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A Field Boundary Element Method for Large

Deformation Analysis of Hyperelastic Problems

G. Karami* and D. Derakhshan'

In this paper, a Field Boundary Element Method (FBEM) is applied to hyperelastic Mooney-
Rivilin type materials to exhjbit the finite strain large deformation in two and three dimensional
problems. The field BEM formulation is developed using the weak forms of integrals employing
the equilibrium equations and the proper fundamental displacement solution. The divergence
theorem is then employed to separate the boundary and the field integrals. The boundary
integrals represent the standard linear elastic (small strain) behavior, whereas the field integrals
come from nonlinear terms due to nonlinear geometrical and material behaviors. The geometrical
nonlinearities appear in two |parts; resulting from the nonlinearities in kinematical relations and
the second part comes from| the nonlinear moving tractions on the boundary. Due to the mere
dependency of constitutive relations on deformation or strain tensor, a partial differentiation of
displacement integral equations with respect to source point is needed to obtain the gradient of
displacement directly.

The computational framework is total-Lagrangian presentation, in which the stiffness
matrices are constructed at the initial configuration (reference coordinate) only. The discretized
formulation is based on the linear boundary elements and bilinear field elements. The Newton-
Raphson and Broyden rank-1 schemes are applied to the system of nonlinear equations because
of the confidence on quadratic rate of convergency. An incremental loading procedure will be
implemented to insure the cpnvergency and accuracy. The accuracy of the results are discussed

through solving several examples.

INTRODUCTION

Large deformation analysis is becoming a necessity
nowadays, in constructing a real deformation analysis
for an optimum design of mechanical and structural
elements. Also, considering the usage of modern
rubber-made materials in practice, hyperelastic mate-
rial behavior assumption proves to be more practical.
The implementation of nonlinear material modelings in
the numerical algorithms, such as boundary elements,
is a step forward in analysis and design.

Nonlinearities in solid mechanics are categorized
into two classes of geometrical and material nonlin-
earities. The source of geometric nonlinearities is the
nonlinear terms in the kinematical [relations. The
source of material nonlinearities, on the other hand, is
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the nonlinear terms in the constitutive equations which,
in turn, is categorized into several forms of hyperelas-
ticity, plasticity, viscoelasticity and other forms. The
nonlinear kinematical and material relations have sub-
stantial impact on the final deformation and equilib-
rium conditions whenever sever loading is encountered.
The material and geometrical nonlinear terms can also
produce coupled terms which play essential roles in
consistency and bifurcation of nonlinear equations [1].
The nonlinear rubber-like Mooney-Rivilin type
constitutive relations associated with incompressibil-
ity condition, in general, are employed in the work
presented here.  This model could be applied to
most synthetic substances like isotropic polymers and
matrix of composites [2-5]. The material nonlinearity
constitutive relations for such materials are written in
various forms; some in terms of deformation or strain
tensors, some in terms of product of displacement
and their gradients and some in terms of nonlinear
combination of displacement and strain tensors [6-8].
In this paper, the continuum-based hyperelastic
constitutive relations based on the fundamentals of
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thermodynamics are employed [9,10]. The boundary
integral equations are constituted of the displacement
gradients. The order of singularities of the inte-
grands are increased, so that the hyper and strongly
singular integrals would be created. The evaluation
of such integrals is accomplished with a great deal
of difficulty. However, strong mathematical-based
regularization schemes [11-13] are used to evaluate
such integrals. Evaluation of the discretized form
of the field integrals consumes a lot of time at each
load increment. Total-Lagrangian approach reduces
this time considerably due to its independency of the
current configuration. To solve the resulted system
of extremely nonlinear equations, a powerful method
based on Newton-Raphson method is employed in
company with Broyden rank-1 update scheme [14].
The method converged with a satisfactory rate even
in very large deformation problems.

THE GOVERNING EQUATIONS

Kinematical Relations

The general form of kinematical relations may be
written in the following form [8]:

C=G+H+H'+HTH, (1)

where C, H and G represent the deformation tensor,
displacement and metric tensors, respectively, in mate-
rial coordinates. The relation between the deformation
tensor and the Green strain tensor, E, is defined
according to:

E:%(C—G): %(H+HT+HT.H). 2)

In the right side of Equation 1, the quadratic term,
which is the product of the displacement gradients, is
the source of the geometrical nonlinearity in kinemati-
cal relations. The spatial form of kinematical relations
may be written as:

e=3(g-b™) 3)

where b~! is the total finger deformation tensor,
the counterpart of the deformation tensor in spatial
coordinate. g is the spatial metric tensor and e is the
Cauchy strain tensor. Note that b = F.G.FT, where
F = Sh.(G + H) denotes the deformation gradient
and Sh represents shifter operator which is a metric
tensor between the two coordinate systems, i.e., it can
evaluate the components of a tensor from material
coordinates to spatial coordinates and vice-versa.

Stresses and Tractions

Depending on the coordinate view point of either
deformed or undeformed state, definition of the stress
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tensor may be represented in one of the following four
different forms. If load and the differential subjected
area are defined in material coordinates, the stress
is called second Piola-Kirchhoff stress tensor, denoted
by X. If load is measured in material coordinates
but the area is measured in deformed coordinates the
resultant is called first Piola-Kirchhoff stress tensor, S.
Through defining both the load and the area in spatial
coordinates, Cauchy or true stress o would be the
outcome. The other definition is related to Kirchhoff
stress tensor 7 which is obviously expressed by the
undeformed area and the spatial measuring load. These
stress definitions may be transformed to each other by
pre and post multiplying of F, the deformation gradient
tensor. For example, Cauchy stress relates to second
Piola-Kirchhoff stress by the following relation:

o= %F.E.FT, (4)

where J = det[F] stands for the dilatations or Jacobian
of transformation. Kirchhoff and Cauchy stresses have
a simpler relation as follows:

T=Jo. (5)

Similar to the strain tensor decomposition, the stress
tensor may be decomposed into a linear and a nonlinear
part, having the following form:

T=AH+S, (6)

where A and ¥ represent linear elasticity tensor and
whole nonlinear stress terms (containing geometrical,
material and their coupled), respectively. The linear
elastic tensor is addressed in continuum mechanics text
books (e.g., [7 or 8]). The material representation of
such tensor can be written as follows:

KL — 2 a1y aKL W(GIEGIL 4 GILGIK),
1-2v '
where p and v are the shear modulus and Poisson’s
ratio, respectively.
Tractions are distributed loads over the boundary
of the body. There are also different definitions for the
traction vector. The Cauchy traction is defined as:

t=o0.n, (7)

where n denotes the normal unit vector of the deformed
area and is measured in spatial coordinates. Similar
definition as in Equation 7 relates the material or
undeformed traction T to the stress ¥ and the normal
material vector N to the area as:

T=H+G)EN= %ShT.t, (8)

where ds and dS are the deformed and undeformed
areas, respectively.
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Constitutive Relations

As a result of the first and secd
modynamics, the hyperelastic const

nd law of ther-
itutive equations

are derived using simple partial differentiation with

respect to the deformation or strain

tensors [9,10,15].

Incompressible Mooney-Rivilin rubber-like materials
are good examples for hyperelastic materials. Denoting

the free energy density by ¥ and ag

suming po as the

density of media in material coordindtes, this property

for a group of hyperelastic materials

¥(C) = oul(G + O - 3)+ (5

I, Iy and I3 are the deformation tens
I, =trg[C] =C: G, I, =trg
]3 =detC

with the following properties:

Q{l__(; L _ Q
oc oC ¢

where trg and det stand for the trace
operators (in material coordinates),
incompressibility condition would req

]3 =detC =1.

Also, Equation 9 is defined under th
tions:

<6<

N =

Y

B =

/1’>Oa -

where 6 appears, here, as an inde

is defined by [3]:

- 6)(I> - 3).
(9)

or invariants, i.e.,

[CY=C1:G,

= det(C)C7,

e

and determinant
respectively. The
juire that:

e following condi-

pendent material

property. According to hyperelastic relations based on

the first and second laws of thermo

dynamics, second

Piola-Kirchhoff stress is obtained immediately [7,8]:

v 1 1
2—2/)036—#('2“ + O)G—u(ﬁ—ﬂ)

where II;,4 is an augmented variable
stress.

C™2—TI1y,4C7?,
(10)

lue to hydrostatic

The spatial stress field (Cauchy stress) will be

obtained by pre and post multiplicati

on of F as follows:

1 ov 1
= F.2FT =2pp—— = (= + )b
o= P 5 w5 +9)
1 -1 -1
—M(§ —0)b™" —Ihyag™", (11)
so that det[F] = J = 1 to satisfy the|incompressibility

condition.
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The tangent moduli for rubber-like materials is
derived as follows:

0% 1
Anyp = 2= = 4p(= — 0)Ic1.C™! 4 2Mpyalo-,

where Io-1 = ——% is defined as an identity inversion
of C and can be expanded in the following indexical
form:

1
Ig—BICD — 5(0—1A00~—1DB + C—IADC_lBC).
Equilibrium Equations
The balance of linear momentum equation is the basic
governing equation, here. These equations are written
in material coordinates at finite strain as follows [8]:

DIV[(G + H).X] =0, (13)
where G, H and X are defined as before.

FIELD BOUNDARY ELEMENT METHOD

Integral Equations

The integrated form of the governing equations (Equa-
tion 13) may be represented as:

I= / U .DIV[(H + G).E]dQ = 0, (14)
Q

where 2 is the *domain under consideration with
boundary I'' and U is the fundamental Kelvin solution
(see Appendix 1). Through applying the divergence
theorem to the above equation, one can write the result
in the form,

I:/ U .(G+H).2.NdF—/V U: [(G + H).X]d0,
r Q (15)

so that V = 32 ® G’ is the gradient operator. By
incorporating tﬁe first part of Equation 8 in Equation
15, one would obtain:

/{1 (G +H).Z.Ndl = / U .Tdr. (16)
T r

The second integral of Equation 15 is divided into two
parts. Further incorporation of Equation 6 results in:

/V U: (G + H).Z|d0
Q

:/V{J; Edﬂ+/ v U: (H.Z)d0
Q Q

= /v U: (A: Ht £)dQ +/v U: (H.2)d0
Q Q

=/v U: (A H)dQ+/V U: (2 +H.5)d0.
2 2 (17)
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On the other hand, the fundamental stress tensor ¥ is
introduced as:

Y=V U: A (18)
Through substituting the constitutive relation

(Equation 18) in the first integral of Equation 17, it
is obtained that:

/v U: (A:H)dﬂ:/‘:?:HdQ:/z*): vUdn.
Q (19)

Q Q

The divergence theorem, once again, may be employed,
so that the integral in Equation 19 will be written as:

/é: VUdQ:/é .N.UdF—/(DIV ). Ud.

Q T (20)

The fundamental stress tensor 1s related to the funda-

mental traction by means of T E .N which satisfies
the Kelvin equation:

DIV S= — A (x,x),

where A denotes the delta-Dirac function, a tensor of
order 2, and x and x represent the field and source
points, respectively. By imposing these identities,
Equation 20 may be written as:

F/E IN.Udl' - /(DIVZ )y U= /T Udl“+[é1;

Employing Equation 6 in the last integral of Equation
17 yields:

/V U (2 +H.E)dQ=/V U:[(G+H).E— A H]dQ.
(22)

By incorporating Equations 15 to 22 into Equation 14,
the following displacement equation will be obtained:

=/6.Td1‘—/i~.Udr— v U: NdQ,
T T Q (23)
so that:
—(H+G)X - A:H. (24)

N is a two-dimensional tensor which represents the
summation of geometrical as well as material nonlinear
terms. The displacement Equation 23 is also written
for boundary nodes as:

/UTd]." /TUdI‘

v U: NdA.
(25)

C(x).U
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C is a geometry tensor related to the geometry of
the point on the boundary, which is obtained by a
limiting procedure where the source point approaches
the boundary [16-18]. Other methods for evaluating
this tensor includes indirect methods such as the
rigid body motion [18]. The displacement gradient is
evaluated by partial differentiating of the displacement
integral equation. The evaluation of the displacement
gradient is a necessity due to the fact that the con-
stitutive hyperelastic relations are written in terms
of displacement gradients and hydrostatic stress I, q.
The differentiating would result in:

H(x) = V.U(x)

Z/I*{.le“—/]*)‘UdI“—/f:NdQ
T T Q

- F(x) : N(x). (26)

Deriving the kernels I*(= Vs I*,T, I*Jz V.V I*J and 1*):

V. ’i‘ is demonstrated in Appendix 1. F is called free
term and is described in Appendix 2 [19].

Nonlinear Traction

In many nonlinear stress analysis, the boundary condi-
tion may vary during the deformation. When the total
load is fixed in magnitude and direction, the traction
changes as the boundary geometry changes. This type
of nonlinear traction, which is called a follower load,
has a known value in current configuration. Another
nonlinear traction which is always perpendicular to
the boundary and has constant distribution is called
constant rotating traction.

To compute a nonlinear traction, the relations
between the deformed and undeformed areas and also
between the tractions in different view coordinates
should be employed. For example, the relation between
the Cauchy traction t and material traction T is
written as:

ds
T = -—ShT.t
ds

On the other hand, the ratio of deformed to unde-
formed area is [8]:

(27)

ds
— = J||[G + H]"T.N||.
75 = JlG +H7".N]|
For the follower load conditions, one has:
= ShTt,

where T, denotes the final traction on the deformed
area ds. The difference between T and T, provides the
nonlinear traction T4, i.e.,

T,=T-T; = {J||[G+H]"".N| - 1}T, .
(28)
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For the condition of constant rotat
spatial traction is defined as:

t = —pn,

where p represents the magnitude of
the spatial traction t along the norm
the other hand,

nds = JF~T.NdS.

Combining Equations 29 and 27 proy
equation:

T=-pJ[G+H TN

The distribution p should be unch
coordinate also, thus,

T[ = —pN.
Consequently,

TU = [J(G -+ H)-T - G] Ty.

Incompressible Condition

An important parameter appearing
materials is the condition of incom
condition is mathematically represen
which should be satisfied for each
considered as an independent equat]
system of equations to be solved imj
taneously. The equation is sometimes
compatibility condition which insur
and continuity restrictions.

DISCRETIZATION

The boundary and field integrals sh
numerically. In order to evaluate the

ing traction, the

the distribution of
al direction n. On

(29)

yides the following

(30)

anged in material

(31)

n Mooney-Rivilin
pressibility. This
ted by det[C] = 1,
ode and must be
ion in the overall
plicitly and simul-
referred to as the
es the uniqueness

ould be evaluated
coefficient matrice

of displacement and tractions on the boundary, the field

variables and the geometry are first

lescribed in terms

of shape functions. The discretized form of Equation 25
may be obtained if ¢ and ® are assumed to represent
the boundary and field shape functions.

:ii/ﬁ(x,x

e=1 =1

3
o

T (x, X)-[ﬁ(i) ¢

|
NIE
m—

(1]
i
A
i
L

g

VU (xx)

[y
i
ii
L

l
AME
SR

Wy ®i(a, B8)] T (o, B)dads

Ty $:(8)] T (8)dB

gl J (B)dB

s (32)
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where ne and Ne represent the number of elements over
the boundary and within domain and m and M denote
the number of nodes per boundary and field element,
respectively. Equation 32 may be written in the matrix
form as:

K,uu=Kit-K,n, (33)

where u and t indicate the nodal displacement and
traction vectors, respectively and m is the nonlinear
nodal vector due to nonlinear term A/. The stiffness
matrices K, K; and K,, are obtained through numer-
ical integration of Equation 32. x and y are considered
as unknown and known variables on boundary, so that,
by rearrangement of the corresponding columuns of the
stiffness matrices,

K.x =K,y - K;n, (34)

where K, and K, are the stiffness matrices of the
known and unknown variables on the boundary.
Similar to the discretization of Equation 32, the
discretized form of Equation 26 (the displacement
gradient integral equation) is also obtained as:

h=L,u+Lst-L,n, (35)

where h represents the nodal vector of the displacement
gradient variable H. L,, L, and L, are the stiffness
matrices to the displacements, tractions and nonlinear
terms on the boundary and the domain. A rearranging
procedure is carried out to separate the known and
unknown variables of the boundary vectors u and t.
The result is:

h=L.,x+L,y—-L,n. (36)

The unknown vector x must be evaluated from Equa-
tion 34 and subsequently be inserted in Equation 36,
so that h can be evaluated. f is defined as the residual
overall vector,

f=h+P,n-Qy=0, (37)

where the matrices P, and Q are evaluated according
to:

P,=L,K;'K, +L,,

Q=L.K;'K, +L,. (38)
The nodal vector y can be divided into two different
vectors, the linear part y;, and the nonlinear part y,,.
The linear part comes, for example, from the nodal
kinematic (displacement) loading, and the nonlinear
part may come from the nonlinear traction with its
variation with respect to its direction and magnitude.
Considering this definition, Equation 37 is modified as
follows:

f=h+P,m-Qy, -1 (39)
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where A stands for the loading factor which can be
applied incrementally. The hyperelastic analysis is
not path dependent, so the loading may be exerted
incrementally or totally. The relation I(A) = Qy,()) is
the solution for the linearelastic system of equations,
which may be obtained as a function of the load factor.
Consequently, Equation 39 may be written in terms of
the unknown variable h and the known variables I(}).
It should be noted that the incompressibility condition
must be satisfied, together with other equations pre-
sented in Equation 39. To accomplish this, one should
consider the new unknown variable I1,,4 to be added to
the other unknown variable h, so that the completeness
of the system and uniqueness of the solution should be
preserved. The overall form of the nonlinear equations
is summarized as follows:

f=h + Pn'l”(h,ﬂ'hyd) - QyU(ha }’l) - i(y1)7

r = {det C(H) - 1}. (40)

'THE ITERATIVE NUMERICAL SOLUTION
PROCEDURE

If the incremental loading index and the iteration index
per increment are denoted by ¢ and j, respectively, then
Equation 39 can be written in indexical form as:

f]z = h; + Pnn(haﬂ-hyd); - QYT](hayl); - iia
ri = {det C(H) — 1}, (41)

where 74,4 indicates the nodal vector of Il;yq. For the
total node number n, the total number of equations of
the first and second part of Equation 41 becomes 4n
and n, respectively.

To solve these nonlinear equations, two strategies,
namely, the zero order or the fixed point iteration
method and the first order tangential method are
proposed. The first order tangential method has
been executed through many different schemes, such
as Newton-Raphson first and second order, modified
Newton-Raphson and quasi-Newton methods in com-
pany with line search procedure. Although fixed point
iteration methods have a reliable convergency for the
nonlinear small strain or small incremental loading
schemes, however, for strongly nonlinear system of
equations, the rate of convergency is very poor. The
first-order tangential method is more suitable for ap-
plication in total-Lagrangian framework analysis. The
Newton’s methods require the derivatives of residual
vector with respect to unknowns, which may become
cumbersome in comparison with the fixed point meth-
ods.

In this paper, the basic unknowns are the nodal
displacement gradients summarized in h. The Jacobi-
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matrix is, therefore, given by:
df dn dy,
= — = — —-Q=1 42
T=m =P, ~ Qo (42)

The components of 1 are functions of the nodal
variables, H! and I,,4 only. The matrix g—ﬁ could
be obtained in diagonal form as:

(4, 0 .0
0 (%)2 0
0 0 (2,

where n is the total number of nodes and the derivatives
(%)i are obtained by means of the definition of A

(given by Equation 24) as follows:
VAR d
—dW — m{[HIM +61M]EJM . AIJNPHNP}

L L

dZ‘]M
dHK

=61K5LMEJM+[HIM+6IM]

_ AIINP d(H®pGon)
dHX |,
dZJM

I sJL I I
= +[H m +
6 kZ [H'm+6 M]dHKL

— ATINLG e, (43)

To evaluate the parameters in the above equation,
Equation 1 and the chain rule may be used so that:

dE‘]M

m - AhprLMP[HNP +6NP]GN}(, (44)

JLMP _ odz'™

where, Apnyp i - Incorporating Equation

44 into Equation 43:

N

d—}j—,K—L- = (5§(ZJL + {[HIM +61M]

[HNP+6NP].AhprJLP -.AIJNL}GNK,
(45)

where Apyp is given by Equation 12. The derivative
operations for matrix %{L are complicated, for which
the details are given in Appendix 3. The other
derivative is a%"}tlc due to incompressible condition,
which is derived directly from the second equation of

Equation 40 as follows:

9detC _ 9detC  9C

OH oC 'OH
., 9(G+HT(G+H)
_ 1.
=detCC™": T
=2det CC1.(6 + H). (46)
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The derivative =2f

Omhya

can be obtained using Equation

39 together with the definition of A’ and Equation 10:

of on
=P = -P
OT hyd O hya nd
where,

d = Diagonal[(G + H)'T]nxn.

The above derivatives help in const

(47)

ructing the tan-

gential matrix employed in the iterative Newton’s

methods. The new matrix Z is introd

df of
— dh O hyd
— — | 9detC 0 .

oh

In a summarized form, the followi
devised to arrive at the convergent
nonlinear system of equations:

1. Let known values h, w4,

IF A; > 1.0 THEN EXIT.

2. Compute E;H using Equation 48.

uced as:

(48)

ng procedure is
solutions of the

i+1 it1 i+1
3. { h } _[ b } —[ET f .
T hyd i1 T hyd ; 9 r i

4. Compute the dependent variable
using Equation 10 and n(H, )31}
N, as given in Equation 24.

i+l Qi+l

+1 _ pitl
5 f _h-?LH-f-P,]nj+l

J+1 7

r;ﬁll = {det C — 1}1]

j+1
£+
Jj+1

ELSE j =j+1 GO TO 2,

IF

E(H, hya) i

by definition of

<eTHENi=1¢+1GOTO1

where ¢ represents the tolerance of the convergent
criterion. The iteration continues until a suitable norm
of the residual vector approaches a yalue less than a

certain tolerance.

NUMERICAL EXAMPLES

To asses the algorithm and the implementation, several

classical examples in hyperelastic a
sented in this section.

nalysis are pre-
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®

Figure 1. Initial four boundary element mesh and the
dimensions.

Rubber-Like Square Plate under Tension or
Compression

This example is concerned with the analysis of a simple
plate made of hyperelastic rubber-like material under
large deformation. A one by one square plate subjected
to an incremental tensile loading is considered, as
shown in Figure 1. The load is exerted by incremental
displacements of up to 400% engineering strain under
tension and 80% under compression. Since the loading
is uniaxial in z direction, the deformation gradient can
be written as follows:

§ 0 0
0 1/6 of
0 0 1

tension and compression

where § = 1 + ¢ and € represent the engineering strain.
Under uniaxial tensile conditions, the relations between
the tractions and the deformations are obtained as
follows [20]:

1 1
tL=0n = I~L('2‘ + B8)é* - N(§ - B8)67% — Mpya,

0 = o019,

1 1
0 =022= N(§ +B)67% - M(§ - 3)6?% = Myya.

Eliminating ITjyq from the above equations, the follow-
ing traction is obtained:

ty = pé® — pé=>,

where t; and o;; are, respectively, the traction and
the stresses. Numerical analysis is performed by
discretizing the boundary into 4 boundary elements
and the domain by one bilinear element. In the
execution of the problem, it is found that under such
conditions, the maximum error in the Cauchy stresses
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Table 1. Properties and the average number of iterations
used.

Properties pn =100 MPa B =0.25
Tension Compression
Number of increments 1 5 10 1 5 10
Newton-raphson 7 58 | 53 7 5.6 5.2
Broyden rank-1 40 12 9.5 | Div | 206 | 11.1

is found to be less than 2 x 1078, Also it has been
noticed that the maximum difference in the values of
nodal stresses is about 1078, This matter proves the
accuracy and uniformity of the solution in very large
deformation nonlinear analyses using few boundary
elements. To solve the nonlinear equations, a standard
Newton-Raphson and an updated Newton’s method
(Broyden rank-1 update) are used. The properties
of material and the average iterations per increment
are presented in Table 1. The very low number of
iterations used shows the quadratic rate of convergency
in the Newton’s method. The rate of convergency
decreases in compression compared with the case of
tension because, under compression, instability and
bifurcation may appear. Moreover, it is found that by
increasing the incremental loads, the average number of
iterations becomes lower. The numerical output reveals
that the maximum error in Cauchy stresses is less than
2 x 1078 when the norm of error is lowered to 10~!4
at each increment. A 64 bits double precision should
be used in computational operations to obtain such
accuracy. It was also found that Broyden rank-1 up-
date scheme performs lower convergency than Newton-
Raphson scheme; however, it consumes lower execution
time especially when high number of degrees of freedom
is used. The relation between the components of Fy,;
and the tractions ¢t on the boundary is demonstrated in
Figure 2. These data are compared with the analytical
solutions given in Equation 49. The data from this
equation are plotted and the accuracy is well satisfied.

Bending Analysis of a Hyperelastic Beam

A hyperelastic beam under bending subjected to a pure
moment at one edge and restrained at the other edge
is shown in Figure 3. The properties of the beam,
together with other parameters of the problem, are
presented in Table 2.

By assuming Mooney-Rivilin type material for
the beam and under the application of the loads and
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6.0
Behavior of Mooney-Rivilin material
' under pure uniaxial loading

T 4.0 F
g
]
«
=
0
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3
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©
g
g
© 20 p
=]

0.0 —

-3000 -1000 1000 3000

Cauchy traction (MPa)

Figure 2. Relation between the deformation gradient £,
and the tractions t.

Ta

X2
| "

i

10

Figure 3. Initial configuration and mesh, loading,
constraint and dimensions of the beam.

boundary conditions specified, the exact solutions are
as follows [21,22]:

h h? 2
;= |1 —5+ 9—24‘5; s

2_h_l+ 2 and 2hirir,
N U Ter

i

Ta =

(49)

In the above equations, r; and r, denote the internal
and external radii of the deformed beam and 7g

Table 2. Properties, updating method, elements, nodes, increments and other parameters of Example 2.

Properties: Mooney-Rivilin
Updating scheme
Elements on boundary and field

Total nodes and degree of freedom:

Increments, iterations and tolerance

@ =100 MPa, 8 =0.25

Broyden rank-1

42 linear and 90 bilinear elements
112, 560

30, 150, 1012




118

Figure 4. Exhibition of the deformed shapes of the beam

in several increments of the loading.

represents the radius of stress free laye
Similar to the case of the plate under
the finger deformation tensor appears
as follows:

/¢ 0 0
b l=]0 < 0|, where ¢=
0 0 1

r (neutral plane).
uniaxial loading,
in diagonal form

r 2
(7))

Also, similar to the previous example, Cauchy traction

is derived according to:

1
= /L(g - —))
S

(51)

where t; is Cauchy traction in direction 1. By inserting

7 for @ in Equations 49 and 50 and

51, the deformed shape of the beam

using Equation
in the form of a

semicircle, as shown in Figure 3, may| be obtained. To

insure the convergency and accuracy
30 increments in the loading are
each increment, on average, 5 iter
so that the total number of iterati
Newton’s method accompanied with
update were employed to lower the e
than 107'2. The deformed shapes
shown in Figure 4. These deformed
very well with the predicted solution
numerical outputs reveal less than 1.
at the constraint ends compared w
analytically predicted solutions [20,2]

Rubber-Like Plate Containing a
under Uniform Edge Displaceme

This example deals with a four by

of the solution,
chosen.  Within
ations are used,
ons reaches 150.
Broyden rank-1
rror norm to less
of the beam are
shapes compare
s. Moreover, the
% error in stress
ith those of the

]

Circular Hole
nts

four square plate
having a circular hole at the center.

The material

is again assumed to be Mooney-Rivilin rubber-like.
The plate is under a uniform tensile displacement

(kinematical boundary conditions) ap

plied at one edge

also illustrated in Figure 5. The mesh at the initially
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Figure 5. Initial mesh and dimension.

undeformed stage consists of 20 linear elements on the
boundary and 24 bilinear elements within the domain
also illustrated in Figure 5. Due to the symmetrical
properties in the geometry, loading and boundary
conditions, only one quarter of the body is discretized.

The loading is exerted through 20 equal incre-
mental displacements up to 400% engineering strain,
so that the total iterations reach 180 (by using Broy-
den rank-1 scheme). The parameters related to this
example are summoned and described in Table 3. The
initial undeformed and deformed shapes at several
stages of loadings are shown in Figure 6. There is
no exact solution for such a problem under such large
deformations to compare the results with, however,
they appear logical.

This example demonstrates the performance of
the present algorithm for solving such nonlinear large
deformation problems. The bifurcation and instability
difficulties are not considered important in very large
straining problems. It should be noticed that all the
computational operations are carried out in reference
or total Lagrangian coordinate systems.

In Figure 7, the maximum Cauchy stress at point
A (point A is located on the circle boundary) is plotted
against the lateral incremental displacement. From
Figures 2 and 7, it can be concluded that rubber-like

TS

Figure 6. Initial undeformed and the deformed shapes at
several stages of loading.
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Table 3. Properties, elements and other features of the plate with a hole.

Types and properties of material:
Nonlinear solver:

Boundary elements:

Field elements:

Total nodes and degree of freedom:
Number of increments:

Total number of iterations:

Tolerance of error norm:

Mooney-Rivilin, g = 100 MPa, 8 = 0.25
Updating Newton’s method (Broyden rank-1)
20 linear boundary elements

24 bilinear field elements

35, 175

20

180

1013

119

600 |
<
a9
2 400 -
m
2
1
*;’ L
>
=
[3]
5 200
)
0 s 1 L 1 L { N 1 : J
0.0 0.2 0.4 0.6 0.8 1.0

Displacement
Figure 7. Relation between maximum Cauchy stress at
point A and displacement.

materials obey the Mooney-Rivilin behavior, having a
slow progressive stiffening as long as the straining is
continued. This fact means that an upward convex
shape in the plot of stress vs displacement should be
expected, as clearly illustrated in Figure 7.

A Cylindrical Shell under an External
Hydrostatic Pressure

Figure 8 illustrates a quarter of a cylindrical shell sub-
jected to hydrostatic pressure. The relevant dimensions
and the initial mesh are also included in the figure. The
material is assumed to be rubber-like, obeying Mooney-
Rivilin type material behaviors. The applied pressure

Uniform traction

Q

1000

Figure 8. A quarter of a cylindrical shell with its initial
mesh, dimensions and loading.

in this example increases until collapse, due to buckling
mode, occurs suddenly. In Table 4, material, number of
nodes and elements of the body and other parameters
related to this example are presented.

The initial, final and several other configurations
of the shell are shown in Figure 9. As shown in this
figure, in the final state of the deformed shape of the
shell, the first buckling mode shape is clearly observed.

The buckling happens when a significant jump
in displacement of point A is observed. Point A
is located at one end as shown in Figure 8. The
displacement of point A vs its increasing traction is
plotted in Figure 10, which clearly shows this behavior.

Table 4. Properties, elements, nodes and other parameters of the cylindrical shell.

Types and properties of material:
Nonlinear solver:

Boundary elements:

Field element:

Total nodes and degree of freedom:

Number of increments:

Tolerance of error norm:

Mooney-Rivilin, ¢ = 100 MPa, 8 = 0.25
Updating Newton’s meth. (Broyden rank-1)
48 linear boundary elements

80 bilinear field elements

105, 525

Adaptive, 20 near buckling region

Total number of iterations: 30

10-12
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A =0.191

Figure 9. Initial, final and several intermediate
configuration of the shell. The final configuration shows

the first mode shape.

800 (

Displacement of point A (mm)

600 - e

400 +
200}
Jump at about
0.3 MPa
O 5— 5 2. V. 1 b 1 J
0.0 0.1 0.2 0.3 0.4 0.5

Cauchy traction (MPa)

Figure 10. The displacement at point A vs its increasing

traction.

Obviously an adaptive procedure should be performed
by appropriately small increments to avoid missing this

jump. In contrast with other buck
sharp jumps with an asymptote may

ling phenomena,
not be observed.

In this case, the jump is damped when the loading is
increased slowly. The value of the pressure at the jump
point is 0.3 MPa, which is in close agreement with the
result obtained by Foerster [22], who has reported a

pressure of about 0.27 MPa at this p

CONCLUSION

An FBEM for hyperelastic materials
this paper. The formulations develof
nonlinearities due to large deformation
well as the material nonlinearity. Th
tion appearing on the boundary, due
in magnitude and direction, are also
over, total-Lagrangian is employed
reconstruction of stiffness matrices at
load step. The stiffness matrices ar
at the initial configuration. Newt

int.

5 is presented in
ped include both
(geometrical) as
e nonlinear trac-
to change of area
included. More-
which eliminates
each incremental
e only evaluated
on-Raphson and

Broyden rank-1 schemes prove to have a good perfor-

mance in such nonlinear numerical s

lutions. Several

G. Karami and D. Derakhshan

numerical examples are presented, demonstrating the
efficiency of this powerful mechanized tool in the
analysis of hyperelastic behavior.
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APPENDIX 1

Fundamental Kernel Functions

Let 7 = /(x — x).(x — x) be the distance between

source and field points. It is evident that:

Or or

ax ox

By using chain rule and substituting the above equa-
tion, one can conclude that:

oY _ox or_ oY o

ox ar ~ox  9r  Iax’
X _v.v=-vy,
x

where Y represents any regular or singular function of
x and x. Therefore, all the subsequent derivatives with
respect to source and field point coordinates deffer from
each other by a minus sign only. By employing such an
operation in derivation of the fundamental kernels, one
can develop the following expression for 2D problems:

U= TAGRERLICIOP AN

8m(l —v)u

1

Krm = 8n(1 — v)pr

{(3 - 4V)T,MG]J - T',JG]M

—-11Gym + 2T’]T,JT,M},
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1

W2[(3 - 4V)T’MT1NG1J

X
LigmMn = —

—r gt NGrm =T NG — T T mMGiN
—rir MGy —rr  GuN
- B -4)GryGun +GruGin

+GinGynm + 8717 5T MT N,

* -1
= {[(1-2)Gps +2 NK
Tw 47T(1—V)r{[( v)Gry+2r )1 K
._(1—21/)[7‘,‘41\73—1‘,13]\[14]}7
l*)l.sz—_1.__{2[(1—21/)1~KG”_T1GJK
4w (1l — v)r? : :

-7 5Grk +47‘JT"‘]T)K]T’MNM -(1- 21/)[NKG]J

+ NGy — N;Grg — 2N1T)JTYK +2NJT,[7"K]

— 2NK7',]7'1J},

where G,; is the metric tensor of the viewing material
coordinates. u and v are the shear modulus and
Poisson’s ratio, respectively.

APPENDIX 2

Integral Free Term

To derive the free term Fappc presented in Equa-
tion 26, it is assumed that the source point is located
in the domain. The divergence theorem is applied
to transfer the field integral into a boundary one.
Moreover, a circular (or spherical) boundary is consid-
ered where the center corresponds to the source point.
Integration on the boundary is performed and limiting
procedure is employed to cancel the vicinity radius
when the radius approaches zero. The result yields
the following fourth order tensor:

1
16(1 — v)u [

—GapGpc — GacGrp]

which can be used only for 2D analyses.

Fappc = (7-8v)GapGep

APPENDIX 3

Differentiation of Nonlinear Tractions,
Followed Load and Constant Rotating
Tractions with Respect to Gradient of
Displacement

From linear algebra, the relation

-1
e (a1



122

is used to obtain the partial different

5;7855(0 +H) e =

~

- —lAE —1F _____O

(G+ H) (G+H) BaH
=—(G+H) e (G+H) 'rs
=—(G+ H) Yc (G+ H) Pz,

having the transposed form of:

——Q—D(G + H)_TAB =

—(G+H) e (G+H)™

Therefore, the derivative of the n

constant rotating traction is obtained
o Th_ 0 r
gEe 1 = 3gpe (G+H)™»

=—(G+H)™'*s (G+ H)™'¢"

When a followed load traction is
complicated steps are needed to obt
of nonlinear tractions. As the first
derivative can be considered:

(n)

T4 0 -

555 = 355c G+ H)T.N
- _‘9_‘]_||...||+_J_.
| @HBc 2““

al expression:

E
E}’—L)_(G+H) F

§Ec 6DF

(A2)

Pr GAF GBE .

(A3)

onlinear part of
1 as follows:

)
- 642]TP

0
GEA Gpp TP.
(A4)

considered, some
ain the derivative
step, the overall
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where:
|- 1? = (G +H)"T.N|?

= NpNrG¥(G + H)™'Pe(G + H)™'¥s.

. . Odet(A) _
For the second step, by employing relation ~—3= =

det(A)A-T:

8] _aJ @
0HBc — 9Fes 9HPBo

=J(G+ HY'¢s.

[Sher (GT= + HF?)]

(A6)

Therefore, the derivative of Euclidian norm is derived
by employing Equation A2. The result is:

ol ---I” GE
e = ~NoNrG

[(G + H)_IDB (G + H)_ICE (G + H)—lFG

+(G+ H) ™12 (G + H)7'P5(G + H) 1.
(A7)

Thus, the overall expression is obtained by substituting
Equations A6 and A7 in Equation A5. Hence,

aT(n)A
OHBc

JTWAN, NRGCE
2 -]

{2(G+ H)™'°s (G + H)"'Pe (G + H) '¥c

—(G+ H)™'?s(G + H)™'¢s(G + H) ¥

—(G+ H)™'r3(G + H)™'P=(G + H) ' }.
(A8)

Equations A4 and A8 are used to compute Jacobian
matrix J when the conditions of nonlinear traction are
applied to the boundary.





