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In this paper, variable con�nement parameters were successfully developed for compressible
vorticity con�nement. Three variable con�nement parameters, that have velocity dimension, were
de�ned, based on three arti�cial dissipation schemes. The resulting con�nement parameters are
functions of the spectral radii of the Jacobian matrices and the Jacobian matrices themselves.
Therefore, the con�nement parameter implicitly contains the grid size and other local 
uid
properties. Preliminary results for moving vortices showed that the new con�nement parameters
allow the capture of vortical layers that, e�ectively, do not decay in time, like Hu et al.'s
con�nement. Calculations of the supersonic base 
ow and supersonic shear layer showed good
agreement with experimental and analytical data, especially for the variable CUSP con�nement
parameter. When variable con�nement parameters are used, the tuning constant is equal to,
or larger than, the equivalent value of the constant con�nement (Hu et al.). This means that
the tuning constant varies in a range smaller than that of the Hu et al. constant con�nement,
especially for the CUSP con�nement parameter.

INTRODUCTION

Many 
ows of interest are characterized by large
regions of concentrated vortical structures that per-
sist and can convect over long distances. Flows
of this nature include those associated with aircraft,
in particular, rotorcraft, ships, automobiles, bridges
and buildings. Conventional CFD methods tend to
dissipate vortical structures, degrading the overall
accuracy of the computed 
ows. This dissipation can
be reduced through the use of �ne grids, but, at the
expense of greatly increased computational demands.
For example, 
ow computations around 3D complex
bodies with large-scale separations and vortices are
di�cult within the realistic number of grid points. A
natural way to tackle such kinds of problem is by using
high-order schemes and/or automatic grid re�nement
techniques, in order to increase the accuracy of the
resolution and, thus, avoiding a too fast dissipation of
the vortical structures [1-3]. Higher order discretization
increases CPU loading and adaptive procedures have a
lot of complex logic controls.
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Another method is to use Direct Numerical
Simulation (DNS) or Large Eddy Simulation (LES),
by which, the complete time-dependent Navier-Stokes
equations are solved. Although these methods are very
accurate, with no signi�cant numerical errors, they are
computationally exhaustive, especially for complex 3D

ows. As a result, DNS or LES are still not considered
practical CFD methods [4].

Therefore, the vorticity con�nement method has
been proposed to reduce the di�usive property of the
incompressible vortical 
ow simulations by Steinho�
and co-workers [5-7]. In this method, the source
term added to the Navier-Stokes equations works as
it convects the discretization error back into the vortex
center and, thus, con�nes the vortex. The con�nement
adds acceleration in a direction that is normal to
the vorticity and to the gradient of vorticity vectors.
This has the e�ect of adding a velocity correction
that convects vorticity in the opposite direction to the
numerical di�usion [8] (for further discussion see [7]).
Such methodology has been successfully applied to
very di�erent types of 
ow�eld, from simple vortices
to complex rotor-fuselage interactions. This is done
using an extension of the method to general body
surfaces with simple Cartesian grids [9-11] and even
to massively separated 
ows.

There have been several attempts by Pevchin [12]
and Yee and Lee [13] to extend the vorticity con-
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�nement to compressible 
ows. But, the method
has been generalized to compressible 
ows by Hu
et al. [8] considering the corresponding source term
as a body force, for which a complementary term
must consistently be added to the energy equation,
due to the work done by this body force term. Hu
et al. [8] have worked mainly on uniform Cartesian
grids, for which the con�nement parameter could be
kept constant. However, in spite of the success of
the method with regard to its goals, the con�nement
term is proportional to an empirical parameter, such
as arti�cial viscosity for shock capturing, and the
in
uence of this parameter on the solution is also
questionable.

Murayama [14] attempted to use this type of
vorticity con�nement on an unstructured grid, leaving
the con�nement parameter constant. The results were
mixed. For some values of the con�nement parame-
ter, an improvement of results was observed. Other
values of the con�nement parameter lead to unrealistic
predictions. These results make it clear that, for non-
uniform grids, a general solution has to be found.
Fedkiw et al. [15] used vorticity con�nement for the
visual simulation of smoke on Cartesian grids, using
incompressible Navier-Stokes equations. They used an
explicit, linear dependence on the mesh size for the
con�nement parameter. Lohner and Yang [16] used
a general incompressible vorticity con�nement term
that has been derived using a dimensional analysis for
unstructured grids. The resulting vorticity con�nement
is a function of the local vorticity-based Reynolds
number, the local element size, the vorticity and the
gradient of the absolute value of the vorticity. Also,
Costes and Kowani [17] implemented an automatic
vorticity con�nement procedure, in order to conserve
vorticity in the resolution of the compressible Euler
equations. It is based on the cancellation of the leading
truncation error terms in the numerical solution of the
vorticity convection equation. The results obtained
so far indicate that this way of research is promising.
However, it is shown that, for �ne grids, a regulariza-
tion treatment must also be applied at the center of the
vortex, because of the vorticity con�nement singularity.

As pointed out in [16], a dimensional analysis
of the con�nement term shows that con�nement pa-
rameter (Ec) has the dimension of a velocity. This
means that, for a given grid and con�guration, a
proper choice of this parameter should be dependent
on the free stream conditions of the incoming 
ow-�eld.
Furthermore, any automatic tuning of this parameter
must conserve the same dimensions [17].

Consequently, the objective of this paper is the de-
velopment and application of the compressible vorticity
con�nement method in 2-D 
ows. New and general
formulations have been proposed for the compressible
con�nement parameter, which have the velocity di-

mension. The three new con�nement parameters are:
Functions of the spectral radii of the 
ux Jacobian
matrix (derived from the SCalar Dissipation Scheme),
the Jacobian matrix itself (derived from the MAtrix
Dissipation Scheme) and features of the CUSP (Con-
vective Upstream Split Pressure) dissipation scheme.

These are applied for convecting an isolated 2-D
vortex inside uniform and non-uniform Cartesian
meshes, also, a supersonic base 
ow and supersonic
shear layer. The results are compared with the Hu
et al. experimental and analytical data to show the
performance of the authors contributions.

GOVERNING EQUATIONS AND
COMPRESSIBLE VORTICITY
CONFINEMENT (CVC) FORMULATION

There have been several attempts to extend the vor-
ticity con�nement to compressible 
ows. The main
issue is concerning how to add the con�nement term
in a consistent manner within a conservation law
framework. Pevchin et al. [12] developed a complicated
formulation, based on 
ux splitting that was dependent
on grid orientation. Yee and Lee [13] attempted to
utilize the incompressible con�nement term into the
compressible momentum equations. Finally, Hu et
al. [8] noticed that the con�nement may be considered
to be a body force that can be added to the inte-
gral momentum equation and the rate of work done
by the body force added to the energy conservation
law. Considering the Euler equations in the Cartesian
coordinate:

Qt + fx + gy = S; (1)

where:
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2
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3
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2
664

�u

�u2 + P

�u�

u(e+ P )

3
775 ;

g =

2
664

�v

�u�

��2 + P

�(e+ P )

3
775 ; S =

2
664

0

�~fb :̂i

�~fb:ĵ
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Q is the vector of conserved variables, f and g are the

ux vectors and S is the vorticity con�nement vector.
The independent variables are time (t) and Cartesian
coordinates (x; y). �, u, v, e and P denote non-
dimensional density, Cartesian velocity components,
energy and pressure, respectively. ~fb is a body force per
unit mass, which serves to try to balance the numerical
di�usion inherently related to numerical discretization
and to conserve momentum in vortical regions:

~fb = �Ecn̂c � ~!;
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where:

n̂c = �
rj~!j

jrj~!jj
= �xs î+ �ysĵ;

~! = ~r� ~Q;

Ec is the con�nement parameter with the dimension
of velocity. Hu et al. [8] showed that this parameter
ranges from O(0.001) to O(0.1). Finally, the vortic-
ity con�nement term in a compressible 
ow can be
expressed, as follows:

S =

2
664

0
��Ec!z�ys
�Ec!z�xs

�Ec[u(�!z�ys) + �(!z�xs)]

3
775 : (2)

If Equation 1 is transformed to arbitrary curvilin-
ear coordinates, then, one obtains:

Q̂t + F̂� + Ĝ� = S; (3)

where:

Q̂ = J�1

2
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3
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and:

U = �xu+ �yv; V = �xu+ �yv;

where U and V are contravariant velocities written
without metric normalization and J�1 is the inverse
transformation Jacobian. Then, one obtains:

(J�1Q)t + F� +G� = S; (4)

with:

F = fy� � gx� ; G = gx� � fy�:

In a cell-centered �nite volume method, Equation 4 is
integrated over an elemental volume in the discretized
computational domain and J�1 is identi�ed as the
volume of the cell. Equation 4, assuming J�1 to be
independent of time, can be written, as follows:

J�1Qt +AQ� +BQ� = S; (5)

where A and B are the 
ux Jacobian matrices de�ned
by:

A =
@F

@Q
; B =

@G

@Q
;

and the details of A and B matrices are presented
in [18].

NUMERICAL FORMULATION

To advance the solution in time, the multi-stage scheme
is applied. A typical step of a Runge-Kutta (5-stages)
approximation to Equation 5 is:

Q(k)=Q(0)��k
�t

J�1
[D�F

(k�1)+D�G
(k�1)�S�AD];

(6)

where:

�k =

�
1

4
;
1

6
;
3

8
;
1

2
; 1

�
; (7)

D� and D� are spatial di�erencing operators and
AD is the arti�cial dissipation term. Three arti�cial
dissipation models have been used in this work, which
will be presented in the next section. The bracketed
superscript in Equation 6 refers to the stages of the
Runge-Kutta scheme. In addition, local time stepping
and implicit residual averaging are utilized to acceler-
ate convergence.

ARTIFICIAL DISSIPATION SCHEMES

The arti�cial dissipation models have been developed
to remove the spurious oscillations for the robustness
of stability and the fast convergence of solutions in
the steady-state aerodynamic sense. A combination
of second and fourth di�erences of the 
ow variables
is used to form the dissipation operator, AD. The
second di�erence terms are used to prevent oscillations
at shock waves, while the fourth di�erence terms are
important for stability and convergence toward the
steady state solution.

SCalar Dissipation Scheme (SCDS)

The basic elements of the SCDS model considered in
this paper were �rst introduced by Jameson, Schmidt
and Turkel [19] in conjunction with Runge-Kutta ex-
plicit schemes. This dissipation model has been used
by many investigators [20] to solve, numerically, the
Euler and Navier-Stokes equations for a wide range of

uid dynamic applications. In this section, the basic
model is brie
y reviewed.

Consider the dissipation model added to the right-
hand side of Equation 6, where the dissipation model
is divided into two terms in the � and � directions. The
two SCDS terms are written as:

AD = D̂� + D̂�; (8)

where D̂� and D̂� are the dissipation terms in the �

and � directions, respectively. The SCDS term in the
� direction is de�ned as:

D̂� =

�
d̂i+ 1

2
;j � d̂i� 1

2
;j

�
��

; (9)
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where the numerical dissipation 
ux is:

d̂i+ 1
2
;j = j�ji+ 1

2
;j

�
"
(2)

i+ 1
2
;j
(Qi+1;j �Qi;j)

�"
(4)

i+ 1
2
;j
(Qi+2;j�3Qi+1;j+3Qi;j�Qi�1;j)

�
;

(10)

where j�j is proportional to the largest eigenvalue of
the Jacobian matrix, which is called the spectral radii
of the Jacobian matrix. The absolute eigenvalue and
transformation Jacobian in the generalized coordinates
are, as follows:

j�ji+ 1
2
;j =

1

2
(j�ji+1;j + j�ji;j);

where:

j�ji;j = jq + c

q
a21 + a22j; (11)

and:

a1 = J�1�x; a2 = J�1�y ; q = a1u+ a2v;

(12)

and c is the speed of sound. The nonlinear dissipation

functions, "
(2)

i+ 1
2
;j
and "

(4)

i+ 1
2
;j
, in Equation 10 determine

the magnitudes of the second and fourth order dissipa-
tion terms, based on the change of the density gradient.
The nonlinear dissipation functions depend on 
ow and
are de�ned by Jameson et al. [19]. This model has an
excellent shock capturing property and gives su�cient
numerical stability to the central di�erence schemes.

MAtrix Dissipation Scheme (MADS)

In the standard MADS model of Swanson and
Turkel [21], the arti�cial dissipation 
ux is given by:

d̂i+ 1
2
;j = jAji+ 1

2
;j

�
"
(2)

i+ 1
2
;j
(Qi+1;j �Qi;j)

�"
(4)

i+ 1
2
;j
(Qi+2;j�3Qi+1;j+3Qi;j�Qi�1;j)

�
;

(13)

where A is the Jacobian matrix of the convective 
ux
in the i direction. There are also similar expressions
for the j direction. Let � be the diagonal matrix with
the eigenvalues of A along its diagonal:

� = diag(�1; �2; �3; �3); (14)

where:

�1 = q + c

q
a21 + a22; �2 = q � c

q
a21 + a22;

�3 = q; (15)

a1, a2 and q are de�ned like Equation 12. Then:

jAj = j�3jI +

�
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2
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�
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 � 1

c2
E1 +

1

a21 + a22
E2

�

+
j�1j � j�2j

2

 
1p

a21 + a22c

!
�[E3 + (
 � 1)E4];

(16)

where E1, E2, E3 and E4 are the 4 � 4 matrices,
the arrays of which are functions of the velocity
components, local kinetic energy, total enthalpy, a1, a2
and q. For more details of matrix jAj and factors "(2)

and "(4), see [21]. The disadvantage of MADS models
is that, in general, they increase the operation count for
processing mesh points by a factor of about 1.4 times
greater than that required by SCDS models.

Convective Upstream Split Pressure (CUSP)

This dissipation scheme was presented by Tatsumi et
al. [22]. It is a 
ux splitting and limiting technique,
which yields a one-point stationary shock capturing.
For simplicity, consider the one-dimensional form of
Equation 1, which can be expressed as:

Qt + fx = 0: (17)

This scheme is an intermediate type of scheme, which
can be formulated by de�ning the �rst order di�usive

ux as a combination of di�erences of the state and

ux vectors:

di+ 1
2
=

1

2
��
i+ 1

2

c(Qi+1 �Qi) +
1

2
�i+ 1

2
(fi+1 � fi):

(18)

Decomposition of the 
ux vector, f , yields:

f = uQ+ fp; (19)

where:

fp =

0
@ 0

P

uP

1
A : (20)

Then:

fi+1�fi=u(Qi+1 �Qi)+Q(ui+1�ui)+fpi+1�fpi ;
(21)

where u and Q are the arithmetic averages of ve-
locity and 
ow rate, respectively. If the convective
terms are separated by splitting the 
ux, according
to Equations 19 to 21, it will be called E-CUSP. For
further information about the total e�ective coe�cient
of convective di�usion (��c) and �, see [22].



Compressible Vorticity Con�nement 255

ANALYSIS OF CONFINEMENT
PARAMETER

As pointed out in the introduction, a dimensional
analysis of the con�nement term shows that the con-
�nement parameter has the dimension of velocity. This
means that, for a given grid and con�guration, a proper
choice of this parameter should be dependent on the
local stream conditions of the 
ow �eld and the mesh
cell size.

Reviewing all dissipation schemes, one can �nd
that all of them use Jacobian matrices or the cor-
responding eigenvalues as the scaling velocity. On
the other hand, the vorticity con�nement term is in
the form of anti-di�usion. As a result, here, three
con�nement parameters are introduced as the scaling
velocity, which have been extracted from these dissipa-
tion schemes.

SCalar Con�nement Parameter (SCCP)

Here, the con�nement parameter is derived from the
spectral radii of the 
ux Jacobian matrix. First, the
vorticity con�nement term is de�ned as:

S =

2
664

0
��Ecx!z�ys
�Ecy!z�xs

�[uEcx(�!z�ys) + �Ecy(!z�xs)]

3
775 ; (22)

where Ecx and Ecy are the functions of the spectral
radii of the 
ux Jacobian matrix. Ecx is de�ned as:

Ecx = "
j�ji;jp
a21 + a22

; (23)

where j�ji;j , a1 and a2 were de�ned in Equations 11
and 12. Substituting for a1 and a2 from the following
to Equations 23 and 11, an equation like Equation 23
for the y direction (Ecy) will be found:

a1 = J�1�x; a2 = J�1�y : (24)

One can see that Ecx and Ecy have the dimension of
velocity. Thus, the con�nement parameter implicitly
contains the grid sizes and 
uid properties as a scaling
factor.

MAtrix Con�nement Parameter (MACP)

Here, the con�nement parameter is derived from the

ux Jacobian matrix. The vorticity con�nement term
is de�ned as:

S = Sx + Sy; (25)

where:

Sx = jA0j

0
BB@

0

"�(n̂� ~!):̂i
0

"�(n̂� ~!):uî

1
CCA ;

Sy = jB0j

0
BB@

0
0

"�(n̂� ~!):ĵ

"�(n̂� ~!):vĵ

1
CCA ; (26)

and jA0j and jB0j are de�ned as:

jA0j =
jAjp
a21 + a22

; jB0j =
jBjp
a21 + a22

; (27)

where a1 and a2 are de�ned, based on Equation 12 for
jA0j and Equation 24 for jB0j.

Convective Upstream Split Pressure
Con�nement Parameter (CUCP)

An important property of the CUSP scheme can be
illustrated by introducing a Roe linearization and
rewriting the di�usive 
ux of Equation 18 as:

di+ 1
2
=

1

2

�
��cI + �Ai+ 1

2

�
(Qi+1 �Qi); (28)

where Ai+ 1
2
is an estimate of the Jacobian matrix, @f

@Q
,

obtained by Roe linearization of Equation 16, with the
condition that the following equation:

fi+1 � fi = Ai+ 1
2
(Qi+1 �Qi);

is exactly satis�ed. Therefore, by introducing j�j and
j�j as follows:

j�j =
1

2
(��cI + �jAj) ; j�j =

1

2
(��cI + �jBj) ;

(29)

the vorticity con�nement terms of Equation 25 are
de�ned as:

Sx = j�0j

0
BB@

0

"�(n̂� ~!):̂i
0

"�(n̂� ~!):uî

1
CCA ;

Sy = j�0j

0
BB@

0
0

"�(n̂� ~!):ĵ

"�(n̂� ~!):vĵ

1
CCA ; (30)

where j�0j and j�0j are de�ned as:

j�0j =
j�jp
a21 + a22

; j�0j =
j�jp
a21 + a22

: (31)

In all of the above equations, " (tuning constant) is a
non-dimensional constant and must be tuned for each
test case.
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RESULTS AND DISCUSSION

Three test cases are considered here to demonstrate the
application of the new variable con�nement parameters
(SCCP, MACP and CUCP). The calculations were per-
formed with the three dissipation schemes, once with
compressible vorticity con�nement and once without.

Vortex Moving in a Uniform Flow

As a basic test of the ability of the new con�nement
parameters, two cases of convecting concentrated vor-
tex, a single vortex moving in a uniform 
ow along a
coordinate direction and the same vortex convecting in
a uniform 
ow at an angle to x axis, were tested.

Vortex Moving in a Uniform Flow Along a

Coordinate Direction

A vortex moving with a uniform stream is tested
initially. The computational boundary is a square
domain of 1� 1 m2. Periodic boundary conditions are
set at all sides of the domain. The computed vortex,
then, passes through the grid and reappears on the
other side. The initial condition of the vortex is set
up, according to Povitsky and Ofengeim [23]. The
tangential velocity distribution is prescribed between
an outer radius, r = Ro, and a core radius, r = Rc.
For radius greater than Ro, the tangential velocity of
the vortex is set to zero. The tangential velocity of the
vortex can be expressed, as follows:

u�(r) =

(
Uc

r
Rc

; r < Rc

Ar + B
r
; Rc � r � Ro

where:

A = �
UcRc

R2
o �R2

c

; B = �
UcRcR

2
o

R2
o �R2

c

;

that results in u�(0) = 0, u�(Rc) = Uc and u�(Ro) = 0.
The velocity, u�, at Rc reaches Uc, which is the
maximum velocity magnitude of the whole domain and
is a parameter set before calculation.

The initial vortex is imposed on a uniform free
stream and the center of the vortex is located in
(0; 0) of the Cartesian coordinates. The calculation
were performed with Rc = 0:05 m, Ro = 10 Rc,
a1 = 347:2 m

sec , M1 = 0:5 and Uc = U1. In order
to investigate the e�ect of a non-uniform grid on the
solution, the grid was stretched non-uniformly in two
dimensions, similar to the grid described in [8]; the
resulting mesh for 100�100 grid points is shown in
Figure 1.

The calculation was performed with three dissi-
pation schemes, once with vorticity con�nement and
once without. The analytic solution for a compressible
vortex moving with a uniform freestream is discussed

Figure 1. Sample grid for calculation of a moving vortex
in a uniform compressible 
ow.

in [4]. The solution contains the well-known result that
the quantity, !

�
, of a vortex will be conserved as it

convects in a compressible, inviscid, adiabatic 
uid.
Contours of the initial !

�
distribution are pre-

sented in Figure 2. Figures 3 to 5 present the contours
of the quantity, !

�
, of the 
ow without con�nement,

after the vortex has passed through the grid ten
cycles and, approximately, backed to the center of the
computational domain. The calculations are for SCDS,
MADS and CUSP. The degree of dissipation can be
seen clearly in these �gures.

Figures 6 to 8 present the results of the same
calculations but with the vorticity con�nement using
SCCP, MACP and CUCP. These �gures are, essen-
tially, identical to each other; no dissipation is seen

Figure 2. Contours of the quantity !

�
of the vortex at the

beginning.
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Figure 3. Contours of the quantity !

�
of the vortex after

ten cycle - no CVC (SCDS).

Figure 4. Contours of the quantity !

�
of the vortex after

ten cycle - no CVC (MADS).

Figure 5. Contours of the quantity !

�
of the vortex after

ten cycle - no CVC (CUSP).

Figure 6. Contours of the quantity !

�
of the vortex after

ten cycle - CVC (SCCP).

Figure 7. Contours of the quantity !

�
of the vortex after

ten cycle - CVC (MACP).

Figure 8. Contours of the quantity !

�
of the vortex after

ten cycle - CVC (CUCP).
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in these �gures. The magnitude of " was set to 0.0025,
0.005 and 0.025 for the three con�nement methods of
SCCP, MACP and CUCP, respectively. It is observed
that the value of " for CUCP is the maximum and for
SCCP is the minimum. But, it is still time-consuming
to �nd " as in the original method (constant con�ne-
ment parameter). The properties of the introduced
schemes are such that the con�nement parameters are
functions of 
uid properties and mesh size at each
location and " is a non-dimensional parameter. It must
be mentioned that 30 contour levels were used to plot
all the Figures 3 to 8.

The pro�le of the quantity, !
�
, along a diameter

of the moving vortex is presented in Figure 9. The
solutions without con�nement seem to be the result
of a very di�usive 
ow with a viscosity even bigger
than the real 
uid viscosity. This quantity vanishes as
the vortex moves along with the uniform free stream,
because there is no \force" to balance the numerical
dissipation. An inviscid 
ow is, however, being solved
and no di�usive e�ects are expected. This means
that the vorticity should not have spread. Also, the
di�usive characteristics of the numerical solutions are
seen in Figures 3 to 5. On the other hand, the
solution with con�nement does not show the dissipative
behavior of the solution without con�nement, even
though the vortex moved for ten cycles and backed to,
about the original place. It is, approximately, close
to the analytical solution. From this fact, one may
conclude that the vorticity con�nement nearly cancels
most of the numerical dissipation errors, to conserve
the quantity, !

�
, of the vortex.

Finally, the calculations showed that, if a constant
con�nement parameter (Hu et al. con�nement, Equa-
tion 2) was used, Ec would have a value of 0.0025 (for
all dissipation schemes).

Figure 9. Pro�le of the quantity !

�
across the diameter of

the vortex.

Vortex Moving in a Uniform Flow at an Angle

to x Axis

In this case, the vortex mentioned above is imposed
on a uniform 
ow, moving at an angle of 35 degrees
with the x axis. The vortex center is located in (0,
0) of the Cartesian coordinates at the beginning. The
vortex and free stream conditions are the same as those
of the vortex in part A. A 200 � 200 uniform mesh
and 1300 time steps were used for this calculation.
Two solutions are presented, one without con�nement
(using the CUSP dissipation scheme) and one with
con�nement (the CUCP scheme).

Figure 10 shows the contours of the quantity, !
�
,

with 27 di�erent levels. The contours are plotted at
each 100 time-step intervals, making a total of 13 plots.
For the whole simulation, the vortex has traveled 168
and 117 cells in the x and y directions, respectively.
It can be seen that numerical di�usion results in an
extensive spreading of the vortex as time increases.

Results with the con�nement scheme (CUCP,
" = 0:025), at the same time steps, are presented in
Figure 11. The same contour levels as of Figure 10
were used for this �gure. Compared to Figure 10, no
extensive spreading of the vortex is seen in Figure 11.
The vortex center has moved 167 cells in the x direction
and 116 cells in the y direction, after application of
con�nement. Similar results can be obtained using two
other schemes (SCCP, MACP), which are not shown
here.

Supersonic Base Flow

In practical problems, the Reynolds numbers are very
high. Thus, the values of viscous terms in Navier-
Stokes equations are much smaller than those of the
convection terms. It was attempted to simulate the

Figure 10. Contours of the quantity !

�
of the vortex

moving in a uniform 
ow at an angle of 35 degree to the x

axis after 1300 time steps - no CVC (CUSP).
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Figure 11. Contours of the quantity !

�
of the vortex

moving in a uniform 
ow at an angle of 35 degree to the x

axis after 1300 time steps - CVC (CUCP).

problems mentioned above, using Euler equations.
However, the boundary layer near the wall could not be
ignored, because of its importance in vortex-dominant

ows. Therefore, no-slip conditions were used in all
the calculations to enforce the viscous 
ow boundary
conditions on the wall.

Hu [4] showed that the solution of Euler equations
for a 
ow over a 
at plate with Mach number of
M = 0.1 and Reynolds number of Re = 2 � 105,
results in a velocity pro�le similar to that of a laminar

ow, if a no-slip condition is used. The velocity
pro�le, however, becomes similar to that of a turbulent

ow (especially close to the wall), if the compressible
vorticity con�nement is applied. As a result, Hu [4]
stated that Euler equations with the use of CVC may
be used to model turbulent 
ow in the near wall region.
Therefore, using this approximate pro�le for modeling
the separated vortex from the base, which is strongly
dependent on the upstream-attached-
ow before the
trailing edge, is reasonable.

The second case is a supersonic axisymmetric base

ow. The near wake of a circular cylinder, aligned
with a uniform Mach 2.45, has been experimentally
investigated by Herrin and Dutton [24].

The non-uniform computational grid of 200� 100
is shown in Figure 12 (r � z plane). No penetration
condition was enforced at the solid walls, free-stream
conditions in the upstream of the base and the symme-
try condition at the symmetry plane.

The streamlines and pressure contours at the
base region are presented in Figures 13 and 14, which
show the primary vortex, expansion waves and recom-
pression region. The pressure reaches a minimum in
the core of the vortex. Figure 13 shows the results
without applying a vorticity con�nement, using the
CUSP dissipation scheme. Experimental results [24]

Figure 12. Grid over the base (r� z plane).

Figure 13. Streamlines and pressure contours at the base
region - no CVC (CUSP).

Figure 14. Streamlines and pressure contours at the base
region - CVC (CUCP).
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show that the reattachment point is about 2.65 times
the radius of the base. Without applying the vorticity
con�nement, the reattachment point is greater than 3.
The length of the reattachment point is about x = 3:08,
3.32 and 3.1 for SCDS, MADS and CUSP schemes,
respectively. Therefore, the dissipation of the vortex

ow is clearly seen in Figure 13. Figure 14 shows the
same computation results, but, with the con�nement
in e�ect (CUCP). The streamlines indicate practically
no degradation of the vortex. Values of " are 0.03,
0.05 and 0.07 for SCCP, MACP and CUCP schemes,
respectively. It is seen that the CUCP parameter has
the highest value and the SCCP parameter has the
least.

The same calculation was done with the constant
con�nement parameter (Hu et al. scheme, Equation 2).
It was obtained that Ec would have a value of 0.03.
These �gures only show the qualitative information,
such as shock, vortex, and vortex/shock interactions.
The pressure coe�cient pro�le on the surface of the
base and its comparison with experimental results will
give the quantitative information.

Pressure coe�cient distribution at the base region
is shown in Figure 15. The results are over-estimated
near the centerline (r = 0) and are under-estimated
near the base top (r = 1), for no con�nement calcu-
lations. This trend is also seen for SCCP and CUCP.
However, SCCP and CUCP results are closer to the
experimental results of Herrin and Dutton [24], near
the centerline. The main discrepancy occurs near the
base top portion. Good results in this portion are
obtained using the SCDS dissipation scheme, without
CVC, SCCP and CUCP schemes. Unlike the good
performance of the CUCP scheme, in general, it in-
creases the operation count for processing mesh points
greater than that required by the SCCP scheme. The
same increase is seen using the MACP scheme. The

Figure 15. Pressure coe�cient at the base region.

reason is related to the matrix product used in these
schemes.

Supersonic Shear Layer

An inviscid supersonic shear layer 
ow is formed by two
parallel streams, one at Mach numberM = 2:4 and the
other at M = 2:9. The two streams 
ow at an angle
of 30 degrees relative to the horizontal grid line. The
computational grid is a 100 � 100 uniform Cartesian
grid. The three dissipation schemes were used with
and without con�nement.

Figures 16 and 17 show the Mach number con-
tours of the 
ow solution after 1000 time steps. Fig-
ure 16 presents the result of the calculation without the
vorticity con�nement. The dissipation scheme used for
this calculation is scalar. The dissipation of the shear

Figure 16. The mach contours of inviscid supersonic
shear layer - no CVC (SCDS).

Figure 17. The mach contours of inviscid supersonic
shear layer - CVC (SCCP).
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layer is clear from the �gure. The same results are
observed for the other dissipation schemes. Figure 17
shows the same computational result, but, using the
SCCP method. No degradation of the shear layer is
seen in this �gure with application of the new vorticity
con�nement. The same results can be obtained with
the other vorticity con�nements, but they are not
shown here.

Figure 18 presents the Mach number pro�le com-
puted without con�nement (using SCDS and CUSP)
and with con�nement (using SCCP, MACP and
CUCP) along a cutting line parallel to the vertical axis
(x = 0:8). From the Mach pro�les, it is seen that, with-
out con�nement, the solution is signi�cantly degraded.
Applying CUCP will sharpen the discontinuity better
than the other schemes. However, SCDS and MADS
(not shown here) eventually develop a little overshoot
after the shear layer in the pro�le. The " values of 0.01,
0.015 and 0.025 were used for the SCCP, MACP and
CUCP schemes, respectively. If a constant con�nement
parameter (Hu et al. scheme [8]) was used, Ec would
have a value of 0.01.

Comparing the parameter, ", for the new con-
�nements with the constant con�nement presented
by Hu et al. [8], for the above three cases, shows
that, when variable con�nement parameters (SCCP,
MACP and CUCP) are used, the parameter " is
equal (for SCCP) or larger (for MACP and CUCP)
than the equivalent value of the constant con�nement
(Ec). That is because the new con�nement parameters
implicitly contain the e�ects of grid sizes and 
ow�eld
properties as the scaling factors. On the other hand,
based on the authors experiences, the value of "

ranges at a smaller limit than the constant con�nement
parameter for three cases, especially for the CUCP
scheme.

Figure 18. The mach pro�le along a cut line that
parallels to the vertical axis.

SUMMARY AND CONCLUSION

In this paper, the compressible vorticity con�nement
of Hu et al. [8] has been successfully developed. Three
variable con�nement parameters, which have velocity
dimension, were de�ned, based on three arti�cial dissi-
pation schemes. The resulting con�nement parameters
are functions of the spectral radii of the Jacobian
matrices and the Jacobian matrices themselves. So,
the con�nement parameter implicitly contains the grid
size and other local 
uid properties.

Preliminary results for the subsonic moving vor-
tices showed that the new con�nement parameters
allow the capture of vortical layers that e�ectively do
not decay in time, similar to the con�nement of Hu
et al. [8]. Calculation of the supersonic base 
ow
and supersonic shear layer showed good agreement
with experimental and analytical data for the variable
CUSP con�nement parameter (CUCP). The matrix
and CUSP con�nement parameters are computation-
ally expensive, while the scalar con�nement parameter
is economical. However, the same problem for tuning
the con�nement parameter still exists.

Finally, when variable con�nement parameters
are used, the tuning constant is equal to or larger than,
the equivalent value of the constant con�nement (Hu
et al. [8]). This means that this value ranges within
a smaller limit than that of the constant con�nement
parameter, especially for the CUCP scheme.
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