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Advanced model-based cont
it can have a profound effeq
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rol of pH processes is noticeably a chemical modeling issue, because
t on the attainable control quality. This is especially the case when

the pH regulation of streams, consisting of hundreds of constituents with varying concentrations,
is encountered. The severe pon-linear behavior of pH processes is reflected in the titration curve
of the process stream. The performances of all model-based controllers are highly dependent

on the accuracy of the mog
constants, solubility product

el. Considering a great number of parameters such as dissociation
s and characteristic concentrations places the designer in a dilemma

of choosing between approximate physicochemical models and empirical ones, both having their

own merits and shortcomir

gs. Using radial basis function artificial neural networks, a new

modeling approach for approximating the titration curve is proposed in this article and some

physical interpretations for

on-line training for adaptive

scheme is demonstrated by

INTRODUCTION

The control of pH is not merely a cont
also a chemical equilibrium and, som
problem as well. Advanced control of

rol problem, but
etimes a kinetic
H is significantly

dependent on the quality of the process model [1].
As demonstrated by several researchers, the highly

nonlinear behavior of pH system is
titration curve of process stream [2-5]
the most nonlinear term of a system
static part or algebraic mapping of
model in a system theory sense. T}
includes the probable variation of flow
tank level, which have a secondary im
be regulated in a separate loop. C
main focus of this article is based
titration curves.

There are two fundamentally d
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selecting the neural network parameters are given. Both off-line and
control strategy can be used. The effectiveness of the proposed
simulation and experimental studies.

phies that form the basis of modeling, namely mech-
anistic (or first principles) and empirical (or ad hoc)
modeling. Mechanistic models are derived mainly on
the basis of a detailed understanding of underlying
mechanisms, or laws, that govern the system behavior.
An empirical model, on the other hand, is derived
mainly on the basis of specific observed behavior of
the system [6]. In this respect, mechanistic models
are highly desirable but, generally, difficult to develop.
In contrast, empirical models are generally poorer and
less informative but easier to develop {7,8]. Having
mechanistic modeling in mind, hundreds of characteris-
tic concentrations, solubility products, and dissociation
constants are needed to identify the titration curve of
a typical waste stream. However, identification and
model-based control of a pH process. using empirical
models, have been illustrated in much open literature.
One class of these methods is based on Artificial Neural
Networks-ANN [6,9,10].

In this paper, an attempt has been made to
provide a hybrid framework that can support the
design of an artificial neural network structure for
approximation of the titration curves of streams with
unknown compositions.
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PHYSICOCHEMICAL REPRESENTATION
OF TITRATION CURVES

Development of physicochemical modeling of titration
curves requires understanding of terminology including
acid/base definition, electroneutrality constraint, pH
and its relation to temperature, to name but a few.
In addition, dynamic material balances are also needed
when considering the control problem of pH process.
In problem formulation, the notation of Wright and
Kravaris [2] is used. They have reformulated the pH
problem by introducing a reduced state variable and
notion of the Strong Acid Equivalent (SAE). In their
approach, they have defined the inverse of the titration
curve (i.e., its reflection about the 45° line), as given
below:

_ V2 A(pH) + Yooy ai(pH)z1;
TeH) =7 A(pH) + Z?:i ai(pH)za;:’

=3 =
where V; and V5, are initial volume of solution being
titrated and volume of titrating solution, respectively.
A(pH) is defined as 10-PH — 10PH-14 7, and @y,
are total ion concentrations (of streams) and a;(pH) is
a highly nonlinear function of component dissociation
constants and pH.

As stated earlier, Wright and Kravaris introduced
a state variable, X, to construct a minimal state
space realization of the pH process. According to
their formulation, the equations describing the system
behavior are as follows:

dx

(1)

V—dT =-FX+({1-X), (2a)
_ _T(pH) _
X(pH) = I_—FT—(pI_{—) =

_AGH) + 2L e (2b)

a—3"a(pH)C;

Equation 2a shows the dynamic behavior of the
process and Equation 2b denotes the static or algebraic
part. The static part, which is a function of the titra-
tion curve of the influent process stream, is the primary
concern of this article. It should be also noted that
in the above formulation, the following assumptions
are made; perfect mixing, constant temperature, ideal
solution, monoprotic strong base titrating stream with
normality of a and influent stream of well-known n
species with corresponding a;(pH) and concentration
Ci.

As is clear from Equation 1 or 2b, a nonlinear
relation is obtained which is linearly parameterized
in terms of Y., a;(pH)C; or A(pH). In this for-
mulation, solid and complex formations are not con-
sidered. When a solid phase is formed, the reaction
rate may decrease significantly and, also, the form
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of the titration curve changes. In addition, one gets
break-points and long vertical or nearly vertical parts
in T(pH), where pH of the solution is constant or
changes very little with addition of base. This is, for
instance, the case when Ca(OH); is used to neutralize
wastewater. Furthermore, if the system contains a
metal which can react with the acid or base in the
system, the apparent strength of acid changes. It is
common that the base anion forms complexes with
some, usually heavy, metals. One example is copper
which forms complexes with acetates. Practically
all anions of organic acids form (stronger or weaker)
complexes with metals, the alkali metals being an
exception [3].

If the above phenomena are taken into account,
the model becomes very complex. When the number
of species in the feed stream increases, it also makes
the modeling of process very complicated. On the other
hand, the empirical models can be developed easier and
if sufficient data are collected, the model can provide
necessary information required for control purposes. In
what follows, modeling of titration curve via ANNs is
considered.

ARTIFICIAL NEURAL NETWORKS
REPRESENTATION OF TITRATION
CURVES

As mentioned earlier, when the number of species
present in the influent process stream increases, Equa-
tion 2b becomes very complex. One way to simplify
the problem, proposed by Gustafsson and Waller [3],
is to replace the multiprotic weak acids with several
monoprotic acids. The main idea is to introduce
fictitious monoprotic acids. Indeed, they have used
the nonlinear physicochemical structure as a basis for
modeling and used empirical modeling approach to
reduce the parameters of the model. This was done
through introduction of fictitious species instead of
using several dissociation constants. However, one
drawback of this method is the difficulty in specify-
ing the number of fictitious weak monoprotic acids
with suitable pK values. In this article, based on
the neural network approach, a modeling procedure
for approximating the titration curve is proposed.
The Radial Basis Function (RBF) neural network
is used for modeling of the titration curve (slope)
and parameters of the network are selected based on
some physical interpretation which will be explained
later.

In what follows, first the behavior of RBF neural
networks is briefly considered. Next, the similarities of
their behavior with the slope of titration curve, namely
buffering function, is discussed. Finally, it is shown how
the titration curve can be modeled globally using the
ANNSs.
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RBF Networks

RBFs, also called local receptive fields, with only
one hidden layer yield an identification problem that

is linear in the parameters. This h
impact on the computational efforts n
the optimal values of the parameter
layered neural network using RBFs ¢
any nonlinear function to a desired acq
approximation is a traditional techniq
tion in multidimensional space. For s
article, just one-dimensional input spa
An RBF expansion with one input ang
generates a mapping f. : R — R acco

@) = wo + 3 wiglle — ),
=1

where z € R, g(0) is a function from
the number of RBF centers, w;,0 <
weights or parameters, ¢; € R", 1 <
RBF centers and || o || denotes Eucli
equation can be implemented in a mult
(Figure 1), where the first layer is the i

as a significant
ceded for finding
5 [9]. A single-
an approximate
uracy [11]. RBF
ue for interpola-
mplicity, in this
ce is considered.
1 a scalar output
ding to:

(3)

RT to R, n. is
1 < n. are the
1 < n. are the
lean norm. The
ilayered network
nput, the second

layer performs the nonlinear transformation and the
top layer carries out the weighted summation only.
Notice that the second layer is e¢quivalent to all

hidden layers and the nonlinear operat

on occurs at the

output layer nodes of the neural network with sigmoid

functions.

Popular choices for the RBF, g(||lz — ¢i]|), are

Gaussian Distribution (GD) function,

g(x) = exp(~lz — |/ B7), (4)
Multi-Quadratic function (MQ),
9(x) = /llz = cill? + 52, (5)
f(z) Qutput layer
Linear combination

(1)

wy Nonl
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x

with RBF
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Figure 1. One-dimensional neural net st,
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Reciprocal Multi-Quadratic function (RMQ),

g9(x) =1/y/llx — > + B, (6)
and thin plate spline function,
g(z) = llo = cil|* log(||z = e, (7)

where §; is a scalar width such as standard deviation.
The last two functions can provide unbounded output
values. However, the first function (i.e., GD function) is
considered hereafter. Given the numerical values of the
centers ¢; and of the width j3;, determination of the best
values of the weights w; to fit the data is a standard
model identification problem which is linear in the
parameters. If the centers and/or the width are not
predetermined and are adjustable parameters whose
values are to be determined along with weights, then
the RBF network becomes equivalent to a multilay-
ered feedforward neural network, and an identification
which is nonlinear in the parameters must be carried
out. Although there are efficient algorithms for choos-
ing the centers and widths (such as k-mean clustering),
they are mainly off-line solutions; hence, not suitable
for recursive formulation of adaptive control problems.

Modeling X’(pH) Using RBF

Most of the models have a limited range of valid-
ity. This means that mechanistic models are valid
under certain assumptions and empirical models are
applicable for specified ranges. To emphasize this, a
model that has a range of validity less than the desired
range will be called a local model, as opposed to a
global model that will be valid in the full range of
operation. As mentioned earlier, the performance of
the control scheme is highly dependent on the accuracy
of the model. In designing a model based on pH
control scheme, knowledge of titration curve plays
an important role. On the other hand, it is known
that ANN can approximate any complex nonlinear
mapping. However, there is no unique structure of
ANN for a given problem and the specifications of
the network should be determined by trial and error
or using nonlinear global optimization techniques like
genetic algorithms [12,13]. In the present work, RBFs
are used to model X'(pH), the derivative of X (pH)
with respect to pH. By integration of X'(pH), the
titration curve X (pH) is obtained. Theoretical analysis
of the validity of such approximation is cumbersome,
because general expressions for approximation error
cannot be obtained; however, experience indicates that
the titration curve for most pH processes can be
approximated by this approach.

The typical variations of X (pH) and X'(pH) vs
pH are illustrated in Figure 2. A good candidate for



Approximation of Titration Curves

85

Table 1. Acidic solutions used for simulation studies.

System Specifications
Example 1 Monoprotic weak acid with pK = 6 and strong monoprotic base as
titrating agent with normality 0.03.
Example 2 Mixture of five fictitious monoprotic weak acids with pK's = [5,6, 7,8, 9];
strong base as titrating agent with normality 0.03.
Example 3 Solution of phosphoric acid (HaPOy4), with concentration of 0.01, titrated by
either NaOH or Ca(OH),.
1 1 0.006 M (Example 1). The specifications of systems
for other examples, considered later, are given in
0.8 0.8 Table 1.
For modeling X'(pH), Gaussian function g¢(z)
o 06 = 06 with the following center and width is used:
o,
[=3 o
=< 0.4 =< 0.4 H - 6)2
X'(pH) = wo + w1 exp <—@1—)> : (8)
As can be seen from Equation 8, the center is
o, 5 8 10 10 % % 8 10 12 set to. the pK value and the width is. set to one.
u oH Choosing 8 = 1 means that the buffering is within
P

Figure 2. A typical titration curve and its derivative.

modeling X'(pH) is an RBF network. As mentioned
before, if the numerical values of the centers and widths
are known, determination of weights, w,, is a classical
linear identification problem. Typical of a titration
curve is the jump at the equivalence point. The
jump may be very pronounced, as for strong acids and
bases, but becomes less pronounced as the strength
of acid (or base) diminishes [1]. The vertical jump
in a titration curve is reflected in the flattening of
X (pH) with respect to pH-axis. The strength of acids
{(or bases) may also be expressed by the differences in
buffering (buffer capacity). Here, buffering or buffer
capacity is defined as the inverse of the titration curve
slope. The largest buffering at intermediate pH values
is obtained at pH = pK;. Buffering quickly decreases
when one moves away from pH = pK, leading to a bell-
shaped curvature. Buffering is always high at very low
and very high pH values, but in an intermediate and
practical range of pH, the species compete with each
other by their power of buffering to influence the overall
buffering capacity of the system. This phenomena may
lead to modeling of the derivative of the titration curve
using the weighted sum of the receptive fields of RBF
nodes.

To illustrate the procedure of modeling, first a
simple case is considered and, thereafter, the technique
is extended to more complex systems. Consider a
relatively dilute solution consisting of a monoprotic
weak acid and a strong base with normality of 0.03.
The pK of the weak acid is 6 and its concentration

the range of one pH unit and setting the center to
pK means that the maximum buffering occurs at pH
= pK. The weights, w;, -can be obtained by linear
regression and are found for this case as wy = 0.0024
and w; = 0.0883. The simulation result is shown
in Figure 3. As can be seen, the single node RBF,
Equation 8, has approximated the buffering X'(pH)
fairly well in the range of pH = 5 to 7.

Another observation is the relation between the
sum of the weights, w;, and the peak height. For
this example, wy + w; is approximately 0.1, which
is equal to the peak height. To check the generality
of the above observation, the concentration of the

0.1 T T T Y
-------- RBF 1
Real

0.08} 4

_0.06f 4
js =]

£ §
B

0.04} 1

0.02
ol ) ) R SRR PP ]
4 5 6 7 8 9 10

pH

Figure 3. Example 1, slope of titration curve with acid
concentration of 0.006 M.
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acid is increased gradually. Simulation results indicate
that as acid becomes more concentrated, the location
of the peak center is shifted and maves towards pH
= 5.5.

To compensate for these changes, Equation 8 is
modified as follows:

(pH - 5)°

X'(pH) = wo + w1 exp(- :

(pH - 6)?

+ wq exp(— T

): (9)

The simulation for Example 1 was repeated for
acid concentration of 0.06 M and using Equation 9,
the optimum values of the weights are wy = —0.0131,
w; = 0.2069 and wy = 0.2216. Notice that the
sum of the weights are nearly equal to the peak
height. The actual value of X'(pH) and its estimation
are shown in Figure 4. If it is assumed that the
maximum buffering occurs at pH = jpK, Equation 9
can be interpreted as follows. The |behavior of the
real system is approximated by a solution containing a
single multiprotic weak acid with pKj =5 and pKy =
6. This interpretation is in contrast| to Gustafsson’s
assumption of several fictitious monoprotic weak acids

1.

To generalize the above result, the following
equation for modeling X'(pH) of any complex solution
with the possibility of solid phase or complex formation
is proposed:

X'(pH) = wo + Y wiexp(— (pH —lpHci)Q) |
=1 (10)

Where pHci = [pHmin7 pHmin + 17"-7 pI—[max - 17 pHmax}y
pHuin and pHpa.x are the minimum and maximum

Figure 4. Example 1, slope of titration [curve with acid
concentration of 0.06 M.
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Figure 5. Example 1, slopes of titration curves for
concentration 0.006 (left) and concentration 0.06 (right)
using universal RBF, Equation 10.
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Figure 6. Example 2, slopes of titration curves with
minimum species concentrations [0.001, 0.001, 0.001,
0.001, 0.001}(left) and maximum species concentrations
[0.01, 0.01, 0.01, 0.01, 0.01] (right) using universal RBF,
Equation 10.

pH of the solution. For most practical cases, pH.; =
[4,5,6,7,8,9,10] for which m is 7.

To check the accuracy of the estimation obtained
using RBF and given by Equation 10, it is applied
to both simple and complex Examples 1 and 2. The
data for training the networks are obtained through the
simulated pH process. Simulations provide X (pH) and
by numerical differentation X'(pH) is obtained. The
training sets include the pairs of [pH, X’'(pH)| starting
from pH = 4 and increasing pH by 0.2 pH unit in each
interval. Referring to the schematic diagram shown
in Figure 1, pH and X'(pH) are network input and
output, respectively. The results are shown in Figures
5and 6. Ascan be seen, the estimated values of X'(pH)
are fairly close to the actual values and the sum of the
weights is equal to the peak height. Similar results are
obtained if g(o) is replaced by RMQ:

X'(pH) = wy + Z il

. 11
P v/1+ (pH — pH,)? (1)

Estimation of Titration Curve Using
Integrated RBF

The main objective of this article is to estimate titra-
tion curves using neural networks. In the previous
section, two equations were developed for estimating
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X'(pH) (Equations 10 and 11). By integrating these
equations, two expressions for X (pH) can be obtained
as follows:

X (pH) — X (pH") = wo(pH - pH")

m

+ Z wi{erf(pH — pH,;) — erf(pH™ — pH,)},
=1 (12)

X(pH) - X(pH") = wo(pH — pH")

-+ Z w;{sinh~! (pH — pH.;)
=1

— sinh ™! (pH* —~ pH.,)}, (13)

where w, = (/7/2)w; and pH* is some reference pH
at which the X (pH*) is known. Since the model of
titration curve is obtained through integration of RBF,
it will be called IRBF model (Integrated Radial Basis
Function). The advantage of this technique compared
to direct modeling of titration curves using the neural
network is explained below. If a neural network is
used for modeling the titration curve, the structure
of the network (parameters of node function, number
of nodes,...) should be determined. However, in the
proposed scheme, as can be seen from Equations 12
and 13, the structure of the network is determined.
This was done by presenting width and centers of RBF
nodes through a simple physicochemical justification.
Although this structure (i.e., IRBF) is not necessarily
the optimum one, it is much simpler than using
non-linear programming techniques such as Genetic
Algorithms (GAs) or simulated annealing approaches.
Furthermore, the proposed scheme is robust to either
under-parametrization or over-parametrization prob-
lems. The schematic diagram of the proposed network
is shown in Figure 7.

Note that the IRBF is principally an empirical
model and belongs to the class of ANNs and its power
of approximating any complex mathematical mapping
should not be neglected. For instance, consider the
cases where complex formation or precipitation occurs.
Note that if mechanistic modeling approach is used,
the constituents present in the feed stream with their
dissociation constants should be known.

To demonstrate the effectiveness of IRBF, it is ap-
plied to a system where precipitation occurs (Example
3, taken from Gustafsson et al. [1]). The training sets
are obtained as described for Examples 1 and 2. The
network parameters, w;, are given in Table 2 and the
results are shown in Figures 8 and 9; as can be seen,
the titration curves are estimated quite well.
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Figure 7. Titration curve estimation using universal

TRBF.
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Figure 8. Titration curves, Example 3, titrated by
calcium hydroxide.
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Figure 9. Titration curves, Example 3, titrated by
sodium hydroxide.
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Table 2. IRBF network parameters.
Run Parameters
X* wo| w1 w3 w3 Wq wy we w7 ws w9 w10 w11
Example 3 | Using NaOH 0.410 | 2.351 |-0.905 | -1.387 {-1.278 |-1.342|-1.334 | -1.230 | -1.327 | -1.314 | -1.351 | -1.265 | -1.308
Using Ca(OH), | 0.453 | 2.199 |-0.791 [-1.321 |-1.160|-1.346 | -1.056 | -1.337 | -1.099 | -1.252 | -1.253 | -1.196 | -1.192
Open loop experiment 0.344 {-0.0201-0.084 | 0.071 | 0.049 |-0.010| 0.028 |-0.008 | 0.055 — — — —
Closed loop | Decreasing load | 0.149 | 0.158 | 0.010 | -0.030 |-0.093 [-0.082 |-0.089 {-0.081 |-0.126 | — — — —
experiment | Increasing load |0.355| 0.154 | 0.007 |-0.079 |-0.079 | -0.083 [-0.098 | -0.044 | -0.122| — — — —

Estimation of Titration Curve Us
Input/Output Data

ing IRBF and

As mentioned earlier, most advanced control strate-

gies require knowledge of titration
other hand, if the influential condit
the titration curve will be affected.

curve.

On the
ion is changed,
Therefore, on-

line estimation of titration curve is required. In what
follows, based on the expression develpped for X (pH),
an on-line estimation of titration curve is developed.

For digital control of the system,

a discrete model

of the process is needed. Assuming that the input is
constant between two sample times, the discrete form

of Equation 2a becomes:

!
The—
X = ye1Xeo1 + (1 - £ (1 -y
where 7, _; = '—__F+Zkv, T =% ke =
X = X(pHg).

71)7 (14)

exp(—%) and

If Equation 12 is written for sample times k& — 1

and k, it is obtained that:
Xe=X"+ ’wO,k_l(ka — pH*)

+ Z u}g,k—l {erf(ka - Pch) — €

=1

Xe—1 = X" +wo k-1 (pHi—; — pH")

+ Z w; . {erf(pHy—1 — pH.

=1

- erf(pH* - Pch)}

rf(pH" — pH,:)},
(15)

~

If X;x—; and X from the above equations are substi-
tuted into Equation 14, it yields:

!
Th—1
T

where 7, £ (1 — )1 = Ye-1), 0T £ [X*,wo,wr, ...,

W] and:

-y

D

1=k
pH —ve1pHpy — (1 —7%1 )pH*
(vm/2/{erfr 1 —vi-rerfey 1 — (1—k_y )erf(pH* —pHcy))

(V7 /2){erfr,m — Yrrerfey m — (1 — a1 Jerf(pH* —pHcm )}
erfy ; 2 erf(pHy — pH,;).
The identification error can be defined as:

ex =M — B 041, (18)
where O is the estimated value of ©. Now, any
well-known identification technique such as gradient
or least squares can be used for estimating the model
parameter ©. Furthermore, both open loop and closed
loop system identification techniques can be used.

Experimental Evaluation

To evaluate the performance of the proposed schemes, a
bench-scale pH set-up is used. The schematic diagram
of the system is shown in Figure 10. The process
consists of acid and base streams, both being fed into
the neutralization process tank. The effluent pH is
measured as a variable. The base flow rate is regulated
by a motorized control valve, while the acid stream is
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- Process stream '
H l
. : F.C; Titrating stream '
. L i
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PCT-10 \ Acd || Titram .
Electrical console t tank tank 1
] !
'
: 1
C e e o e e o PCT-16 pH !

console

0-10 V output

0-10 V input

Conditioner DAC card Computer

Figure 10. Schematic diagram of the experimental
system.

Table 3. Paramet er values used in the experimental
studies.

F = 185 ml/min V = 1720 ml
uss & 50 ml/min T = 0.1 min
Umin = 0 ml/min a = 003N
Umax = 145 ml/min pK, =4.78

controlled manually. The level of liquid in the process
tank is kept constant by an overflow. The process
is monitored and controlled by an IBM compatible
PC through an interface card. The main unmeasured
load considered for this study is the variation of feed
composition.

The feed stream is a diluted acetic acid and
caustic soda is used as the titrating agent. The
disturbances are produced by injection of pure acetic
acid into the process stream reservoir to increase the
feed concentration and injection of water to decrease
the feed concentration. The parameters of the experi-
mental system are summarized in Table 3. Two sets of
experimental runs are performed which are discussed
in what follows.

Open Loop Identification

In the open loop experiment, the titration curve is
estimated using input-output data obtained through an
open loop response. To excite the system, two succes-
sive step changes were introduced into the system, as
shown in Figure 11. The network parameters are given
in Table 2. As can be seen from the result, the network
has provided a good estimate of the titration curve for
the range of pH variations (train set). The titration
curve estimation for the pH values out of the train
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Figure 11. Experimental open loop estimation of
titration curve, (a) input change, (b) pH variation and (c)
real titration curve (bullets) and its [RBF estimation
(solid line).

set, however, is not satisfactory. This was expected
due to the poor extrapolation capability of empirical
models.

Closed Loop Identification

For implementation of adaptive control scheme, on-line
estimation of the titration curve is required. To identify
the titration curve, the system should be excited which
can be done in two different ways; through altering
either the set point or the system load. Sung and Lee
[14) used the first approach and excited the system
through changing the set point. The drawback of
this approach is disturbing the system with undesired
changes. In the second approach, the titration curve
is updated as the system load is changed. In the
proposed closed loop identification of titration curve,
the second approach is used. Equations 17 and 18
along with recursive least squares method are used
for identification. To generate the closed loop data,
the non-adaptive strong acid equivalent [2] controller
is implemented.

In the first run, the acid concentration is de-
creased from nominal concentration 8.75 x 1074 M to
1.09 x 107* M and in the second run it is increased
from nominal concentration to 2.19 x 1073 M. The
experimental closed loop responses and corresponding
titration curve estimates are shown in Figures 12 and
13, respectively. The network parameters are given in
Table 2 and the training errors are shown in Figures 14
and 15. The least squares method with a gain of 201
has been selected for on-line training (identification) of
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e can be obtained

by increasing the initial norm of cdvariance matrix,

but this is limited due to presence
noise.

As can be seen from the results, t
has estimated the titration curves q
range of pH changes (train set).

CONCLUSIONS

pH control is a challenging problem
nonlinear nature. The performan

of measurement

he IRBF network
uite well for the

due to its highly
e of most con-

trol schemes proposed in the literature degrades as

the titration curve undergoes large
overcome this problem, the titration
identified. In this article, the slope
curve is estimated by using an RBF
The values of the centers and wid
selected by intuition and some physic
Through integrating the slope of tit
expression is obtained for it.
the proposed scheme compared to

alterations. To
curve should be
of the titration
neural network.
th of RBFs are
al interpretation.
ration curve, an

The advantage of

direct modeling
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Figure 13. Estimation of titration curve, using
input/output data for increasing acid concentration, (a)
input change, (b) pH variation and (c) IRBF estimations
(bold line) versus experimental titration result (bullets).
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Figure 14. Identification error for experimental closed
loop (decreasing load) estimation of titration curve.

of titration curve using neural networks is discussed.
The off-line estimation procedure is extended to on-
line estimation which is very suitable for adaptive
control applications. The effectiveness of the proposed
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Figure 15. ldentification error for experimental closed
loop (increasing load) estimation of titration curve.

schemes are shown by computer simulations and exper-
iments.

NOMENCLATURE

A anion of acid
A(pH) term depending on pH in general
titration curve

a;(pH) pH factor, function of pH that appears
as a coefficient of the ith ionic total

concentration

C; total ion concentration of the ith
species in process stream, gmol/]

C; center of node function

erf error function

F flow rate of process stream, ml/min

g general notation for node function

1 identity matrix

Ko, ith dissociation constant of acid

n number of species

T sampling period of controller

T(pH) inverse of standard titration curve

u manipulated variable, flow rate of
titrating stream, ml/min

1% volume of CSTR, ml

w weight of an ANN node

x general notation of independent

variable, input to an ANN

z; total ion concentration of the ith
species in effluent stream, gmol/l

X reduced state of system

X' derivative of X with respect to pH

91

Greek Symbols

a; total ion concentration of the ith
species in titrating stream, gmol/1
I5) width of Gaussian curve
T time constant, min
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