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in a variable-orifice damper in which hydraulic viscous
fluid is flowing. In passive control, the system is neither
informative nor energetic; i.e., it neither knows nor can
change its conditions [3]. Control strategies based on
semi-active devices appear to combine the best features
of both passive and active control systems and to offer
the greatest likelihood for future acceptance of control
technology as a viable means of protecting structural
systems against earthquake loading.

VARIABLE-ORIFICE ENERGY
DISSIPATING MECHANISM

One means of achieving a variable-damping device
for dissipating seismic energy is to use controllable
electromechanical variable-orifice valves to alter the
resistance to the flow of a conventional hydraulic fluid
damper [4]. Construction of such a system is highly
expensive and requires super high technology.

In another method, converting a passive-type
fluid damper device, similar to a typical Taylor device
[5], to a hybrid (passive+semi-active) damping device
might be considered, as proposed by the authors,
through adding a number of by-pass oil intakes that
can be switched on and off, via some control signals.

In the proposed mechanism, a proper kind of
hydraulic oil (e.g., silicone) is placed in the closed
containers into which the oil can flow. A number of
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Figure 1. Passive viscous fluid damper of Taylor device.

orifices in the head of each piston provide the direct
passive-type channels for the oil flow, similar to the
passive-type counterpart. Therefore, there is always
some oil flow due to the movement of pistons when
drift occurs between adjacent floors. However, there
would be some semi-active by-pass oil intakes through
which the discharge is regulated by some controlled
valves. These valves are powered by battery-size power
supplies and are controlled by signals from adaptive
filters/controllers. From a mathematical viewpoint, it
appears that the damping coefficients of the above-
defined energy dissipating system are changing auto-
matically, and an optimal controller is designed to
do the regulation adaptively, i.e., based on the latest
variations in the frequency domain characteristics of
the excitation disturbance. Seismic disturbance is a
nonstationary process with a zero mean and a time-
variant autocovariance. A schematic of Taylor device,
first designed and tested by Constantinou et al. [5], and
after that by Symans et al. 6], is provided in Figure 1.

The hybrid version of this device, proposed by
the authors, is shown in Figure 2. The function of this
hybrid on-off orifice damping device may be interpreted
as being similar to a variable-orifice device, using the
following mathematical reasoning. By installing three
on-off orifice damping devices in a three-floor framed
structure (one device at each floor level) and devising
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Figure 2. Semi-active on-off orifice viscous fluid damper
(proposed by the authors).

six semi-active oil intakes for each device, it is possible
to have 26 = 64 distinct values for the nonclassical
damping coefficient of each damping device at each
time step. By increasing the number of semi-active
oil intakes, the number of accessible damping values
increases by a geometric progression, very rapidly.
Therefore, it may be assumed that the step variation of
device damping coefficient is continuous and this on-off
orifice device is acting approximately like a variable-
orifice system.

THE STRUCTURE MODEL

As a benchmark, a three-story framed-structural build-
ing with rigid floors and A-shaped wind bracings is
considered. The vertices of the bracing systems are
attached rigidly to pistons that are free to move
horizontally through the cylinders that, in turn, are
attached rigidly to the upper floors (see Figure 3).

A rough finite element model of the structural

o

z3

k3
C3

Figure 3. Physical structure.
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(see Figures 3 and 4).
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Figure 4. Finite element model.
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where M, C,, C,(t) and k are mass, proportional
Rayleigh damping, nonclassical damping and stiffness
matrices, respectively. x and its derivatives are relative
displacement, velocity and acceleration vectors and z,
is ground motion displacement applied at the founda-
tion. r, is a location vector to show the extent and
distribution of excitation on each DOF.

Through rearranging the equation by transferring
internal nonclassical damping forces to the rhs, new
external forces will appear:

M + Cpx + kx = —Mr, i, (t) — Cy(t)%. (2)

The last term of the above equation may be interpreted
as a virtual control input vector:

Rcfc(t) - —Cb(t))'(v (3)

where f,(t) is the virtual control force vector and R, is a
location matrix. One may imagine that instead of hav-
ing internal forces in the structural system produced by
dissipating energy mechanism, there are some virtual
actuators that are able to apply external forces to the
structure. Therefore, this semi-active control problem
may be converted to a conventional active control
design using, for example, adaptive control strategies.
Adaptive feedforward control has been selected due
to nonstationarity of the disturbance process and the
quick response of feedforward controllers compared to
feedback ones. However, it is noted that mathemati-
cally, an adaptive feedforward controller is equivalent
to a nonadaptive feedback compensator [14,15].

For the development that follows state-space time
domain and backward-shift operator calculus, ¢~' or
delay operator (or inversely, forward-shift operator ¢!
or prediction operator) in discrete-time are used as two
descriptions of dynamic systems [16-18]. If f(k) is a
digital sequence, in which #;, = kT,, and T, is the
sampling period for converting a continuous-time signal
f(tx) to the digital sequence f(k), then the one-sided
z-transform (or if someone misuses terminology, almost
equivalently g-transform) of the signal f(k) is defined
by [17}:

F(z)y=Y_ fk)z*. (4)
k=0

The z and g variables are not exactly the same. In
many system theory textbooks, z is used for the shift
operator (i.e., instead of ¢) as well as for the complex
variable in the z-transform. However, it is convenient
to have different notations of the two notions. This is
the same separation that is normally done between the
complex variable s in the Laplace transform and the
differential operator p = d/dt [18,19]. Shift operator
q in discrete-time is the counterpart of the differential
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operator p in continuous-time. The backward-shift op-
erator (backward in time) has the following important
property [18]:

g f(k) = f(k - 1). (5)

It means that the backward-shift operator causes one
sampling time delay in digital sequence. The goal of
backward-shift operator and algebraic system theory
is to convert manipulations of difference equations
to purely algebraic problems [19]. This is similar
to the objective of Laplace transform operators in
continuous-time processing of differential equations.
The continuous-time state-variable vector of the struc-
tural system is defined by:

z = [xT x7". (6)

First-order structural dynamics equations are written
in the form:

. Onxn Inxn On 1] ..
2= [—M—lk —M“le]Z+{ . }xa(t)

On 3 On
+ om0+ R vt ")
or more compactly as:
z=Az+ byi,(t) + BAf(t) + Ew(t). (8)

This equation defines a dynamic system under a
random seismic excitation and three control actions.
A white noise excitation w(f) has been added into
the system, in order to incorporate local structural
nonlinearities, actuator dynamics and other unmodeled
dynamics indirectly [20]. When there is zero informa-
tion about a random process, the easiest way for its
modeling is the white noise process which has a flat
power spectral density for all frequencies. In computer
simulations, its intensity is determined in such a way
that it can represent minor unmodeled dynamics. If
this noise intensity does not cause a large deviation in
the mathematically modeled dynamics of the system,
adaptive filters (with adjustable parameters) are able
to compensate for it. This is one of the major reasons
for the superiority of adaptive filters over fixed param-
eter filters in unknown or poorly known environments
and systems. In experimental simulations, this white
noise intensity can be estimated through measured
data. For simplicity of discussion, assume that input
white noise excitation, implemented for modeling the
unmodeled dynamics of the system, influences the
structure in the same way as ground acceleration does.
Thus, Equation 8 may be rewritten as follows:

7z = Az + byi,(t) + Bf(t) + byw(t).
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The above linear time-invariant continuous-time sys-
tem is discretized to a linear discrete-time dynamical

system by finite differences, assuming a zero-order hold
[17):

a(k +1) = 0z(k) + Tgig (k) + UL (k) + Tgw(k).

Assume that input white noise excitation and
ground acceleration processes are mutually uncorre-
lated (possibly nonstationary) jointly Gaussian white
noise sequences with the following covariance matrices:

E{w(i)w’(j)} = R(i)d:;,
E{i,(i)i; ()} = Q)65
E{w(i)i}(j)} =S =0, foralliandj.

For this single-channel noise and ground acceleration,
the covariance matrices are degenerated to variance
scalars q(z) and (7). A signal-to-noise ratio is defined
as:

SNR = M

(i)

For the case study used in this paper, SNR, approx-
imately equal to 20, has been implemented. For
a numerical study, it is assumed that all random
processes are ergodic. Therefore, someone may not
distinguish between ensemble and time averaging. A
normally distributed random number generator, like
that used by MATLAB software, may be initiated for
generating the input white noise excitation with the
desired variance.

As shown in Figure 5, three structural sensors
for three floors and an array of ground sensors near
the foundation of the structure, known as geophones,
have been installed. For each story, one adaptive
filter /controller, corresponding to one A-bracing, has
been implemented.

The continuous and its discretized output meca-
surement equations for the structural sensors are:

Y(t) = Cz(t) + di,(t) + V(t),

Y(k+1)=Cz(k+1) +di(k+ 1)+ V(k+1).
(9)

Y (t) is the vector of structural responses that should be
controlled, d is the influence coefficient of earthquake
disturbance, which is a zero vector in this case (but
not where one is dealing with soil-structure interaction
effects) and V(¢) is the measurement noise vector that
also can incorporate the echo effects from structural
response to ground motion {21,22].

As an example, if the objective is controlling the
base shear, C may be defined by:

C=[kC,+Cyt). (10)
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Figure 5. Complete dynamic system.
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function of ¢, there is an equivalent relation for g-
transformed error signal in the g-domain [18,19):

) + Z Yim(q)

The following pulse-transfer functions in backward-
shift operator relate the parts of error signal output to
the corresponding inputs. Tye;(q) is the pulse-transfer
function from the seismic disturbance input to a part
of the error signal i:

= Tae, (q)%4(K),

This function is actually a complex-valued rational
function whose numerator and denominator are poly-
nomials of different powers of g=1. Also, T, m.i(q) is the
pulse-transfer function from the control action applied
at the mth floor to the other part of the error signal i:

ylm(k) Cme ( )fc'yn(k)7 7’: 172737 m = 1727
(

Ei(q) = i=1,2,3. (12)

d;(k) i=1,23. (13)

3.
4)

Consider the input-output relations between the con-
trol forces, as the outputs of the adaptive filters
Wi(z, k), and seismic disturbance input:

Jen (k) = o(k)

Both ¢ and k are used as arguments of W, (q,k)
controller filters to emphasize time-varying behavior of
adaptive algorithms.

For comparison, the above equation in the 2z-
domain (or loosely ¢~!-domain) is equivalent to the
following convolution sum in the time-domain:

Woa(q, k)& m=1,2,3. (15)

Ly
fou(k) = wm(G,k)ig(k - j), m=1,2,3.
j=0 (16)
In the above equation, w(7,k) Wj (k) is

the jth weight of discrete-pulse response of mth floor
adaptive filter, determined for the sampling period
k. The objective in adaptive control is to calculate
Wn(q, k) filter weights optimally, i.e., w,,; at each time
step k.

The relation of W,,(q, k), the adaptive controller
installed at mth floor, and its jth Markov parameter,
wim (), k) (or jth weight of discrete pulse response of
that filter) in the ¢-domain is written as:

Lo,

§ wm7 hj 3

7=0

n'L (]7 m = 1,23 (17)

Win(g, k) is an FIR (Finite Impulse Response) filter
[24] that can be truncated after L,, time points for
the mth floor adaptive controller that is a finite energy



Semi-Active Multivariable Adaptive Control of Structures

stable filter. The number of parameters of the FIR
filters implies that the dimension of optimization space
is (L1+1)x(La+1)x(Lg+1). wm;’s, at each sampling
time k are the design variables [21-23]. For three semi-
active dampers and Ly = Ly = L3 = 24, this dimension
is 75.

By substituting Equations 15 and 17 into Equa-
tion 14, the following relation is obtained:

q jig(k)v

Z wnny (k

ivm=1,23. (18)

Yim (k) = cmel

Substituting from Equations 13 and 18 into Equation
11, the error signal is obtained in terms of structural
transfer functions:

ei(k) = Tue,(9)Z4(k)

3
+ Z cmel Zwmj )a jig(k)v
m=1

i=1,2,3. (19)

A filtered sequence of acceleration seismic signal
through structural transfer functions is defined by:

Emi(k) =T, e (@)Eg(k), m,i=1,2,3. (20)
This filtered signal contains only those poles that may
cause strong resonance to the structural system. By
this signal, only those poles of acceleration seismic
signal that are able to excite the system, are entered
into the identification process of LMS algorithm during
the optimization of the filter weights. The other less
important poles of actual seismic signal are filtered out.
This is the core idea of the filtered version of LMS
algorithm.

Substituting the filtered seismic signal (Equation

20) into the error signal (Equation 19), the following
relation is obtained:

3 L,
ei(k) = Tae, (9)%4(k) + Z Zw"w(k)xmt -7),
m=1 7=0

i=1,2,3. (21)

The above relation has been written by the use of
backward-shift operator property:

¢ Emik) = Emi(k = 7). (22)

The mean squares of error signals are chosen as a
quadratic convex objective function for determining the
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optimal values of wn,;(k), Markov parameters of the
Wi (g, k) filter at time k:

C (wmj(k ZE{e

j=0,...Lm m=123. (23)
E{.} is a notation for the statistical expectation op-
erator. Clearly, this function has only one global
minimum and, hence, the solution is unique. The
easiest technique to find that minimum is the steepest
descent method and searching for the updated values
of filter weights in the negative of gradient, while the
search step size should guarantee the stability of the
algorithm [21,22].

Through calculating the gradient of the cost
function (Equation 23) relative to the adaptive filter
coeflicients, it is obtained that:

OC (wnm; (k) ael( ) }
“wm, (k) ZE{ By |
i=1,2,3, m=123. (24)

The approximation of this deterministic gradient con-
verging theoretically to Wiener filter solution, by a
stochastic gradient, yields the so-called Least Mean
Square (LMS) algorithm:

aC ( wm](k
mej(k

HZ

3 (9 ; )
2 2 awl(k)' (25)

Using this gradient, the general recursive updating
formula of steepest descent, given by:

9C (Wm; (k)

mej(k) ' (26)

wmj(k' +1)= wmj(k) —
is specialized to the following difference equation for
filter weights update in LMS algorithm:

ei(k)
Wik + 1) = wm;(k) —2’72 (k) At

P mi(k) (o7

Gradient of error signal relative to filter weight
vector is called sensitivity derivative in adaptive control
literature. The multiplication shows inherent nonlin-
earity of adaptive controllers. The sensitivity deriva-
tives are calculated by differentiating error signals in
Equation 21:

861‘(’6) = .
m = Zmi(k = J),

m,i=1,2,3, j=0,..,Ln. (28)
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The final result of the filtered-x LMS
: 3

Wy (k+1) = win; (k) — 27 eu(k
1=1

mi=123, j=0,..

-

algorithm is:
jm‘t(k - ]),

(29)

It is observed that, nine filtered-z seismic signals and,
therefore, nine transfer functions T.l..:(¢) should be
estimated for this multivariable control strategy. It

should be noted that the derivation
algorithm is the same as above, except

of classical LMS
that the filtered-

x seismic signals are replaced by (nonfiltered) seismic

input signals.
Figure 6, in classical LMS algorithm
for filtering seismic disturbances throy

Referring to the block diagram of

there is no need
gh the estimated

(overhat) structural transfer functions, as shown in
that diagram. The major difficulty of ffiltered-x version
of LMS algorithm is to estimate structural transfer
functions T¢mei(q) for obtaining filtered seismic signals.
However, this can be accomplished by having a rough

finite element model of the structure:

‘iml(k) = Tcmei(Q)ig(k)v m1i = 17

2,3, (30)

where overhat, T, ..(q), has been calculated from the

finite element model.
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authors.
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with the conventional active controllers that consume
a large amount of external energy and that need a
large power supply. However, it is remembered from
Equation 3 that by designing f.(t), ane may actually

find some optimal values for Cy(t),
damping matrix of energy dissipating
tions 7 and 8 are expanded in order
more clearly:
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= Az+bgi,(t)+ Y b fe, (t)

m=1

m=1,2,3

the nonclassical
systems. Equa-
to see the facts

t+ Ew(t)
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Ym = Cnz + dmi,y(t) + Vi (),

Y= [y17y27y3]T (32)
It is clear from Equations 3,7,8 and 31 that:
/rCmem (t) = —Cbm (t)}.(TVH m = 17273 5 (33)

where matrices R. and C,(t) have beezn partitioned
to corresponding vectors r., and matrices Cpn(t).
Consequently, the following scalar equation is obtained:

fCTn(t) = ébm (t)[xm - j3m+n]7 m = 17 21 3
(34)

The index n is the total number of energy dis-
sipating systems and overbar Cj,,(¢) is a measure of
the damping coefficient of that system. It is clear from
stability reasons that:

~ _ fem (t)
Cbm (t) B xm(t) - im+n(t)
m=1,2,3, dm—Fmin 20 (35)

Due to practical constraints, the overbar Ci,, varia-
tions have been limited between two upper and lower
practical limits:

C-_"lower S C_Yb,,1 (t) S Cupper Vt (36)
In this way, actually, a parametrically excited nonlinear
vibration problem is running, in which the sources of
the parametric excitations are the internal change of
dynamic characteristics of the system.

THE OBJECTIVE FUNCTIONS

In adaptive filtering and control literature, the “desired
response” or “training signal” is the signal that should
be followed by the output of the adaptive filters. The
parameters of the adaptive filters are adjusted to cause
their output resultant to agree as closely as possible
with the desired response signal. This is accomplished
by comparing this output resultant with the desired
response to obtain an “error signal” and then adjusting
or optimizing the parameters to minimize this signal
[22]. In general, the desired response is simply some
objective output that the adaptive filter must be
designed to replicate in opposite phase [15].

In adaptive feedforward control of seismically-
excited structures, the desired response or training
signal is any response of the uncontrolled structure
(to seismic signal) that the designer wishes to be
minimized. The uncontrolled structure means the
primary structure without any augmented active or
semi-active control system. The output resultant of
adaptive filters is the resultant response of the structure
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to the active or semi-active control systems when the
response to the seismic excitation is off. The error
signal is the linear superposition of these two principal
effects on the structure under control.

There is some degree of freedom in the definition
of the kind of a desired response or objective response.
In this project, three different objectives have been
implemented and the results have been compared:

1. The Relative Floor Displacement vector with the
structural stiffness matrix as a weighting matrix
(RFD objective response). By this definition, an
effort is made to minimize the elastic potential
energy of the system. For this case, Ty.:(q) are the
Structural Transfer Functions (STF) from seismic
acceleration to the RFD’s.

2. The Total Base Shear in the first story columns and
bracing systems {TBS objective response). For this
case, Ty.(q) is the STF from seismic acceleration to
the TBS at the ground floor level.

3. The Column Base Shear, i.e., the base shear only
in the first story columns (CBS objective response).
It is assumed that the construction method allows
the first story bracing to convey its load directly
to the foundation. For this case, T4.(q) is the STF
from seismic acceleration to the CBS at ground floor
level.

NUMERICAL RESULTS AND DISCUSSION

In numerical simulation, El Centro, 1940 earthquake
has been applied to the 3-story flexible structure, for
a 20 second period. Its first six natural frequencies
and modal proportional damping properties are given
in Table 1. This structure has been equipped with three
energy dissipation mechanism attached to bracing sys-
tems. There are two simulations performed with this
structure. The first simulation is called passive un-
controlled, because during the simulation, the damper
coefficients of the energy dissipation systems are kept
fixed. In fact, this case is equivalent to a passive
system. The second simulation is called controlled, be-
cause the damper coefficients are adjusted continuously
between two practical limits.

The simulation results have been obtained by
MATLABTM . Relative displacements and drifts be-

Table 1. Dynamic properties of simulated structure.

Mode | Frequency (Hz) | Damping (%)
1 0.5000 1.0000
2 1.1438 2.0000
3 1.4649 3.0000
4 2.1240 4.0000
5 2.4528 5.0000
6 2.6296 6.0000
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tween floors have been normalized relative to the
maximum absolute value of the third floor relative
displacement of uncontrolled structure; floor absolute
accelerations relative to gravity and force responses rel-
ative to the building weight. Numerical values of max-
imum and minimum controlled responses are marked
by dotted horizontal straight lines in the graphs; while
upper and lower limits of each graph have been set
for maximum and minimum values of uncontrolled
responses. RRF (Response Reduction Factor) needs
to be defined. It is the relative reduction percent of
response between uncontrolled and controlled systems.

A brief comment and discussion are presented on
the figures and tables. Only the responses obtained
considering the TBS objective response algorithm are
shown in the figures.

Figure 7 is the third floor displacement relative
to the foundation. From Tables 2a, 3a and 4a, it is
observed that the CBS algorithm has been the most
effective method among these three objective response
algorithms, for reducing floor displacements with an
average RRF of 59.09%. The TBS algorithm is the
most inefficient algorithm among the three, with an
average RRF of 56.88%.

Figure 8 demonstrates the drift between the
second and first floors. The TBS objective response
algorithm has reduced the drift responses more than
the other two algorithms. It seems that the RFD
algorithm is the least efficient method for this kind of
response. It should be pointed out that there are no
critical differences between the performance of these
three objective algorithms. Figures 9 and 10 show
the total and column base shear time histories that
have been chosen as the criteria for the TBS and CBS
algorithms, respectively. The total base shear is the
shear due to both column and bracing actions, but the
column base shear is due to only the column action. It
is clear that the optimization algorithms based on the
base shear forces have tried to reduce the related base
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Figure 7. 3rd floor relative displacement.
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Table 2a. Calculation
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of RRF for major responses. Objective criterion based on TBS.

Floor Max Floor Displacements Max Cumulative Shears (%) Max Abs. Accelerations (%g)

No. Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
3 15.23 36.94 58.78 6.94 11.78 41.09 34.11 66.80 48.94
2 30.86 74.74 58.71 10.11 17.10 40.90 18.26 33.55 45.56
1 17.93 38.28 53.16 12.64 21.47 41.13 25.84 34.84 25.84

Average RRF 56.88 41.04 40.11

Table 2b. Additional calculated responses and energy comparison.

Max Drift b/w 3rd & 2nd Floors(%) Max Potential Energy (kJ) Max PE+KE Energy (kJ)
Controlled | Uncontrolled RRF Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
11.43 39.84 71.32 7.19 32.30 77.74 12.20 50.72 75.94
Max Drift b/w 2nd & 1st Floors (%) Max Kinetic Energy (kJ) Max Column Base Shear (%)
Controlled | Uncontrolled RRF Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
14.79 43.22 65.77 10.55 47.64 77.85 10.01 21.41 53.23
Average RRF 68.55 77.80

Table 3a. Calculation| of RRF for major responses. Objective criterion based on CBS.

Floor Max Floor Displacements Max Cumulative Shears (%) Max Abs. Accelerations (%g)

No. | Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
3 14.77 36.94 60.02 7.27 11.78 38.28 37.96 66.80 43.18
2 29.29 74.74 60.81 10.23 17.10 40.21 19.10 33.55 43.07
1 16.67 38.28 56.45 13.89 21.47 35.29 26.21 34.84 24.79

Average RRF 59.09 37.93 37.01

Table 3b. Additional calculated responses and energy comparison.

Max Drift b/w 3rd & 2nd Floors(%)) Max Potential Energy (kJ) Max PE+4+KE Energy (kJ)
Controlled | Uncontrolled RRF Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
11.45 39.84 71.26 6.93 32.30 78.54 12.25 50.72 75.84
Max Drift b/w 2nd & 1st Floors (%) Max Kinetic Energy (kJ) Max Column Base Shear (%)
Controlled | Uncontrolled RRF Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
15.10 43.22 65.06 10.81 47.64 77.32 9.32 21.41 56.48
Average RRF 68.16 77.93

Table 4a. Calculation

of RRF for major responses. Objective criterion based on RFD.

Floor Max Floor Displacements Max Cumulative Shears (%) Max Abs. Accelerations (%g)

No. | Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
3 15.25 36.94 58.71 6.79 11.78 42.33 31.99 66.80 52.11
2 29.88 74.74 60.02 10.34 17.10 39.52 16.70 33.55 50.21
1 16.04 38.28 58.10 13.41 21.47 37.53 25.71 34.84 26.23

Average RRF 58.94 39.79 42.85

Table 4b. Additional calculated responses and energy comparison.

Max Drift b/w 3rd & 2nd Floors(%)) Max Potential Energy (kJ) Max PE+KE Energy (kJ)
Controlled | Uncontrolled RRF Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
11.92 39.84 70.08 6.93 32.30 78.56 12.29 50.72 75.76
Max Drift b/w 2nd & 1st Floors (%) Max Kinetic Energy (kJ) Max Column Base Shear (%)
Controlled | Uncontrolled RRF Controlled | Uncontrolled | RRF | Controlled | Uncontrolled | RRF
15.22 43.22 64.78 10.82 47.64 77.28 8.96 21.41 58.16
Average RRF 67.43 77.92
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shears. However, from a simple averaging consideration
for this specific simulation, it seems that the RFD and
TBS algorithms have performed better than the CBS
algorithm.

Figure 11 shows the third floor absolute acceler-
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Figure 8. Drift b/w 2nd and 1st floors.
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Figure 9. Total base shear force.
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Figure 10. Column base shear force.
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ation response. The RFD and, then, TBS algorithms
have reduced this kind of response more than the CBS
algorithm.

Figure 12 shows the first floor damping force time
history. It is observed that for some time, the damping
force has been about 8% of the building weight for
a controlled system. In comparison with the large
amplitude damping force of the controlled system, the
damping force time history of the uncontrolled system
can hardly be seen from the figure.

Figures 13 and 14 illustrate the force-displace-
ment curves. The force is the total base shear and
the displacement is the drift between the first floor
and the foundation. The hysteresis loops for the
controlled structure are much wider than those for the
uncontrolled structure. It may be observed how large
a damping force would be developed in a controlled
structure, as compared to an uncontrolled one.

Figure 15 shows the amount of external energy
injected from the acceleration seismic signal input to
the controlled and uncontrolled structures. The seismic
input energy is more for the uncontrolled structure.

66.8042

29.0941

(%g)

-34.1098

-51.4185

Time (sec)

Figure 11. 3rd floor absolute acceleration.
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Figure 12. 1st floor damping force.
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Also, it is observed from Figure 16 that the absorbed

dynamical energy (potential+kineti
the uncontrolled structure. The reas
more energy has been damped out

) is greater for
on is that much
in the dampers
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Figure 13. Base shear-1st floor displace
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Figure 14. Base shear-1st floor displacement
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Figure 17. 1st floor virtual control force.

of the controlled structure. The maximum seismic
input energy for the uncontrolled system is 80.71 kJ.
The TBS algorithm has reduced this peak to 48.00
kJ, with an RRF of 40.53%. The RRFs for the
RFD and CBS algorithms are 42.68% and 42.36%,
respectively. Therefore, the RFD has been the most
efficient algorithm among the three, for reducing the
peak of seismic input energy response, as was expected.

Figure 17 shows the virtual control force obtained
by LMS algorithm for the first floor virtual actuator.
If the system were an active controller, then force
should have been applied to the system by using some
transduction devices and consuming lots of external
energy. However, for this semi-active controller, these
virtual control forces are divided by some relative ve-
locities to obtain some measure for semi-active damper
parameters. The variations of the resulting nonclassical
damping coefficient for the variable-orifice damping
device, installed at the second floor, has been drawn
in Figure 18, between two practical lower and upper
limits.

Figures 19 to 21 show the evolution of adaptive
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Figure 18. 2nd floor semi-active damper coeflicient.

filter weights of each floor with time. The convergence
for the controller installed at the third floor has been
very rapid. However, for the first floor, the rate
of convergence is low or even the parameters are
diverging.

The graphs showing the time evolution of adap-
tive controller weights are directly a measure of per-
formance of the active controller. The time evolution
of the nonclassical damping coeflicient of semi-active
damping devices has been obtained by dividing the
virtual active control forces, obtained from LMS al-
gorithm, by the relative velocities between each floor
and lower bracing. Therefore, the convergence (or
divergence) of the weights may be an indirect measure
of the stability, robustness and performance of the
algorithm for the semi-active damper. In addition,
from Figure 21, it may be deduced that it is possible
to identify the dynamic characteristics of the adaptive
filter installed at the third floor by fewer parameters.

Figure 22 shows the FIR parameters of the first
floor adaptive filter for the 20th second after the
simulation initializes. These parameters are the same
as the discrete-pulse response of the adjustable filter

1st floor
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Figure 19. Adaptive controller weights for first floor.
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at that time. The number of parameters for all filters
has been selected to truncate after 25 sample numbers.
Although the pulse response of the filter does not
equal zero for the 25th parameter, the performance
of the filter and the LMS algorithm has been satis-
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factory. Figures 23 and 24 illustrate
damping coefficient time history may
time evolution of orifice size in the
the purpose of illustration, consider
cylindrical semi-active damper with i
whose cross-sectional design is shoy
The piston head is characterized by
axial length L,. The chambers a
incompressible viscous fluid obeying N
law and having dynamic viscosity

Meanwhile, the piston rod is assu
the axial direction with velocity V,

how semi-active
be interpreted as
mechanism. For
the hypothetical
nternal radius R,
vn in Figure 24.
ts radius R, and
e filled with an
lewton's viscosity
. and density p.
med to move in
forcing the fluid

through the annular passage of width h = R — R, and

thus producing a pressure differentia
Assume that an accumulator is prese
for the volumetric changes associate

rod. There are two groups of oil intakes.

group is designed as the annular pa

across the head.
nt to compensate
1 with the piston
The first
ssage around the

main piston head within the cylinder for a minimum

passive action available all the time.
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cylinder for semi-active action, poss
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heads. The time deviations of non
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Che second group
outside the main
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coeflicients are developed in these by-pass intakes. If it
is assumed that there are six by-pass intakes, all having
p = 0.26 kg/(m.sec), Lp,s = 0.5 m and R, = 0.1 m, the
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time evolution of the annular passage width is shown
in Figure 23.

For this calculation, it has been assumed that
h << R, a high viscosity fluid, small gaps, long flow
passages and the Navier-Stokes equations for a planar
uniaxial flow are applicable. The simplified formula, is

[5]:

3
Cy = 3mul, (&)
h
Figure 23 specifically shows the usage of the formula
for this case study.

In Tables 2b, 3b and 4b, there are more responses
which have been compared. As observed, the RFD
algorithm has been the most effective criterion for
reduction of potential energy and less effective for
reduction of kinetic energy in the structure.

In the last column of each table, it may be
observed that the sum of potential and kinetic energies
has been reduced more by the TBS algorithm, as
compared with the other two algorithms. In fact, the
TBS tries to minimize both the potential and kinetic
energies of the structure, indirectly. However, in the
CBS and RFD algorithm minimizing potential energy
is the main concern. Thus, it is the designer’s choice
whether more attention should be paid to the reduction
of the system potential energy or the total dynamical
energy.

CONCLUSIONS

In this paper, a semi-active multivariable adaptive feed-
forward controller was designed for a framed structure
under seismic excitations, based on filtered-x NLMS
algorithm.

The hardware of the controller was an on-off
orifice, viscous fluid energy dissipation mechanism,
powered by a battery-size power supply that was
modeled as a variable-orifice semi-active damper for
numerical simulations. For each floor, one of these
mechanisms was installed between that floor and the
bracing system underneath.

The software of the controller was an FIR adap-
tive filter whose parameters were identified by the
filtered-x NLMS optimizer.

The advantage of using this technology was that
the need for a large power supply had been omitted.
However, the numerical results showed a good perfor-
mance of the dynamic compensator for the reduction
of the desired structural responses.

The major results of three different optimization
objective functions were summarized. These algo-
rithms were compared for the responses of an uncon-
trolled passive and a controlled semi-active structure.

In summary, for this case study, it was shown
that the Column Base Shear (CBS) and Relative Floor
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Displacement (RFD) objective response criteria per-
formed almost equivalently from an energy viewpoint.
Both of them tried to minimize an index of potential
energy. However, the Total Base Shear (TBS) objective
response criterion paid more attention to minimizing
total dynamical energy.

For this case study, no sharp distinction in the
performance of these three criteria was observed. Each
of them tried to minimize some structural responses
and were efficient. It seems that for an overall response
reduction, a multi-objective criterion would be more
beneficial, if it does not contradict the equations of
the dynamic system. These equations constitute the
constraints of the optimization problem. As a whole,
the results for this semi-active control strategy are
encouraging and bring the hope of a near future
application of this technology to special structures, like
nuclear power plants.
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APPENDIX
Derivation of Single-Channel Filtered-X LMS

For a comparison of formulations, the relations for
the Single Input-Single Qutput case (SISO) is derived.
Consider the structure and its block diagram (see
Figures Al and A2).

The error signal (the dynamic response that
should be minimized by use of an appropriate objective
function) is composed of a structural response due to:
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Figure A2. Block diagram equivalent of the above system.

1. A seismic disturbance as if there is no control on the
structure (model output Ty.(z), that is the model of

uncontrolled structure),

2. A response due to a control input
ture output T, (2)):

e(k) = d(k) + y(k).

controlled struc-

The following pulse-transfer functions in back-
ward-shift operator domain are relating the parts of
error signal output to the corresponding inputs. Ty.{(q)
is the pulse-transfer function from the seismic distur-
bance input to a part of the error signal:

d(k) = Tae(q)Z4(k).

This function is actually a complex-valued rational
function whose numerator and denominator are poly-
nomials of different powers of ¢~1. In addition, T..(q)
is the pulse-transfer function from the control action to
the other part of the error signal:

y(k) = Tee(q) fe (k).

Consider the input-output relation between the control
force as the output of the adaptive filter W(z, k) and
seismic disturbance input:

fe(k) = W(q, k)iq(k).

For comparison, the above equation in the z-domain (or
q~!-domain) is equivalent to the following convolution
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sum in the time-domain:

L
k)= w(j, k)iq(k — j).

=0

In the above equation, w(j, k) = w;(k) is the jth weight
of discrete-pulse response of adaptive filter, determined
for the sampling period k.

The objective in adaptive control is to calculate
W (z) filter weights optimally, i.e., w, at each time step
k.

The relation of W(z, k), the adaptive controller,
and its jth Markov parameter, w(j, k) (or jth weight of
discrete pulse response of that filter), in the z-domain
is written as:

L

= w;(k)z7,

Jj=0

Wiz, k)

W(z,k) is an FIR (Finite Impulse Response) filter
that can be truncated after L time points for the
adaptive controller. Implying that the optimization
space dimension is (L + 1). w;’s, at each sampling
time k, are the design variables.

Through combining the above relations, the fol-
lowing relation is obtained:

L
y(k) = Tee(a) S wy (K)g 3, (k).

=0

The error signal is found in terms of structural transfer
functions as:

e(k) = Tue(q)Z 4 (k) + Tee(q

ij(k ]339 k).

A filtered sequence of acceleration seismic signal
through structural transfer function is defined by:

2(k) = Tee(a)4(k).

Substituting the filtered signal into the error signal, the
following relation is obtained:

L
e(k) = Taelq)iq(k) + Y w;(k)E(k — j).
7=0

The above relation has been written by the use of
backward-shift operator property:

¢ E(k) = 2(k - j).

Mean square of error signal is chosen as an objective
function for determining the optimal values of w;(k),
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Markov parameters of the W{(z, k) filter at time k:

C(w;(k)) = E{e? (k)} j=0,..,L.
Calculating the gradient of the above cost func-
tion relative to the adaptive filter coefficients, it is

obtaind that:
de(k)
B {20555 |

9C(w;(k)) _
w;(k)
The approximation of this deterministic gradient con-
verging theoretically to Wiener filter solution, by a
stochastic gradient, yields the so-called Single-Channel
Least-Mean-Square (LMS-SISO) algorithm:

oC(w;(k))
ow; (k)

de(k)

= 2e(k)awj(k) X

Using this gradient, the general recursive updating
formula of steepest descent, given by:

9C (w; (k)

w;(k +1) = w;(k) - ’Y—W7

is specialized to the following difference equation for
filter weights update in LMS algorithm:

wi(k +1) = w;(k) - dw; (k)

2ve;(k)

The sensitivity derivatives are calculated by differenti-
ating the error signal:

de(k)
dw;(k)

The final result of the filtered-x LMS algorithm, SISO
case, is:

=i(k—-j) j=0,..L.

wi(k+1) = w;(k) — 2ve(k)i(k —j), j=0,..,L.
The major difficulty of filtered-x version of LMS
algorithm is to estimate structural transfer function
T..(z) for obtaining filtered seismic signal. This can be
accomplished by having a rough finite element reference
model of the structure:

j(k) = Tce(Q)mg(k)

The above derivation with fewer indexes for quantities
was for SISO filtered-x LMS algorithm. The Multi-
Input Multi-Output (MIMO) filtered-x LMS case with
three inputs and three outputs has been organized in
the main body of the paper.

The concepts of z-transform, FIR filters and other
terminology related to DSP (Digital Signal Processing)
may be found in [24,27]. The concepts like LMS
and other terminology related to RSP (Random Signal
Processing), stochastic processes and ASP (Adaptive
Signal Processing) fields may be found in [21,22].





