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Refined Non-Conforming Triangular Plate
Element for Geometrically Non-Linear Analysis

Y.K. Cheung*, S. Zhang' and W. Chen!

Considering total Lagrangian formulation, refined non-conforming triangular thin plate-bending
element RT9 is used as the basis for refined geometrically non-linear non-conforming plate-
bending element NRT15. Through possible introduction of various weak continuity conditions
into the formulation of geometrically non-linear plate elements, the constraint condition of inter-
element continuity can be satisfied to an average degree. A combined interpolation function
is introduced into part of the formulation to improve the accuracy of computation. Numerical
examples presented in this paper show that the present element possesses high accuracy.

INTRODUCTION

In recent years, considerable attention has been placed
on the non-linear analysis of plates and, consequently,
a number of non-linear plate elements have been
developed.

Development of geometrically non-linear analysis
of plate structures has been closely related to the
achievement of FEM in the linear field. There are many
methods that can be employed to construct the plate
elements such as the displacement-based (conforming
and non-conforming) method, the hybrid stress ele-
ment method, etc., among which the non-conforming
element method is regarded as an important one.
This is due to the fact that for a C' type problems,
in which the C! continuity conditions are required,
the use of non-conforming element can prevent the
difficulty of constructing the conforming displacement
interpolation function. Moreover, it can improve
the accuracy when used for the analyses of C® and
C°/C! problems. Recently, many different methods
are available for constructing non-conforming elements
in linear analyses such as the discrete Kirchhoff method
[1], the free formulation element method {2], the natural
element method [3] and the refined non-conforming
element method [4-8].

Nine-parameter triangular bending plate element
is a simple element which is widely used in engi-
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neering. A series of nine-parameter elements exists,
which includes the non-conforming element BCIZ [9],
the discrete Kirchhoff element DKT [10], the hybrid
stress element HSM [11], the refined non-conforming
element RT9 [5], etc. Batoz compared and evaluated
[12] several popular nine-parameter bending elements
and concluded that the DKT and hybrid stress model
(HSM) elements seem to be the most effective nine
DOF triangular elements available in thin plate bend-
ing analysis, with DKT element being to some ex-
tent better than the HSM element. In addition, he
mentioned that the non-conforming BCIZ element also
possesses high accuracy. However, since it cannot pass
the patch test for some special meshes, it has not been
widely used.

Recently, using the refined non-conforming el-
ement method, Cheung and Chen proposed a new
element RT9 [5] on the basis of BCIZ. Numerical results
show that the element RT9 can pass the patch test
and yields higher accuracy compared with the DKT
and HSM elements. Satisfactory results can also be
obtained in dynamic and stability analyses [13].

With the success of RT9 element in the linear
field, it is natural to apply it to the geometrically
non-linear field. In geometrically non-linear problems,
higher order terms of displacement gradients exist,
which cause difficulty in establishing the proper conver-
gence criteria. As a result, it is not an easy matter to
use non-conforming elements in the geometrically non-
linear field and it has been found that there are very few
successful non-conforming elements in geometrically
non-linear analysis.

Recently, Chen proposed a geometrically non-
linear generalized variational principle [14], which
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relaxes the inter-element continuity requirement.
Through introducing the first Piola stress tensor, the
displacement gradient tensors and the common inter-
polation displacement function in the inter-element
boundary, the continuity condition |is satisfied to an
average degree. The principle has been used suc-
cessfully in non-linear analysis [15].| In this paper, a
method is presented for establishing weak continuity
conditions on the inter-element boundaries, which is
equivalent to the geometrically non-linear generalized
variational principle [14]. Considering such weak
continuity conditions, the element RT9 can be used and
extended to the non-linear analysis of plate structures.
In the non-linear formulation of the proposed plate
element NRT15, various weak continuity conditions
can be given for different displacement gradients. It
should be noted that parts of the continuity conditions
needed in the non-linear formulation already exist in
the element RT9, which makes the work here much
simpler.

WEAK CONTINUITY CONDITIONS FOR
THE GEOMETRICALLY NO
BENDING PLATE ELEMEN

To ensure the convergence of | non-linear non-
conforming elements, various weak|continuity condi-
tions in the formulation should be satisfied according
to the refined non-conforming method. To obtain the
weak continuity condition on the inter-element bound-
aries, common displacements should|be introduced. In
the following, several weak continuity conditions are
proposed according to the displacement gradients that
will be found in the formulation of|the geometrically
non-linear plate element.

C° Weak Continuity Condition|for the
Displacement u and v

The first-order gradients of the displacements u and
v for the membrane part of non-linear bending plate
element exist, which should satisfy the C° continuity
condition. According to the refined non-conforming
method, the C° weak continuity [condition for the
alternative refined displacements «* and v* can be
expressed as follows,

/ Ou da:dy:f ulds,
Ve Oz e
/ Ou dzdy:f imds,
Ve ay Ove

ov* 5
/Ue o dzdy = 1{9% vlds,

ov*
dxd =.7{ vlds,
/l/e 6?/ v dve
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where @ and 7 are the interpolation functions expressed
in terms of nodal parameters on the inter-element
boundary and [,m are the direction cosines of the
element boundary.

To explain the rationality of the above equation,
the left side of Equation 1 is integrated:

OU” ody = 7{ @*lds,
Ve Oz v,

w mds,

/ LA ]{ 7*1ds,
Ve 5:5 v,

/ ’ dzdy =% 7*mds. (2)
Ve 8y Ove

Substituting Equation 2 into Equation 1, it is obtained
that:

?{ (" — @)lds = 0,
Ave

(&* - @)mds = 0,

Ave
(7* = D)lds =0,
Bve
4 (* — P)mds = 0. (3)

The boundary displacements #* and 7* are usually
different from the common inter-element displacements
4 and &, which are interpolated in terms of the nodal
parameters. From Equation 3, it can be seen that the
inter-element continuity condition is satisfied to some
extent.

The interpolation functions for the displacements
u and v can, usually, satisfy the C° continuity condition
and no modification needs to be done in that case.
However, if the displacement interpolations of u and
v cannot satisfy the C° continuity condition, then they
should be modified according to the weak continuity
condition expressed as Equation 1. Displacement
functions u(z,y) and v(z,y) can be modified into the
refined displacement functions w*(x,y) and v*(z,y),
which satisfies the inter-element continuity require-
ment. The refined displacement functions u*(x,y) and
v*(z,y) can be assumed as:
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where:

U u* "
{,,} = NPqZ {y} = NP qg, (5)

in which g® are the nodal displacement parameters for
the membrane part of non-linear plate element.
Substituting Equation 4 into Equation 1,

a1
@z | _ P _ P
ag - Bacqe Baoqy (6)
Qg
where:
ul
1 um
P
Bacqe - A o l”/'l ds?
| om
Su
BaOQE - Z o % dsv (7)
| ov
. 9y
in which:
A:/ dzdy. (8)

The strain matrices are given by:

T
a 17}
=~ = 0 0
Ba — | 0z oy S S Np’
0 o0 P By
T
a a
=~ = 0 0
B:; = 9z ay 8 ) Np*, 9
0o 0 2 2 (9)
and finally:
B; - Ba - BaO + Bac- (10)

Based on the displacement gradient B, the refined
displacement gradient B is obtained directly using
Equation 10. Obviously, the formulation is very simple
and can be carried out easily.

C! Weak Continuity Condition for the
Bending Part of a Non-Linear Plate Element

The C!' weak continuity condition for the refined
deflection w* on the bending part of non-linear plate
element can be expressed as follows:

8w ow ,, Ow
—am—zdacdy = }éye <%l - a—slm) ds,

v,
€ 4

&?w* ow , oW
/VE By dedy = %’;Ve <%m + glm>ds,

&*w* 81 oW, 0 o
= e lm+ 2= (12—m?) | d
/,,e26;v8ydzdy }guc (26nlm+ 55 (IF—m ))(i,l)
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where g—i’ and %—f are the interpolation functions

expressed in terms of the nodal parameters qb on the
element boundary and are the direction cosines of the
element boundary and [, m are the direction cosines of
the element boundary.

The rationality of Equation 11 can be explained
as follows. By integrating the left side of Equation 11,

82w ow* ow*
dy = —1? - l
/ o W ]i ( on s m) s
92w o,  ow*
/Ve By drdy —éye ( el + EP lm)ds,

O w* ow* o™
2 dy= 2 l 12 —m? .
/,,e axayd‘” v 7,{9”&< on mt Js (F=m )> ((1;2)

Substituting Equation 12 into Equation 11,

i a?Z)* 811} 2 aw* o ~
jé o o) Gy T E)lm} ds =0,

[ ow* 0w, , Ow* oW _
f«{?ve .(79; ROt e g‘s“ﬂm} ds = 0.

[ ow* O 8% oW , ;
%(;Vﬂ -2( on _%) m‘f‘(%“a;‘)(l -m )J ds=0.

(13)

Equation 13 means that the inter-element continuity
condition is satisfied to an average degree.

For an arbitrary non-conforming displacement
function w(z,y), the refined displacement function
w*(z,y) can be defined as:

w*(z,y) = w(z,y) + PB = N*"q®, (14)
where:
w(z,y) = NPq?, (15)
2 2
p= [g- L f;ﬂ} , (16)
B=1{6 B2 83}7T. (17)

Substituting Equation 14 into Equation 11 and using
the strain matrices:

= [ & 2 22210,
5~ | 622 8y? Bzdy ’

2 2 2 17
B*_[a 9% 20 ] Nb, (18)

B | oz2 5? Ozxdy
and:

B} = Bs — Bgo + B, (19)
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where:
Bao =5 [ B dady, (20)
N RE - l=lm
I3ﬁc<12:= 3; ézyi n12 4_5231 Ilm ds.
A e 671 lm 83 lZ _m2
(21)

Based on the strain matrix Bg,

which is often

used in the standard displacement based FEM, the

refined strain matrix B;, is obtained
Equation 19.

C° Weak Continuity Condition fag
First-Order Gradients of Displace

In order to form the non-linear part of
strain vector, it is necessary to use
gradient of displacement w, which sh
C° continuity condition. The C°
condition, here, can be expressed as fq

ow* -
/u, e dxdy = %9% wlds,

ow*
v, 0T

dzdy :}{ wmds,
Bu,

where 0 are the interpolation functi

directly using

r the
ment W

the incremental
the first-order
ould satisfy the

weak continuity

llows:

(22)

ns expressed in

terms of nodal parameters g2 on the element boundary

and I,m are the direction cosines
boundary.

of the element

The rationality can be explained in a similar

way to that discussed in parts 1 and
order gradients of displacement are
then the displacement should be modi
Equation 22. Assume that the refined
is:

wiz) = wie) + ko {11

substituting Equation 23 into Equatiqg

2. If the first-
not conforming,
fied according to
displacement w*

(23)

n 22 results in:

B! =B, - B,o+B,, (24)
where:
o —~
== 1 wl
B. =<9 N? B.. b_ - -
! {'8%} » P =R f amj
1 dw
B,oqf = N / 3= bdxdy. (25)
ve | Oy

Then, the refined displacement gradient given by Equa-

tion 24 is obtained according to the
condition expressed in Equation 22.

weak continuity
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In the above discussion, weak continuity con-
ditions are proposed which are used in the refined
non-linear non-conforming plate element. Also the
refined displacement gradients are derived in accor-
dance with the weak continuity conditions. Note that
the displacement gradients B,, Bs and B, are the
same as the gradients commonly used in the standard
displacement-based non-linear methods. It should also
be noted that the proposed weak continuity conditions
in the paper are based on the geometrically non-linear
generalized variational principle [14], from which the
same formulations can be obtained.

In the following part of this paper, the formu-
lation of the total Lagrangian method of standard
displacement-based plate element and on that basis,
the refined formulation of the proposed NRT15 non-
linear plate element are presented.

TOTAL LAGRANGIAN STANDARD
FORMULATION OF THE
DISPLACEMENT-BASED NON-LINEAR
PLATE ELEMENT

There are two kinds of description for geometrically
non-linear analysis, total Lagrangian(T.L.) description
and updated Lagrangian(U.L.) description. When the
non-linear description is based on the initial configu-
ration, it is called total Lagrangian description. In
this paper, T.L. description is used to carry out the
geometrically non-linear analysis.

Definition of Strain for Geometrically
Non-Linear Plate

In this paper, using von-Karman hypothesis, the re-
lationship between the strain and displacement of a
non-linear plate can be given as:

( Ou
vy 1/8w\2
= | (e
By 1(Qu)2
B—u';:l’a_y gw yaw ep
ez ] W 0 L_*_ (532)(5) ={ g}+{eL},
| -% 0 e} 10 (a6
_0%w 0
Oy
L 9 9w 0
8zdy J
where:
du 32w
P _ ov — _ 0w
R PP B I 7
ou ov a
Oy + ox 2313;;
1 (dw\?
2 (5:))
b _ 1({8
g =14 1(%) (27)
0 (3
Oz dy
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Since non-linear strain items exist in the formu-
lation, the incremental iterative analysis has to be
employed.

Description of T.L. Iterating States

The whole loading process will be divided into a series
of equilibrium states:

QO L o) .. k) _, le+1) _, ),
(28)

where Q% is the initial state, (/) is the final state and
Q) is an arbitrary state between (9 and Q(F). The
reference configuration is the initial configuration £(°)
for the total Langragian method and all subsequent
formulations for the K + 1th step are based on the
assumption that all the states from 09 to Q)
together with their components, such as stress, strain,
displacement and loading history, can be determined.

Expression of Incremental Strain Tensor for
Geometrically Non-Linear Plate

Using the incremental analysis method, the following
are defined:

Uo = {ug vo wo}?, U= {uvw)?, (29)

AU =U - U, (30)

where Up is the displacement vector at the end of the
K'th iterating step and U is the displacement vector at
the end of the K + 1th iterating step.

Substituting Equations 29 and 30 into Equation
26, the incremental strain tensor is obtained, which can
be expressed as:

dAu Sw 3
( a‘?f ) ( (0—92)0 0
v
A Oy A (%15)0 0
cau 4 v dAw
By da (QH) dw Oz
Ae=¢ " p2aw ¢+< (G )o oy ), AW
9?2 0 0 Ay
_ 9w
é?yz 0 0
J°Aw
\ 23:531/ ) \ 0 0 J
2Aw 3
((52) o
0Aw
( ov 0 JAw
8Aw A w -y
+24 (%82) (W) {a‘?fw}
0 0 oy
0 0
\ 0 0 V.
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Incremental Constitutive Relation

The stress of the mid-side of the plate can be defined
as follows:

P
0 ={Tx Ty Toy M, M, M,,}T = {"b} , (32)

g

and the increment as:

AP 0
Ag = Ale = [ 0 Ab} Ae, (33)
where:
1 pw 0
AP = Et uo1 0 s
1—p? 1-p
0 0 i
1 o O
Et3
Ab=__—"" _lpu 1 0| 34
12(1 — p?) 0 0 1_511 (34)

in which F is Young’s modulus, x is the Poisson’s ratio
and t is the thickness of the plate.

Incremental T.L. Virtual Work Equation

The incremental virtual work equation of the K + 1th
step can be given by:

/ [(6° + Ac)T6Ae — (FO + AF)TéAu] dv®

- / (T° + AT)T§Auds® = 0, (35)

where dv? and ds® are the body and surface elements
of the initial configuration Q) respectively, 0 is
Kirchhoff stress tensor at the state Q(k), e® is Green
strain tensor at the state Q*), F® and T are body
and surface force vectors at the end of state Q(k),
Ag, Ae, AF and AT are the incremental vectors of
the above vectors at the K + 1th step.

T.L. FORMULATION OF REFINED
NON-CONFORMING PLATE ELEMENT
NRT15 FOR GEOMETRICALLY
NON-LINEAR ANALYSIS

Displacement Interpolation Function for the
Proposed Element

The proposed element is based on the refined nine-
parameter element RT9. The assumed displacement
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function can be given as:

U
U= 14
w
Li Ly L3
= Ly Ly L3
Fy F; F3 Fp1 Fea Fes Fyn Fy2 Fys
qt
X { bi{> (36)
e
where:
QP = {u1 us uz v1 vy U3}, (37)

b _
q® = {w) wy w3 We1 We2 W3z Wy1 Wy Wy3},

(38)
Ly = (a1 + biz + a1y) /24, (39)
a1 =Toys—x3Y2 b1=yY2—yYs c1=23— T2, (40)
Fi =L+ L?Ly + L3Ly — [, L% — [ L3, (41)
Fut = csL2Ly — c3L2Lg + (cs — ¢3) L1 Lo L /2

(42)
Fju = by L?Ls — by L2 Ly + (b — b3) L1 Ly L3 /2. ”

43

Through cyclic permutation, the expressions for Equa-
tions 41 to 43, Fp, F3, Fyo, Fp3, F,4 and Fy3 can be
obtained.

From Equation 36, it can be seen that linear inter-
polation functions are used for the displacements u and
v and the interpolation function for the displacement
w is the same as that of element RT9,

Expression of Incremental Strain

Substituting Equation 36 into Equation 31, the formu-
lation of incremental strain tensor is| obtained, which
can be expressed as follows:

Ae = BpAq = (Bry + Brz + Bn)Ag, (44)
where:
B 0 CFB 0
Bri= |2 } = { 07 ] , 45
L1 [ 0 B} 0 CEBg (45)
0 BY 0 GB
BL2 = [0 OL} = [0 0 ’Y] ’ (46)

_[o BR] [0 GiB,
BN— [0 0]— [0 0 ) (47)
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1000 -1.0 0

cP=10 0 0 1| Cb=]0 0 -1},
0110 0 1 0 (48)
al 0 1 bl 0

G=|0 af Gi=30 vt (49)
aj af by bf

of =q2' B b = Aq7 By (50)

Expression of Refined Strain Tensors in the
Proposed Element NRT15

In this part, the refined displacement gradients are
derived in detail for the proposed non-linear non-
conforming plate element.

First, due to the fact that linear interpolation
functions, which satisfy the C® continuity condition
strictly, are used for the displacements u and v in the
proposed element, no modification is necessary for the
first-order gradient B,.

Secondly, the displacement function of w cannot
satisfy the C! continuity condition itself, therefore it
must be modified here to ensure convergence. In order
to obtain the refined second-order gradient temsor of
displacement w, the following forms of %—f,—g—f are
assumed:

0 L, 0 0 Lo 0
- [6L1L2/L 0 Ll(Ll—ZLz) —6L1L2/L 0 —L2(2L2—L1)
1 0 0 w1
0o -l -m Wg, 1
0 m -l Wy,1
X
1 0 0 ws ”
0 -1 —m Wy ,2 (O )
0 m -l Wy,2

Substituting Equation 51 into Equation 19, the refined
second-order gradient of displacement w is obtained,

Bz} =Bg —Bgo + Bgse, (52)
where:
BﬂC = [B%ic B2c B?‘Ic]’ (53)
B}, = % x

Limy—lgms  (2y21+18y13)/2 (Bz12+13231)/2
lsms—lymi  (m3y21+m3yi3)/2 (m3z12+m3as;)/2

2(m%-—m§) l%$12+l§l‘31 m%y21+m§y13
(54)
ho=ya/\/53, +y5 mu=a2/y/3h Uk (55)
Y21 = Y2 — Y1 T12 = 21 — T2 (56)
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Through cyclic permutation, the expression of the
matrices B3, B3, and, consequently, the matrix B,
can be obtained.

Finally, if the same third-order displacement in-
terpolation function is used for displacement w as the
one used in the linear analysis, the C° continuity con-
dition can be satisfied naturally. However, numerical
results show that the accuracy is too low in solving
the typical cantilever problem. In order to improve
accuracy, when forming B, of the proposed element
NRT15, a combination of the third-order and linear
interpolation functions are used to define displacement
function w, which is given by:

w* = ws + a(wg —wy), (57)
where:
3
wy = ZLiwi (Z = 1, 3) (58)
=1

It is known that both interpolation functions w; and
w3 satisfy the C9 continuity condition strictly. Con-
sequently, the new combination form w* satisfies the
converging condition also.

It should also be noted that the different choice
of the variable o might also effect the accuracy of the
results. In this paper, the results have been compared
according to the different values of . Numerical results
show that NRT15 has the highest accuracy when the
value of « is considered as -0.89.

With the new interpolation function w*, the new
first-order gradient vector B is obtained, which can
be expressed as:

u*
B =< J= 8. (59)
Oy
Replacing Bg and B, with the refined gradient vectors

B} and B, the refined strain matrices B}, B}, and
B} are derived, which can be expressed as:

BP 0 CPB 0

B =2 .}:[0“ ] 60
L1 [ 0 B} 0 CtB;} (60)
. 0 BP 0 GB:
t=lo |-l o] (61)
. 0 Blg; . 0 GlB,’;

=0 ] =[0 0] (62)

then:
Ae* = (B, + B, + By)Aq. (63)
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T.L. Incremental Equilibrium Equation for the
Proposed Element NRT15

Substituting Equations 64 and 33 into Equation 35,
the discrete equilibrium equation of the plate element
is obtained, which can be expressed as:

(Kr + K,)Aq = Ap — AR - RY, (64)

where:

Ky, = / BYABLdV°

(]

= / B;,TAB; d°

+ / (B, TAB{,+B;,TAB}, + B{,” AB{, )’

e

=Ky + Krg, (65)

in which Kg is the same as the linear stiffness matrix
and Ky g is called initial displacement matrix. Ky and
K1, can be presented in detail as follows:

KP 0
K0=/ [00 Kob]duo

e

Krg = /V [K%Lp I;fg] dv” (66)
in which:

KEP = BPTAPB?, (67)

Kb = BE*  APBE", (68)

Kp® = BETAPBY, (69)

KSP = B2  APBP, (70)

KS — BE"T APBE”, (71)

where the matrix K, is called the initial stress matrix,
expressed as:

K,,:/ B*"QB* 4", (72)

while the matrix Q can be expressed as:

T. T
Q= [Twy T:] . (73)

The right part of Equation 56 can be defined as the
unbalanced force vector and its various items can be
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D

Figure 1. Four different kinds of regular mesh division.

N =40 N =160

Figure 2. Three types of mesh for E o

expressed by:

Ap = / N*TAFd® + / n*TATds®,

e

AR = / B},  o%du°,

R’ =

N = 640

rientation.

(74)

- / n*TT0ds0.
so (75)

It should be noted that when using the lineariza-
tion method in small incremental steps, the higher-

order vector BY; of the incremental
could be omitted, i.e.,

BL == Bil + Biz

NUMERICAL EXAMPLES
Example 1

A simply supported square plate i
uniformly distributed load p =
L = 100.0, thickness t = 1.0,
E =

strain vector By,

s subjected to a
1.0, with length

Young’s modulus
2.1 x 10% and Poisson’s ratig

g = 025 In

this example, five different mesh divisions A-E are

considered. For mesh A-D, only o
plate is used in the analysis beca
(Figure 1).

elements, respectively (Figure 2).
compared with DKT, BCIZ and th
tion in Tables 1 and 2. It shoul

However, for the irregular
the whole plate is divided into 40,

ne-quarter of the
use of symmetry
mesh FE,
160 and 640
The results are
e analytical solu-
d be noted that

a is considered equal to -0.89 as stated previously.
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Load step
Figure 3. Deflection of cantilever plate.

Example 2

A clamped square plate is subjected to uniformly
distributed load p = 3.0, with L = 100.0, t = 1.0,
E = 2.1 x 10% and p = 0.316. The results for mesh
division A are presented in Table 3 and compared with
those of the elements DKT and BCIZ.

Example 3

A cantilever square plate is subjected to a loading of 1)
P = 400N or 2) P = 1400 N at the free end (opposite of
the clamped side). The Young's modulus is 210 x 10°
N/m2?, L = 10 m, t = 0.1 m and x = 0.0. In this
problem, the regular mesh division D and the irregular
mesh division £ have been used for the computation.
The results are compared with DKT and are presented
in Table 4 and Figure 3.

Example 4

A clamped circular plate is subjected to a uniform load
q, assuming Poisson’s ratio x4 = 0.3, Young’s modulus
E = 107, radius R = 100, and thickness t = 2. A
quarter of the plate is modelled with 6, 24 and 96
elements, respectively. The different types of mesh
are shown in Figure 4. The load factor (¢R*/Et?) is
from 1 to 15, while 15 equal load steps are used. The
constant a is again considered as -0.89 for the proposed
element NRT15. The results are presented in Table 5
and Figure 5 and compared with the analytical solution
as well as the other results. The element QS is an 8-
node ISO-parameter non-linear plate element using a
2 x 2 reduced integration.

Example 5

A square plate, with two opposite edges clamped and
the others simply supported, is subjected to a uniform
lateral load ¢, with 4 = 0.3, E = 0.3 x 107 and t/a =
0.01. The load factor (ga*/Ft*) is from 0.91575 to
9.1575 in 20 equal steps. Five types of mesh division,
identical to that of Example 1, are considered here.
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Table 1. The results of a simply supported square plate subject to uniformly distributed load (mesh division A).

Analytical Computational Results

Solution [16] 2x2 4x4 8x38

NRT15 | 2.1550 | 2.1723 | 2.1755
Linear 2.176 DKT 2.1718 | 2.1773 | 2.1769
BCIZ 2.1550 | 2.1724 -

NRT15 | 0.9737 | 0.9493 | 0.9433
Non-Linear 0.940 DKT 0.9741 | 0.9496 | 0.9434
BCIZ 0.9947 | 1.0275 -

Table 2. The results of Example 1 (mesh division B-E).

Analytical Present Element Solution by Different Meshes

Solution [16] 2x2 4x4 6 X6 8 x8
Mesh B | 0.8760 0.9263 0.9347 0.9390
Non-Linear 0.940 Mesh C | 0.9445 0.9403 0.9407 0.9410
Mesh D | 0.9284 0.9371 0.9395 0.9407
Mesh E | 0.8902* | 0.9341** | 0.9397***

*, ¥* and *** the whole plate is divided into 40, 160 and 640 elements, respectively.

Table 3. The results of a clamped square plate subject to a uniformly distributed load.

Analytical Computational Results
Solution [17] 2x2 4x4 8§x8
NRT15 | 2.2676 2.043 1.9757
Linear 1.9443 DKT 2.3887 | 2.0795 | 1.9853
BCIZ — 2.0431 | 1.9755
NRT15 | 1.3365 | 1.1960 | 1.1550
Non-Linear 1.151 DKT 1.3450 | 1.2053 | 1.1580
BCIZ - 1.2962 | 1.3155

Table 4. A cantilever square plate subject to a concentrated load P.

Analytical Mesh Type DKT Present Solution

Solution [18] a=-08 | a=-00 | a=-1.0

P =400 N 2x2 | 0.7670 0.753 0.753 0.753

Linear Regular 4x 4 | 0.7624 0.760 0.760 0.760

W =0.7619 8 x8 | 0.7620 0.7616 0.7616 0.7616

2x2 | 0.7652 0.6776 0.2956 0.7510

Regular | 4 x4 | 0.7629 0.7316 0.4095 0.7599

P =400 N 8x8 | 0.7620 0.7561 0.5819 0.7615

Non-Linear | W = 0.7547 40 0.6733 0.3730 0.6820

Irregular 160 0.7478 0.5175 0.7583

640 0.7587 0.6370 0.7615

P =1400 N 2x2 2.680 1.6506 0.5139 2.6284

W =2.495 Regular | 4 x4 | 2.670 2.1041 0.7447 2.6599

8x8 2.669 2.4847 1.2293 2.6633
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Table 6. A square plate with two oppg

Table 5. The resul

Y K. Cheung, S. Zhang and W. Chen

s of clamped circular plate under a uniformly distributed load.

Load Analytical Present solution by Different Meshes | DKT | QS {20]

Step Solution [19] 6 24 96 24 12
1 0.169 0.1624 0.1685 0.1686 0.1715 0.1614
2 0.323 0.3155 0.3247 0.3241 0.3300 0.3116
3 0.457 0.4543 0.4630 0.4610 0.4697 0.4453
6 0.761 0.7852 0.7828 0.7752 0.7908 0.7566
10 1.035 1.0924 1.0747 1.0600 1.0824 1.0417
15 1.279 1.3654 1.3334 1.3143 1.3417 1.2950

(mesh division A).

site edges clamped and the others simply supported under a uniform lateral load

Load Classical Present Solution DKT
Theory [21] 4 x4 6 %6 8x8 6 x 6
0.91575 0.019149 0.01959 0.01936 0.01928 0.0195
4.57880 0.095120 0.09733 0.09619 0.09577 0.0969
6.86810 0141550 0.14486 0.14315 0.14252 0.1442
9.15750 0/186710 0.19114 0.18880 0.18800 0.1902
*a = —0.89 for the proposed element
The results are presented in Tables 6 and 7. It should ‘
be noted that a is taken as -0.89 in Table 7. "
i
[sof
CONCLUSION AND DISCUSSION l
1. Various weak continuity conditipns, according to N =6 N = 24

displacement gradients, can be introduced into
the formulation of geometrically non-linear non-
conforming plate elements to enstire convergence.

Figure 4. Three meshes for a circular plate quadrant.

NRT15 in non-linear analysis. From the computed
examples, it can be also noticed that both NRT15
and DKT elements possess higher accuracy for most
of the problems. For the cantilever problem in
Example 3, both elements can converge to the

2. Combined displacement function can be used to
formulate the geometrical stiffness matrix, which
can improve the accuracy of geometrically non-
linear analysis.

Table 7. A square plate with two opp
load (mesh divisions B-E).

A refined geometrically non-line

ar non-conforming

plate element NRT15 is proposed on the basis of

the weaker continuity conditions
displacement function.
it can be seen that the non-ref
is less accurate compared with t

and the combined

From Examples 1 and 2,

ned element BCIZ
he refined element

analytical solution in the linear field. However,
for the corresponding non-linear problem, although
DKT element still converges to a linear solution,
the proposed element RT15 demonstrates better
accuracy. Furthermore, it is possible to conclude
that the proposed element RT15 possesses higher

osite edges clamped and the others simply supported under a uniformly distributed

Load Classical Present Solution
Theory [21] 2% 2 4x4 6x6 8 x 8
Mesh B 0.1682 0.1822 0.1848 0.1861
9.1575 0.18671 Mesh C 0.1853 0.1867 0.1869 0.1869
Mesh D 0.1825 0.1852 0.1863 0.1868
Mesh E 0.1780* 0.1847** 0.1865***

* ** and *** the whole plate is divided into 40, 160 and 640 elements, respectively.
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Figure 5. Deflection of clamped circular plate under
uniform load.

accuracy compared with DKT and BCIZ and is,
therefore, an excellent element for geometrically
non-linear analysis.
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