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Planar Anisotropic Sheet Metal
by the Finite Element Method
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planar anisotropy during some of the sheet metal forming processes are
2nt method. Large deformation theory is applied and a rigid nonlinear
med. The virtual work principle is used and Lagrangian strains are
n of effective strain increment. Hill theory is used for modeling of
on of principal directions of anisotropy, due to large deformation, is
on. A few complex examples are analyzed by introducing a relatively

1995, Logan modeled the cup drawing process using
both Hill quadratic yield criterion and Hosford non
quadratic criterion, by the explicit finite element code
DYNA3D [4]. In his analysis, he assumed that axes
of principal stress and strain coincide, although for
planar anisotropy they normally do not. In 1986.
Yang and Kim [5] used a complex convective coordinate
system to develop an F.E.M. program to handle planar
anisotropic behavior and simulated rectangular bulge
test and in-plane flange drawing. In the present work,
it is assumed that the angle between the principal
directions of anisotropy and the principal directions of
strains remain constant during deformations at each
point of the sheet. The above assumption is also ap-
plied by Yang and Kim [5]. The authors have modified
the formulation introduced by Toh and Kobayashi for
planar anisotropic material, which is a much simpler
algorithm than Yang and Kim's procedure. In the
present work, three different sheet metal forming pro-
cesses are modeled. Firstly, stretching of narrow strips
cut in different directions by a hemispherical punch is
modeled. Secondly, the bore expanding test by a flat
cylindrical punch is simulated. Finally, deep drawing of
a circular blank by a hemispherical punch is modeled.

GOVERNING EQUATIONS

According to virtual work principle:

/5’5(dE)dV—/f_.§(y_)dS:0, (1)

where 5, dF and f are effective stress, effective strain
increment and surface traction vector, respectively.
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Due to the large deformation encountered, Lagrangian
strains are used. The effective stress and strain
increment in Hill theory for the state of plane stress
are defined as follows [6]:

i} \/E(Fsg +GS2+ H(S, — 8,)?
2

F+G+H
IN G2 1
Ty
+F+G+H) ’ (2)
and:
dE_\/5<(F+H)dE§+(H+G)dE§
V3 FG+GH+FH

2HJE,dE, 2dE,, ) 5

tFercH+FE TN (3)

In the above equations, z and y are principal di-
rections of anisotropy. These directions are parallel
and transverse to rolling direction, respectively, before
deformation of the sheet. F, G and H are anisotropic
coeflicients. Ratios of these coefficients are assumed to
be constant during deformations. In these simulations,
rotations of principal axes of anisotropy are considered.
It is assumed that the angle between principal direc-
tions of anisotropy and principal directions of strains
remain unchanged. This rule is used to obtain principal
directions of anisotropy at the end of each step. The
principal directions of strains are calculated at the end
of each step using Sowerby method [7].

It should be noted that in the above relations, the
anisotropic coefficients do not need to be known and
cnly their ratios F'//H, G/H and N/H are sufficient. If
the ratio of width strain to thickness strain in simple
tension for strips cut into rolling direction and 45 and
90 degrees to the rolling direction are defined by R, Q
and P, respectively, then according to Hill theory:

F_1

H P

G_1

H R

N 1/1 1

7= 35+ 7)) 2+,

Therefore, these ratios can be evaluated by three simple
tension tests.

The constitutive equation used in this model is
assumed to be:

g =ke"

For relating effective natural strain and La-
grangian strain, definition of plastic work is used:

/ SdE = / Fdg.
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On the other hand, at any point:
0 = 09 + hdg,
5= 5() + HdE,

where h and H are slopes of & —& and §— F constitutive
curves, respectively, at a specific point. It is assumed
that:

a9 = Sy,
therefore, it can be shown that:
H =h - 259.

Consequently, at each point, S can be calculated [8].

DISCRETIZATION

Discretization of the problem domain is done by tri-
angular linear elements. Displacement vector in each
element is related to nodal point displacement vectors
as:

It should be noted that displacements u, v and w
are defined in principal directions of anisotropy. On
the other hand, the global displacement vector at each
element is related to vector u as:

u=AU,
where A is the transformation matrix and:
U=[uv,wl.

Using the above relations, virtual work principle is
written as:

/ S6(dE)dv — / S(U)TATNT fds = 0. (4)

The above equation must be valid for any virtual
displacement. Therefore:

sO(dE) / T AT
——dv— [ A'N" fds =0. 5
|55y - 4T e )
Now, vector dF is defined as:

dE = [dE,,dE,,dE.,]T.
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Then:

2

_ 2
dE = <§@TQ @) ,

where elements of the matrix D are functions of R, @
and P. Using definitions of Lagrangian strains, vector

dFE is related to vector w as:
dE = B u.

Finally, virtual work principle can be

28 ., i
3dE B A _
/UBdEA (B+B,)"D B A Udv

written as:

where notation B , denotes partial derivative of B with

respect to u.

RESULTS AND DISCUSSIONS

In this research, three different sheet metal forming

processes are modeled. In all of the

three processes,

the constitutive equation of sheet metal is assumed to

be:
& = 6274205%%4,

when stress is measured in kPa.

Strip Stretching

As the first example, stretching of narrow strips cut by
a hemispherical punch into the rolling direction and 45
and 90 degrees to the rolling direction are modeled. In

these models, parameters R, @ and I
be 1, 3 and 5, respectively, and coefhi
assumed to be zero. The width of st

P are assumed to
ient of friction is
rips is 12.5 mm,

radius of punch 50 mm and radius of die throat 53 mm.

Since strips are narrow and friction is

neglected, these

modeled examples are similar to simple tension tests.
According to the flow rule for a strip cut into rolling

direction:
€1 —Ew &1 —(1+ R)
i i e ——
(1+R) R Ew R

= -2,

and for a strip cut 90 degrees to rolling direction:

&1 —E&y

a  _—tw _a _—(1+P)

0+P) P e P

Variations of different strains along the strips are

shown in Figures 1 and 2.
obvious that the ratios of longitudin
strain are almost equal to the abov

From these figures, it is

2l strain to width
¢ expected values

for all the positions along the strip (12 and -6/5).
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Figure 1. Strain distribution along rolling direction.
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Figure 2. Strain distribution along 90 degrees to rolling
direction.

Bore Expanding Test

As the second example, the bore expanding test is
modeled. The geometry of forming tools is as follows.
The punch is cylindrical with a 50 mm radius and

shoulder radius of 10 mm.

The die throat has

a

radius of 53 mm and the die corner radius is Smm.
Parameters R, Q and P are assumed to be 1, 3 and
1, respectively and coefficient of friction is assumed

to be 0.2. In this case, a hole with a 10 mm radius
is provided at the center of the blank. The effects
of planar anisotropy are clearly seen from contours of
major and thickness strains, shown in Figures 3 and
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4. At the hole periphery, the radial stress is zero,
therefore, the ratio of hoop strain to thickness strain
can be calculated at this region. For the elements on
global z and y axes, this ratio must be:

£

2 =—(1+R)=—(1+P)=-2.

&t

However, for the element on 45 degrees to global z axis:

£
e (14Q)= -4
€t
Variations of major and thickness strains along
the rolling direction and 45 and 90 degrees to the
rolling direction are shown in Figures 5 and 6. These

— 0.02-//

-0.05 fpm
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Figure 3. Contour of major strain for bore expanding.
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Figure 4. Contour of thickness strain for bore expanding.
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figures demonstrate that the above expected ratios
are satisfactorily obtained by the presented model. A
deformed mesh of this model is illustrated in Figure 7.

Deep Drawing

Finally, deep drawing of a circular blank by a hemi-
spherical punch is simulated. The radius of punch, die
throat and die shoulder are assumed to be 30 mm,
31 mm and 8 mm and parameters R, Q and P are
considered as 1, 3 and 1, respectively. The coefficient
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Figure 5. Major strain distribution for bore expanding.
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Figure 6. Thickness strain distribution for bore
expanding.
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of friction between punch and sheet is assumed to be
0.2 and between die and sheet is assumed to be 0.05.
Deformed mesh of this model is shown in Figure 8, from
which the effects of planar anisotropy are observed.
Contours of major and thickness strains are illustrated
in Figures 9 and 10. Variations of major and thickness
strains along the rolling direction and 45 and 90 degrees
to the rolling direction are shown in| Figures 11 and
12. It is well-known that earring phenomenon in deep
drawing processes is caused by planar anisotropy. In
other words, although the initial blank is circular, in
later stages of drawing processes, the |periphery of the
part does not remain circular. The rim thickness does
not, also, remain uniform. From the results, it is
realized that the thickness of the rim|at 45 degrees to
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Figure 7. Deformed mesh for bore expanding.

Figure 8. Deformed mesh for deep drawing.

M. Foroutan, M. Farzin and H. Hashemolhosseini

o
o
&

Figure 9. Contour of major strain for deep drawing.
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Figure 10. Contour of thickness strain for deep drawing.

the rolling direction is smaller than the rolling and 90
degrees to the rolling directions.

On the contrary, the rim radius at 45 degrees to
the rolling direction is greater than the rolling and 90
degrees to the rolling directions. The above predicted
behaviors are well in agreement with experimental
observations [9]. Assuming that stresses at the rim in
the hoop, radial and thickness directions are & : 0:0,
then from the flow rule, strain ratios at a specific point
of the rim are as follows:

i) For an element on rolling direction or 90 degrees to
rolling direction:
= —(1+R) =-(1+P)=-2,

€
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Figure 11. Major strain distribution for deep drawing.
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Figure 12. Thickness strain distribution for deep
drawing.

ii) for an element 45 degrees to rolling direction:

e _(1+Q)= -4

€t
From the results, it is also realized that the above
relations hold between strain ratios at the mentioned
points of the rim. In the present analysis, rotation
of principal directions of anisotropy is also taken into
account. For this purpose, at each step of calcula-
tions, principal directions of strains are determined
with respect to local coordinates of elements. It is
assumed that the angle between principal directions
of strain and anisotropy remains constant in all stages
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Figure 13. Contours of major strain for deep drawing
without considering rotations.

of deformation at each point. Hence, new directions
of anisotropy can be obtained with respect to local
coordinates of each element. In Figure 13, contours
of major strain are shown for a deep drawing process
with the same above conditions except that the angle
between principal directions of anisotropy and local
coordinates of the elements are assumed to remain
unchanged. In other words, rotations of principal
directions of anisotropy are neglected. As can be
seen, in this case, contours of major strains in rolling
and 90 degrees to rolling directions are different, al-
though the anisotropic parameters R and P are the
same. For this particular deep drawing example, the
maximum rotation of principal direction of anisotropy
is about 10 degrees. Clearly, these rotations cannot
be simply ignored and for obtaining better results
they should be taken into consideration. However,
for the strip stretching example, rotations are not so
severe.

CONCLUSIONS

In this paper, three dimensional deformations of planar
anisotropic sheet metal are simulated by finite element
method. It is demonstrated that under different load-
ing conditions such as strip stretching {simple tension),
bore expanding (biaxial stretching) and deep drawing
(biaxial tension and compression), effects of planar
anisotropy on strain distributions can be obtained. It is
also shown that under different loading conditions, the
predicted values are in good agreement with physical
reality. Occurrence of earring phenomenon during
deep drawing is also illustrated for a circular blank.
Rotations of principal directions of anisotropy are also
taken into account, which under complex conditions
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of loading such as deep drawing

are considerable.

Consequently, it is important to congider these factors

for obtaining better results.

displacements

NOMENCLATURE

A transformation matrix

B matrix relating strain to

D matrix relating strain vector to

effective strain

dE Lagrangian strain increment vector

dE effctive Lagrangian strain increment

F,G H planar anisotropic coefficients

L,M,N planar anisotropic coefficients

f surface traction vector

N matrix of shape functions

U displacement vector in global
coordinates

u displacement vector in lodal coordinates

1] nodal displacement vector

R,Q,P R-values in different directions of the
sheet

S second Piola-Kirchoff stress

S effective Piola-Kirchoff stress

€ natural strain

g effective natural strain

g Cauchy stress
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