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In the present paper, a mixed, shear-
exural (VM) hinge element, with zero or nonzero length,
for using in frames, has been introduced, where shear-
exural interaction has been considered.
The element has the capability of modeling 
exural yielding, shear yielding and their interaction
in frames, subjected to all kinds of monotonic or cyclic loadings. The inelastic shear and 
exural
deformations and tangential sti�nesses are considered by using the multi-surfaces approach with
dissimilar yield surfaces and by a sti�ness matrix with nonzero o�-diagonal components. A new
kinematics hardening rule and, also, a new non-associated 
ow rule are introduced. The mixed
hinge element can be used in the arbitrary location of beam-column elements, where shear e�ect
is signi�cant. The model is examined for some link beams in eccentrically braced steel frames
(EBFs) and it is shown that the analytical and experimental results have excellent agreement.
Some reduced web section beams are investigated, too. It is shown that the mixed hinge results
are in good agreement with the �nite element results.

INTRODUCTION

Inelastic analysis and design of structures have made
great progress, due to the rapid development of com-
puter hardware and software in recent decades [1-
4]. The common approach for representing inelastic
behavior in a beam-column element is to adopt inelastic
hinge formation. A generalized plastic hinge, with zero
length, accounting for the interaction of axial, torsional
and biaxial bending moments, based on the multi-
surfaces plasticity concept, was presented by Powell
and Chen [5]. Krenk et al. [6], by using a piecewise lin-
earized yield surface and a linear kinematic hardening
rule for concentrated hinges, developed a formulation
for displacement discontinuities with extension and
rotation components. A method for modeling the mem-
bers with yielding under combined 
exure and axial
forces in steel frames subjected to earthquake ground
motion was presented by Kim and Engelhardt [7]. This
method had the capability of modeling plastic axial
deformation and changes in axial sti�ness, based on
isotropic and kinematic strain-hardening, de�ned in
axial-
exural space. The multi-surface yield concept
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was used in all the works mentioned above. Liew et
al. [8-10] used the two-surface plasticity concept for
considering the inelastic interaction between axial force
and bending moment, too. The e�ect of shear force
was ignored in all of the above research. El-Tawil
and Deierlein [11] investigated two-surface plasticity
models in stress-resultant space, based on �ber element
analysis. Their research was conducted in an axial
force-
exural moment space and the shear force e�ect
was ignored, too, since the �ber element approach is
based on a uniaxial stress-strain relationship and the
shear force e�ect is not considered in this approach.

In some cases, shear yielding or combined shear-

exural yielding is the governing behavioral mode.
For steel beam sections, plastic moment capacity and

exural rigidity are a�ected by shear force [1]. Ricles
and Popov [12] developed a formulation for modeling
links in eccentrically braced steel frames (EBFs), based
on the multi-surface plasticity concept. The link beam
has a nonlinear hinge at each end. Each hinge consists
of uncoupled shear and 
exural nonlinear subhinges.
Flexural-shear interaction is an important issue in
short concrete beams and columns, too. Ricles et
al. [13] presented a stress resultant plasticity-based
formulation with shear failure criteria and post-shear
failure e�ects, for modeling the response of nonductile
reinforced concrete bridge columns subjected to biaxial
seismic loading. Kinematic strain hardening and the
degradation of elastic unloading sti�ness under a cyclic
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load reversal for both shear and 
exural e�ects, were
accounted for by using an uncoupled shear-
exural
hinge approach. A �nite element method could also
be used for modeling shear-
exural inelastic zones. In
frame analysis, using this method for the modeling of
inelastic zones takes too much time and is not applica-
ble, practically. Saritas and Filippou [14] investigated
the shear-
exural interaction in link beams by using a
displacement �eld, based on Timoshinko's theory and
the integration of biaxial stress-strain relations over
several control sections along the beams. Each control
section subdivided into several layers. This is a general
method for considering the axial, shear and 
exural
interaction in frames. Although the predicted behavior,
by using this method, shows good accuracy, because of
the need for integration at several points, it takes too
much time, the same as in the �nite element method.

In the present paper, a mixed VM hinge element,
with zero or nonzero length, for using in frames, has
been introduced, where shear-
exural interaction has
been considered. The mixed hinge element has the
capability of modeling 
exural yielding, shear yielding,
as well as combined shear-
exural yielding. The
multi surface concept, with dissimilar yield surfaces
and o� diagonal components in 
exibility matrixes,
is used. Elastic and inelastic shear distortion and

exural rotation are considered. The applicability of
the proposed mixed hinge element, for link beams in
Eccentrically Braced Frames (EBFs) and reduced web
section beams in shear-yielding moment-resistant steel
frames, is investigated.

DESCRIPTION OF MIXED HINGE

ELEMENT

The introduced mixed hinge element includes one inner
inelastic combined shear-
exural subhinge with zero
length and two rigid parts with zero or nonzero lengths
on two sides. Geometrical presentation of this element
has been shown in Figure 1, where i and j are the outer
nodes and h is the inner subhinge. The inner subhinge
has an arbitrary location. The lengths of the two rigid
parts are Li and Lj , and L = Li+Lj is the total length
of the element. The inelastic zones in the frames could

Figure 1. Con�gurations of the mixed hinge element
with a combined 
exural-shear subhinge at h.

be modeled by this element. The properties of the
mixed hinge element are de�ned, such that the relative
deformations between the two ends should be equal to
the relative deformations between the two ends of the
inelastic zone, in real condition. The hinge element will
be more representative of the inelastic zone if one takes
L as being equal to the length of the inelastic zone.

ELEMENT'S STIFFNESS MATRIX

The mixed hinge element has two end nodes and, in
a two-dimensional space, has six degrees of freedom.
For de�nition of these degrees of freedom, a local
coordinate system dependent on the element is used.
If the element's end forces and displacements are
described as P and U, respectively, it can be written,
as follows:

P =
�
Pi Pj

�T
; (1)

U =
�
Ui Uj

�T
; (2)

where, Pi, Pj , Ui and Uj are nodal forces and
displacements at i and j, respectively (see Figure 2).
If the element's internal forces and deformations in
the inner subhinge node are shown as Ph and Uh,
respectively (see Figure 3), then, one could write:

P = APh; (3)

Uh = A
TU; (4)

where, A is the transformation matrix and its compo-
nents are dependent on lengths of rigid parts of the
element. It is assumed that no loads and masses are
assigned to the subhinge and to the rigid parts, except
at the end nodes. It is noted that the deformations are
assumed to be small and, then, the initial con�guration

Figure 2. The mixed hinge element's end forces and
displacements.
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Figure 3. The mixed hinge element's internal forces and
deformations.

is used for equilibrium and compatibility considera-
tions. Figure 3 presents the initial and deformed
con�guration of the mixed hinge element.

If the rates of forces and deformations in the
element's inner subhinge are shown as _Ph and _Uh,
respectively, then, one could write:

_Ph = Kh
_Uh; (5)

_Uh = Fh _Ph; (6)

where, Kh and Fh are the tangential sti�ness and

exibility matrixes of the subhinge, respectively. Since
all of the degrees of freedom in the inner subhinge
are independent of each other, both Kh and Fh are
invertible and inverse to each other.

From Equations 3 to 5, it can be resulted:

_P = A _Ph = AKh
_Uh = AKhA

T _U; (7)

where, _P and _U are the element's rate of forces and
deformations, respectively. Therefore, for the mixed
hinge element sti�ness, one could reach:

K = AKhA
T = AF�1h A

T ; (8)

where, K is the element's sti�ness matrix and so:

_P =K _U: (9)

INNER SUBHINGE STIFFNESS AND

LOADING-UNLOADING CRITERIA

The components of elastic-plastic tangential sti�ness
or 
exibility matrixes may depend on applied loads or
deformations and loading history. The present paper
focuses on shear-
exural interaction and ignores the
e�ects of axial force in nonlinear formulation. Thus,
the components corresponding to the axial deformation
in the sti�ness or 
exibility matrix remain elastic and

constant. By assuming rate independency, in a two
dimensional space, Equation 5 can be written as:

8<
:

_Nh

_Vh
_Mh

9=
; =

2
66664

dNh

duh
0 0

0 @Vh
@�h

@Vh
@�h

0 @Mh

@�h

@Mh

@�h

3
77775

8<
:
_uh
_�h
_�h

9=
; : (10)

The components of the tangential sti�ness matrix, Kh,
are not de�ned directly. By calculating the inner
subhinge's tangential 
exibility matrix, Fh, and then
inversing it, the tangential sti�ness matrix, Kh, is ob-
tained. For small deformation, Fh can be decomposed
as:

Fh = F
e
h + F

p
h; (11)

where, Feh and Fph are the inner subhinge's elastic and
plastic tangential 
exibility matrixes, respectively. The
results of experimental studies or numerical analyses of
any kind of real hinge zone can be used for determina-
tion of Fph. In some studies [5-13], associated 
ow rule
has been used for the calculation of Fph, as follows:

F
p
h =

nnT

nTKpn
; (12)

where, n is the outward normal unit vector from
the yield surface at the point of action and Kp is a
diagonal plastic sti�ness matrix from the individual
action-deformation relationship for the inner subhinge,
as follows:

Kp =

2
40 0 0
0 Kp� 0
0 0 Kpm

3
5 : (13)

By using Equation 12, 
ow rule will stay associated
and so the plastic deformation vector will always be
normal to the yield surface. In the work of Ricles
and Popov [12], where shear-
exural interaction was
studied, it has been assumed that yield surfaces are
rectangular. As shown in Figure 4, by using the
associated 
ow rule, at any point of line AB, Fph is,
as follows:

F
p
h =

2
40 0 0
0 0 0
0 0 1=Kpm

3
5 : (14)

And, at any point of line CD, one has:

F
p
h =

2
40 0 0
0 1=Kp� 0
0 0 0

3
5 : (15)

So, for the two close points of B and C of which both
are very close to the rectangular corner, two quite
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Figure 4. Rectangular yield surface in the shear-
exural
space.

di�erent plastic deformations will be resulted. In the
present paper, instead of using Equation 12, a di�erent
de�nition for Fph is used, as follows:

F
p
h =m2

VF
p
V +m2

MF
p
M ; (16)

in which F
p
V and F

p
M are the 
exibility matrixes

related to the pure shear and the pure 
exural loadings,
respectively. mV and mM are the components of m
vector in VM space, which is the unit location vector of
the action point. As shown in Figure 4, for the points
close to the corner, m, Fph and plastic deformations
vary smoothly. With this de�nition, the 
ow rule will
not be associated.

In some non-associated cases, the loading-
unloading criteria may fail to di�erentiate between
plastic 
ow and elastic unloading. To overcome this
complexity, the loading-unloading criteria need to be
de�ned more precisely. Suppose the action point lies on
a yield surface and the deformation increment is given
as _Uh. First, by using Kh = (Feh)

�1, the action rate,
_Ph, is predicted. If �1 = n

T _Ph < 0, the unloading
condition exists. For corner points, the unloading
condition for both nB and nC should be satis�ed. If
�1 � 0, by calculating Kh = (Feh + Fph)

�1, the new

action rate, _Ph, is obtained. With the new _Ph, if
�2 = nT _Ph > 0, the plastic loading condition will
govern. For corner points, the plastic loading condition
needs for only one of nB or nC to be satis�ed. If �2 � 0,
the sti�ness matrix will be adjusted to:

Kh = (Feh + F
p
h)
�1 �

�2
�1

(Feh)
�1: (17)

By using the adjusted sti�ness and calculating the new
action rate, _Ph, the normality condition, nT _Ph = 0,
will result and the natural loading condition will occur.
nB and nC are the unit normal vectors, at points B
and C, which are very close to the corner but on two
di�erent surfaces (see Figure 4).

YIELD SURFACES

For considering the interaction between shear force and

exure, the multi surface concept in shear-
exural,
VM space, is used (see Figure 5). This concept,
which was originally de�ned in stress space [15,16],
was adapted with some modi�cations for the resultant
forces space [5-13]. Some of the important aspects and
basic assumptions of this concept are, as follows:

1. The yield surfaces are convex;

2. The yield surfaces can be changed in size and
translated, but have to be tangential with each
other and cannot be intersected;

3. If the action point is internal of the initial yield
surface, the behavior will be elastic and, if on each
of the surfaces, the behavior will be elastoplastic;

4. In tangency of several yield surfaces, the outer
surface properties de�ne the current behavior.

Similarity of yield surfaces is a main assumption in
most works, except in some recent studies [12]. The
similarity assumption has been used to have parallel
directions for the corresponding points on the yield
surfaces and, as a result, when the yield surfaces
closely approach each other, they will not intersect and,
asymptotically, will be tangential to each other. If it is
assumed, in shear-
exural space, that yield surface, i,
is similar to yield surface, j, then, one will have:

Vyi
Vyj

=
Myi

Myj

; (18)

where, Vyi, Vyj , Myi and Myj are the points on i and
j yield surfaces for the pure shear and bending loading
(see Figure 5). This is not a realistic assumption,
generally.

Figure 5. Typical yield surfaces in the multi-surfaces
model.
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Ricles and Popov [12] overcame this problem
by choosing a rectangular yield surface with di�erent
ratios of length to width, but, it is noted that, with
the use of rectangular yield surfaces, the interaction
of shear-bending is ignored, practically. In the present
research, by considering piecewise dissimilar yield sur-
faces, as shown in Figure 6, the above shortcoming
is resolved and shear-
exural interaction is considered,
more realistically. The yield surfaces may have polyg-
onal shapes. For preventing the intersection of yield
surfaces, the corresponding sides of all yield surfaces
should be parallel to each other and the length of
any side of any yield surface should be smaller than
the length of the corresponding side of the outer yield
surface.

HARDENING RULE

The hardening rule de�nes the manner by which the
yield surface changes. For all of the surfaces, trans-
lation (kinematic hardening) and, also, change in size
(isotropic hardening), are permitted, except for the last
yield surface. The last yield surface is assumed to
have a change in size, only because the �nal plastic
capacity of a section is constant. The same as in
some recent works [5-13], the element formulation is
based on combined kinematic and isotropic hardening
for the shear force, and only kinematic hardening for

exure. On this basis, the ith yield function is written,
as follows:

�i(Ph ��i; Hi) = 0; (19)

where, Ph is the action vector of the subhinge. �i and
Hi are the ith yield function center and its expansion
parameter, respectively.

For developing the shear isotropic hardening, the

Figure 6. Typical piecewise dissimilar yield surfaces used
for the mixed hinge element.

following is adopted [17]:

Vyie = HiVyi; (20)

where, Vyi and Vyie are the initial and developed values
of the shear force at ith yielding, respectively. Hi is
written as:

Hi = 1 + C1[1� C2 exp(�vhp)]; (21)

where:

vhp =

Z
jdvphj ; (22)

and C1 and C2 are material constants.
Various kinematic hardening rules were used in

most recent works [7,12,13]. In this paper, a new
kinematic hardening rule is introduced. As seen in
Figure 7, it is assumed that the action location is on the
ith yield surface and plastic loading is occurring. The
rate of the ith yield surface translation, _�i, is assumed
as being:

_�i = (Phi+1 �Phi) _�; (23)

where, Phi+1 is the intersection point between the
direction of the action rate, _Ph, and the (i+1)th yield
surface, and Phi is the conjugate point of Phi+1 on
the ith yield surface. By this de�nition, when the
action point, Ph, approaches closer to the (i + 1)th
yield surface, the ith yield surface moves, such that
the two points on the ith yield surface, Phi and Ph,
approach closer to each other and coincide with Phi+1,
asymptotically. It shows that the inner moving yield
surface may be tangential to the outer yield surface at
the contact point and they never intersect.

To calculate _�, the plastic loading condition is
used:

_�i = 0: (24)

Figure 7. Action point and corresponding points on two
adjacent yield surfaces.
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Hence:

@�i
@Ph

_Ph +
@�i
@�i

_�i +
@�i
@Hi

_Hi = 0: (25)

And, since one has:

@�i
@Ph

= �
@�i
@�i

; (26)

so, Equation 25 can be written as:

@�i
@Ph

_Ph =
@�i
@Ph

_�i �
@�i
@Hi

_Hi: (27)

After pre-multiplying both sides of Equation 23 by
@�i
@Ph

, one reaches the following:

@�i
@Ph

_�i =
@�i
@Ph

(Phi+1 �Phi) _�: (28)

Comparing the last two equations results in the follow-
ing:

@�i
@Ph

_Ph =
@�i
@Ph

(Phi+1 �Phi) _��
@�i
@Hi

_Hi; (29)

or:

_� =

@�i
@Ph

_Ph +
@�i
@Hi

_Hi

@�i
@Ph

(Phi+1 �Phi)
: (30)

By substituting Equation 30 in Equation 23, _�i can be
determined, as follows:

_�i =

@�i
@Ph

_Ph +
@�i
@Hi

_Hi

@�i
@Ph

(Phi+1 �Phi)
(Phi+1 �Phi); (31)

_�i is the parameter of the translation criteria for the
ith yield surface, due to loading.

COMPARISON WITH SOME EXISTING

TEST RESULTS

In this part, the capability of the proposed mixed hinge
element for link beams in EBFs is investigated. For the
�rst example, the medium link beam tested by Kasai
and Popov [18] and analyzed by Ricles and Popov [12],
is investigated. The link element consists of a W8� 10
link beam, with a length of L = 368 mm. The shear
capacity of the element's section is Vp = 205:5 kN and
the 
exural capacity is Mp = 56:3 kN-m. The element
was subjected to cyclically symmetric deformations.
Regarding the end conditions of the element in the
laboratory, the sti�ness of the right end was more than
that of the left. So, shear and 
exural yielding in the
element has been started from the right end with a
redistribution of 
exural end moments during yielding.
For modeling by the mixed hinge element, the location

of the inner subhinge is assumed to be at the right
end (Li = L, Lj = 0). For C1 and C2 parameters of
Equation 21, based on regression analysis, the values
of 0.8 and 10 were proposed, respectively [17]. In the
present study, with some trial, the values of 0.35 and
15 are used for C1 and C2, respectively. The yield
surfaces used for this example have been shown in
Figure 8. These shapes, chosen for yield surface, are
based on a set of experimental results presented by
Kasai and Popov [18]. The 
exibility matrix for the
inner subhinge is assumed to be as follows:

Fh =

2
666664

L
EA

0 0

0 1

k1

L3

3EI
+ 1

k2

L
GAs

1

k3

L2

2EI

0 1

k3

L2

2EI
1

k4

L
EI

3
777775
; (32)

where, E and G are Young's modulus and the modulus
of rigidity of the section material and A, I and As
are area, moment of inertia and shear area of the link
section, respectively. k1, k2, k3 and k4 in the above
matrix, are the constants which represent the sti�ness
ratio between each two yield surfaces for two conditions
of pure shear and bending loading. In the mentioned
works [12,17], the sti�ness ratios between each two
yield points in the shear-de
ection or 
exural-rotation
diagrams, were assumed to be 0.03, 0.015 and 0.002,
as seen in Figure 9. In the present work, regarding
the di�erence between the failure modes of pure shear
and 
exural loading and with some trial, the k1, k2, k3
and k4 ratios have been selected, as shown in Tables 1
and 2. The experimental [18] and analytical results are
compared in Figure 10, where, horizontal axes (Dis.)
indicate the relative shear deformation between the two
ends of the link beam. As shown, the mixed hinge

Figure 8. Yield surfaces of mixed hinge element used for
the link elements.
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Figure 9. Typical multilinear load-deformation relation.

Figure 10. Experimental measurements and analytical
results of the medium length link beam.

results are in good agreement with the test results.
The manner of expansion and translation of yield
surfaces in the mixed hinge are shown in Figure 11.
As seen, yielding reached the shear-
exural interaction
zone, �rstly. Then, the behavior of the element was
controlled by the 
exural capacity of the element.

For the second example, the shortest link element

Table 1. Constants of 
exibility matrixes for pure shear
loading of the link beams.

Between

Yield Surfaces
k1 k2 k3 k4

0 and 1 0.060 0.060 0.060 0.060

1 and 2 0.030 0.030 0.030 0.030

2 and 3 0.010 0.010 0.010 0.010

Table 2. Constants of 
exibility matrixes for pure

exural loading of the link beams.

Between

Yield Surfaces
k1 k2 k3 k4

0 and 1 0.030 0.300 0.030 0.030

1 and 2 0.015 0.150 0.015 0.015

2 and 3 0.002 0.020 0.002 0.002

tested by Kasai and Popov [18] is investigated. The
length of this element is L = 292 mm and its other
con�gurations are the same as in the foregoing example.
The failure mode of this element is di�erent and shear
yielding controlled the behavior of the element. All of
the parameters used for modeling by the mixed hinge
element are the same as in the foregoing example. The
experimental [18] and analytical results are compared
in Figure 12, which shows that the analytical and
experimental results are in excellent agreement.

Although the length and the failure modes of
the two previous examples are di�erent, the developed
mixed hinge element explained the behavior of both
links, with acceptable accuracy.

Figure 11. The yield surfaces expansion and translation
sequences of the medium length link beam.
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Figure 12. Experimental measurements and analytical
results of the short length link beam.

APPLICATION OF THE MODEL ON

REDUCED WEB SECTION BEAMS

Reduced web section beams in shear-yielding moment-
resistant steel frames have been investigated re-
cently [19]. These beams are used in steel frames
for earthquake energy dissipation by shear yielding
of their reduced webs. In this part, the modeling of
the reduced web zones of these beams is examined by
using the mixed VM hinge element. Three reduced
web section beams, with equal sections but di�erent
span lengths, as shown in Figure 13, are investigated.
The beams consist of W21 � 68 (A = 13131 mm2,
I = 625770000 mm4 and As = 5900 mm2), with span
lengths of 2520, 3780 and 6720 mm and two circular
holes at the ends. The diameter of each hole is 420 mm
and its center is located 630 mm from the closer end.
Multi-linear kinematic hardening plasticity is assumed

Figure 13. Geometrical con�guration of the reduced web
section beams.

for the material of the beams, with Fy = 360 MPa,
Fu = 500 MPa, E = 200 GPa, H = 0:005E = 1 GPa
and � = 0:3. Where Fy and Fu are the yield and
ultimate stress, E and H are the initial and post yield
modulus of elasticity and � is the Poisson ratio. All
of the beams are subjected to cyclically symmetric
relative displacements between two ends, as shown in
Figure 14. The analysis is done statically and rota-
tional freedom at both ends is prevented. The beams
are analyzed with a �nite element program at the �rst
stage. In these analyses, eight-node solid elements with
nonlinear material behavior, in accordance with von-
Mises criteria, are used. Regarding beam symmetry,
half the beams are modeled. The maximum element
dimension is 50 mm. The beams are reanalyzed by
using the proposed model at the second stage. In these
analyses the two mixed hinge elements, with a length
of L = 1260 mm, are used at both ends of the beams.
Location of the subhinge is assumed to be in the middle
of the hinge element (Li = Lj = 630 mm), coincident
to the center of the hole, as shown in Figure 15.
The hinge element, analyzed between the two for pure
shear and pure 
exural, separately, by using the �nite
element method and the mixed hinge element property,
is obtained. The resulted yield surfaces are shown in
Figure 16. The inner subhinge 
exibility matrixes in

Figure 14. Displacement history applied to the reduced
web section beams.
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Figure 15. Modeling of the reduced web section beams
with a beam and two mixed hinge elements.

Figure 16. Yield surfaces used in the mixed hinge
element for modeling of the reduced web section beams.

consecutive yield surfaces are assumed to be, as follows:

Fh =

2
41 0 0
0 1 �L=2
0 0 1

3
5

2
666664

1

r0

L
EA

0 0

0 1

k1

1

r1

L3

3EI
+ 1

k2

1

r2

L
GAs

1

k3

1

r3

L2

2EI

0 1

k3

1

r3

L2

2EI
1

k4

1

r4

L
EI

3
777775

2
41 0 0
0 1 0
0 �L=2 1

3
5 :

(33)

The k1, k2, k3 and k4 hardening coe�cients are
selected, as seen in Table 3 and equivalent e�ective sti�-
ness factors, obtained from the �nite element analysis,
are r0 = 0:883, r1 = 0:983, r2 = 0:592, r3 = 0:977
and r4 = 0:977. Since isotropic hardening is ignored,
then, one has C1 = C2 = 0 (Equation 21). The �nite
element model and the mixed hinge element results are
compared in Figures 17 to 19. As shown, the mixed
hinge results are in fairly suitable agreement with the
�nite element results. The manner of translation of
yield surfaces in the mixed hinge modeling is shown in
Figures 20 to 22. In these �gures, shear and 
exural

Table 3. Constants of 
exibility matrixes for pure shear
and pure 
exural loadings of the reduced web section
beams.

Between

Yield Surfaces
Pure Shear Pure Flexural

0 and 1 0.300 0.333

1 and 2 0.038 0.033

2 and 3 0.005 0.004

Figure 17. The comparison between �nite element
analysis and mixed hinge element results of the reduced
web section beam with span of S = 2520 mm.

moment are the internal forces in the location of the
inner subhinge (hole center), and displacement is the
relative transverse displacements between the two ends
of the beam. As shown in the �rst model, the shear ca-
pacity is governed and, in the third model, the 
exural
capacity controls the behavior of the beam. However,
in the second beam, the action point is located at the
shear-
exural interaction zone. Although, in the three
beams, the failure modes are di�erent, the results of
the presented mixed hinge element modeling have good
accuracy.

It is observed that using an octahedral yield
surface instead of a rectangular yield surface is more
e�cient, especially for the reduced web section beam
with a medium span (S = 3780 mm), where the action
point is located on the oblique line of the octahedral
yield surface (see Figure 21). In Figure 23, the results
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Figure 18. The comparison between �nite element
analysis and mixed hinge element results of the reduced
web section beam with span of S = 3780 mm.

Figure 19. Shear-displacement and moment-
displacement comparison between �nite element analysis
and mixed hinge element results of the reduced web
section beam with length S = 6720 mm.

Figure 20. Translation history of yield surfaces for the
mixed hinge element of the reduced web section beam
with span of S = 2520 mm.

Figure 21. Translation history of yield surfaces for the
mixed hinge element of the reduced web section beam
with span of S = 3780 mm.

of the reduced web section beam with medium span,
using octahedral and rectangular yield surfaces, are
compared with the �nite element result. As seen, the
octahedral yield surface model result is more realistic
and closer to the �nite element result.

The requirement of using the proposed element,
considering shear-
exural interaction, is clari�ed in
Figure 24. In this �gure, the 
exural moment at the
inner subhinge, the center of the web hole, is presented
against the monotonic rotation of the inner subhinge
and pure 
exural loading is compared with shear-
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Figure 22. Translation history of yield surfaces for the
mixed hinge element of the reduced web section beam
with span of S = 6720 mm.

Figure 23. Comparison of the �nite element analysis
(solid line) with the mixed hinge element analyses using
the octahedral yield surfaces (dot line) and the
rectangular yield surfaces (dashed line).

Figure 24. Shear force e�ect on moment-rotation
relationship for the three reduced web section beams with
di�erent spans.


exural loading in three reduced web section beams. It
is observed that the pure 
exural loading result is very
di�erent from the other cases and the e�ect of shear
force on the reduction of the 
exural capacity of the
element increases by reducing the beam span length.

CONCLUSIONS

In this paper, a new shear-
exural mixed hinge element
was developed for consideration of the interaction be-
tween internal forces, for two dimensional frame anal-
yses. The hinge element could have a nonzero length
to model plastic zones in the beams. A multi-surfaces
concept was used for the modeling of the mixed hinge
element, by proposing dissimilar yield surfaces and
suggesting o�-diagonal members in 
exibility matrixes.
A new procedure for plastic loading on yield surfaces
suggested insuring a smooth variation of the hinge

exibility matrix. Also, a new kinematic hardening
rule was introduced to prevent any intersection of the
dissimilar yield surfaces. The mixed hinge element was
examined for some link beams in EBFs and reduced
web section beams in shear-yielding moment-resistant
steel frames. The proposed analytical results were
compared with existing experimental results (for link
beams) and �nite element results (for reduced web
section beams) and close agreements were observed.
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