[10] or so-called TVD-methods int
[11] are TV-stable, and it was Le
who showed that TV-stable method
sets S, provided that ug fulfills
Statement 21. Thus, by Remark 1
the abstract Convergence Theorem
by a fulfilled property.

For convenience, let only the case k =

quist-Osher scheme
roduced by Harten
Veque ([12], p 164)
s lead to d-compact
the assumptions of
), assumption (i) of
is replaced suitably

1 be

considered. As a weak formulation of Statement 29,

the inequality to be fulfilled is intr

oduced:

— At)

Bn(é);zifé(x,t)—@(z,t

G (un(:v— —A—zf,t),un(z+

where G is a numerical entropy
be defined in such a way that th
consistency condition holds:

G(v,v;¢) = F(v;c)

Herewith,

F(v;c) := sgn(v — ¢} [f(v) = f(c)

Y (v,c) € R2

>0,

Az
'_yt);c
2 ) (30)

flux which has to
e following entropy

(31)

(32)

denotes the particular Kruzkov entropy flux.

The flux splitting choice:
G(a, B;¢) = Fy(a;c) + F_(B;¢)
with

. F‘(a;c) ,a>0
Fi(ac) = {0 a<0

- 0 ,820
(0= {F(ﬂ;c) <0

shows an example and a solution of a TV-stable method
(Statement 29), then fulfills Statement 30, as well.
Analogously to similar considerations in [3], it can

R. Ansorge

be shown that {B,(®)} converges continuously to B(®)
for every fixed ® € J.

Thus, also assumption (i) of the Convergence
Theorem is fulfilled (cf. Remark 1) such that the TV-
stable method under consideration is convergent (as al-
ready known from less general convergence theorems).

Remark 4

It is a remaining task to construct operators B, for
problems with only continuous flux functions f in
such a way that the assumption (i) of the general
Convergence Theorem can be fulfilled in this interesting
situation, too. (The proof given here to show the
validity of assumption (ii) does already fit this case
as well.)
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