Scientia [ranica, Vol. 8, No. 4, pp 322-331
© Sharif University of Technology, October

Research Note

Multipo

MultiCom is a small mult
communication scheme bas
MultiCom and discusses t

allocations. Two new softw
dynamic allocation are pres
rate is 45.5 and 45.8 Mbyt
times improvement compar
for the broadcasting is mea
in performance. In addition

and enjoys a four-fold reduc

INTRODUCTION

2001

Multiprocessors need a very high bandwidth for their
interprocessor communications and widely use serial

links for this purpose. In loosely c
cessors, each node is connected to
nodes using static links according
of the system such as ring-mesh o

Beside the slow nature of serial com
data is sent bit by bit using a clo

may suffer from the complexity of th
network.
many intermediate nodes to reach the
links can also be created dynamically
switching elements of the network. (
networks in this category use cross b
switches [1].

Using parallel links to send all bi
has been studied as an alternative fo
simple way of establishing a parallel
a shared memory among the nodes
port memory and a bus. The structun

In addition, a message m

pupled multipro-
the neighboring
to the topology
r hypercube [1].
munication, i.e.,
ck, this method
e interconnection
ay need to pass
destination. The
by setting active
lommon types of
ar or multi-stage

ts of data at once
r a long time. A
link is. to create
y using a single-
e suffers from the

fact that only one node can use the memory at a time

*_ Corresponding Author, School of Infa

rmatics and Engi-

neering, Flinders University of South Austrelia, G.P.O

Boz 2100, Adelaide 5001, Australia.

1. Division of Electronics, School of Engineering, Cardiff

University, Queen’s Buildings, The
689, Cardiff CF2 3TF, Wales, UK.

Parade, P.O. Boz

rt Memory for High-Speed

Interprocessor Communication in MultiCom

N. Asgari* and N. Burgess’

iprocessor designed to check the efficiency of an interprocessor
sed on multiport memories.
he shared memory management using both static and dynamic
are locks designed to control the ownership of the shared memory in
ented and broadcasting is evaluated. The measured communication
es /s for static and dynamic allocations, respectively, showing an 11
ed to a system using dual-port memories. The communication rate
sured as 68.2 Mbytes/s and demonstrates even greater achievement
the structure can be implemented even with a small shared memory
‘tion in the cost compared to a system using dual-port memories.

This paper reviews the structure of

and the other nodes have to wait for their turn. Hence,
it is limited to systems with small number of nodes.
Connecting two microprocessors was an early attempt
to use this structure [2]. In another attempt, a cluster
of four transputers was constructed using a single-port
memory {3].

The advent of Dual-Port Memory (DPM) intro-
duced new techniques for interprocessor communica-
tion and many structures were proposed on this basis
[4,5]. In a structure that uses dual-port memories, each
node shares a DPM with its neighboring nodes. Data
is written to a DPM by one node and is read by the
other node. DPM has been used in the design of a few
small systems [6-8].

One of the problems in this method is that the
number of DPMs used is high. For example, for eight
nodes arranged in a cube and a network controller (NC)
of Figure 1, 20 modules of DPM are required. Even
with this many DPMs, the communication between
some nodes is not direct and requires the use of one
or two other nodes as shown by the bold or dotted
arrows. Moreover, the restriction of having only two
ports for memory places an upper bound on this kind
of structure and limits its application to small systems.

Multiport memory (MPM) is a better alternative
for interprocessor communication. In this paper, the
structure and design of MultiCom, a small multipro-
cessor with a communication scheme based on MPM,
is reviewed and its memory management using both
static and dynamic allocations is presented.

High-Speed Interprocessor Communication in MultiCom

Extension

NC

DPM Y

Figure 1. Communication with dual-port memory.

Extension link

16/32-bit
link

Figure 2. Communication with MPM.

MULTIPORT MEMORY FOR
COMMUNICATION

Multiport memory can increase the performance of a
multiprocessor system and reduce the cost. Figure 2

323
MPM Multiport memory
3rd hop ’/" ‘\\\
/«// 2nd hop
v NCz A
+ N A \
i/ 9 N
L PR3 NGy
Y 4% W4 ¢ .
o/ B
w \"g’ "ﬂ \{\% .‘%st hop
) A 1)

16 or 32 bit link

/N
! / :% MPM
% 4%

Node

Figure 3. Scaling the structure to 512 nodes.

shows the full connection of 8 nodes through a 9-port
memory. The extra port can be used as an extension
link. Any node can send a message to others simply
by writing the message into the shared memory. The
others can receive the message by reading the memory.
This structure offers the best solution in terms of cost
and performance.

The feasibility of multiport memories has been
studied in [9]; however, the structure has not been
realized yet and multiport memory with large port
numbers is not available on the market. Fortunately,
the advent of 4-port memories, currently available in
4 Kbytes, shows that the availability of this kind of
memory with larger port numbers is not far away. As
the number of ports increases, the pinouts grow rapidly;
however, a 2 Kbyte 9-port memory will require around
200 pins, which is easily achievable nowadays.

This structure can be extended to a large number
of processors. Figure 3 shows a system of 512 nodes,
in which 65 blocks of 9-port memory and eight Net-
work Controllers (NC) are used. As illustrated, the
communication of the furthest nodes such as X and Y
can be performed in three hops: X writes to shared
memory; NC; copies it to the next shared memory in
the hierarchy; and finally, NC; transfers the message
into the shared memory of the node Y, where it can be
picked up. For a similar situation, a hypercube of order
9, using store and forward, would require 9 serial hops.
Moreover, if the structure were to be implemented by
dual-port memories, requiring 1460 blocks of dual-port
memory and 73 NCs, it would require 6 hops.

324

N. Asgari and N. Burgess

K

The expected rise in performan
in cost and the number of links wouy
As the first stage in evaluating the pr
a small multiprocessor called MultiC
and built.

ce and reduction
Id be very high.
oposed structure,
om was designed

In this model, four nodes were intercorn-

nected using 4-port memories as the communication

medium and static allocation was t

ested on it [10].

More complicated shared memory management and

broadcasting are presented in this

paper.

Using:

simulation techniques, a performance model was also”
constructed to evaluate the performance of the system

in larger structures.
presented in [11} and more simulati
under development.

Hardware Design of MultiCom

The nodes of MultiCom were TMS3
cessors from Texas Instruments (TI
cycle time of 50 ns (20 MHz). Each u
bit on-chip RAM, one 16-bit timer 4
interrupts. The nodes were connecte
as their host via RS232 ports. The ']
debugger were used for programming

The 4-port memory used in
IDT7054 from Integrated Device T

The prelimir

ary results are
ns are currently

20C50 DSP pro-
running with a
ode had 10K 16-
nd four external
d to a PC acting
I'T assembler and
and debugging.
MultiCom was
echnology (IDT)

with an access time of 35 ns. This memory is organized

Node-2
CcOM3 4 (RS-232) CPU Local
00— 7
mermory Interrupts
R R R e miaial e el -l ':
/ | '
I @ @ ‘
1 1
f '
1]
] 1
/ COM2 ' :
: Address)
CPU |'|c— 8 bit 8 bit 1] CPU
: [E——— <= :
! 2xIDT 7054 ,
1
: Data 4K x16 4-port :
'] Local
Local || Q:i> < l:: 1 >
: ' f memory
memory])
1 1
Shared Memory
com Node-1 : : Node-3
i)
' '
1 '
= . -
g —r : H
% i '
¥ i
/”, P I EEE R -
: Local
/ o CPU oca
s memory
COM4
Node-4
o

igure 4. The block diagram of MultiCom.

as a 4 Kbyte array and has four independent ports.
Each port has its own control, address and data buses.
The memory array can be accessed through different
ports simultaneously, but there are two limitations:

e Simultaneous writes to the same location should be
avoided;

e Simultaneous read from a location that is being
written may return incorrect data.

For reliable memory operation, these limitations should
be considered in the design of any system.

The block diagram of MultiCom is shown in Fig-
ure 4. In this diagram, four nodes are interconnected
by two IDT7054 memories. Each node is connected to
one of the serial ports of a PC acting as a host. The
interface circuit consists of the required logic to connect
the 4-port memory to each node and an interrupt bus.
Each node generates three interrupts for the other three
nodes and receives three interrupts from them. The
interrupts are used as part of the handshaking for the
communication through 4-port memory.

The on-chip timer was used to measure the time
spent on communication of the nodes from beginning
until all the nodes finished. This measurement was
the basis of the achieved results. In order to get
a correct time measurement, all the nodes should

High-Speed Interprocessor Communication in MultiCom

be synchronized to start at the same time. The
synchronization was performed by the aid of the shared
memory.

Test Program

In order to test the structure under heavy commu-
nication traffic, a simple program based on all-to-
all communication was tested on MultiCom. In this
program, each node sends 1792 words (700 hex) to
the other three nodes through the shared memory.
The message size of 700 hex was chosen by con-
sidering the capacity of the internal memory of the
nodes.

At the start up, each node fills its transmit
buffers with the data to be sent to the other nodes
and then enters the synchronization loop. After a
successful synchronization, each node starts its timer
and executes the main loop.

In the main loop, each node checks the transmit
buffers. If there is data to be sent, it checks the status
of the receiving node. If the node is ready to receive,
the transmitter {Tx) allocates a buffer for transmission
and writes the proper message size in the buffer. Then,
it transfers the data into the buffer and generates an
interrupt for the receiving node. The proper message
size is less than or equal to the maximum buffer length
in the shared memory.

Upon receiving the interrupt, the receiver (Rx)
identifies the transmitter and refers to the appropriate
buffer in the shared memory. It reads and transfers the
data to its local memory and appends it to the previous
data received from the same transmitter. At the end,
it activates a flag in the shared memory to inform the
transmitter that the node is ready again to receive more
data from that transmitter. This protocol shows that
the handshaking between the Tx and Rx is performed
with the aid of an interrupt from the Tx side and a flag
in the shared memory from the Rx side.

After finishing all of the transmissions, each node
announces the end of transmission by writing a word
in the shared memory and waits for the other nodes to
finish. After the entire communication is completed,
each node stops its timer and writes the timer value
in the shared memory. The largest of the timer values
reported by the nodes is chosen as the time spent on
the overall communication.

It is apparent from the algorithm that there are
several overheads in communication among the nodes.
Each node wastes some time for the management of the
transmission and reception of the data. Checking the
transmit buffers or the status of the recipient nodes,
allocating a buffer for transmission and interrupt la-
tency are a few examples of available overheads. In
programming the system, every attempt was made to
reduce the overhead to a minimum.

325

MANAGEMENT OF SHARED MEMORY

The allocation of the buffers in shared memory to
different transmissions is one of the major issues in
this structure. This can be done with static allocation
where a buffer is already allocated for every possible Tx
and Rx, or with dynamic allocation where the available
buffers can be allocated to any Tx and Rx on request.
Each method is discussed separately.

Static Allocation

In static allocation, as shown in Figure 5, the shared
memory is divided among all the possible transmitters
and receivers and there is a dedicated buffer for each
Tx sending data to every Rx. There are four nodes in
MultiCom and each node can send to three other nodes.
Hence, 12 buffers in the shared memory are required.
With the 4K available memory, the maximum size of
each buffer is 336 or 150 hex. The leftover words are
reserved for administrative purposes such as the ready
signal from Rx to Tx [10].

The advantage of the static allocation is that there
is no overhead in assigning a buffer to a transmission,
so the overall overhead is reduced. There is also no
interference from other nodes in using a buffer for
transmission. The drawback is that some part of
the valuable shared memory is wasted because at any
time, only some of the buffers are actively used in the
transmission and the rest remain idle at that time. A
better algorithm can use the available memory more
efficiently.

Address(Hex) Tx —Rx Size (Hex)
0
4 4
Node-2—Node-1 150
158 Tx to node-1
Node-3—Node-1 154
2AC
Node-4—Node-1 154
400
Reserved
404
Node-1—Node-2
/ 1K Tx to node-2
Node-4—Node-2
800
Node-N—Node-3
1K Tx to node-3
N=1,2,3
C00
Node-N —Node-4
N=1,2,3 1K Tx to node-4
1000(4K) _ _

Figure 5. Memory layout for static allocation.

326

Dynamic Allocation

In dynamic allocation, as illustrated
shared memory is divided into severs
them are general purpose and none
specific communication. The list of t]
in an allocation table. Any node requ
transmission refers to this table and
buffer for its transmission.

At a given time, if there is
node performing buffer allocation, dat
because of the probable contention.
two nodes simultaneously allocate th
their transmission without knowing t
other node, some data will be overv
loss is inevitable. Hence, there should
to control the allocation process so

in Figure 6, the
al buffers. All of
s dedicated to a
he buffers is kept
iring a buffer for
allocates a free

more than one
a loss may occur
For example, if
e same buffer to
he activity of the
yritten and data
be a mechanism
that it could be

performed by one node exclusively. In order to achieve

this goal, a lock mechanism impleme

nted in hardware

or software should be used and each node should

exclusively own the lock before allocat
prevents the others from performing a
the lock is released.

ng a buffer. This
similar task until

It is worth mentioning that the lock is only
used for critical activities such as buffer allocation,

where there is a possibility of inter
other nodes.
to the previously allocated buffers c

ference from the

Other tasks such as reading or writing

an be performed

Address (Hex) Size (Hex)
° 195
Lo 7 10
30
0 —
NN\
200
Buffer 1 200
00 —
Hyffen 2 200
600 @ —0 —
co) —— —_—
200
E00
Buffer N 200
1000 (4K)

Figure 6. Memory layout for dynamic allocation.

N. Asgari and N. Burgess

in parallel with the ongoing activities on the shared
memory. Therefore, the performance loss caused by
the lock mechanism is minimal.

Hardware Lock

In some dual-port memories, a hardware lock called
“semaphore logic” is used to control the ownership of
the memory [12]. The requesting node writes “0” in the
lock followed by a read. If the lock is not owned by the
other node, the read action will return “0” indicating
a success, otherwise “1” will be returned indicating a
denial. A success means that the node has the exclusive
right to work in the locked area of the memory. Once
the owner finishes with the memory, it releases the lock
by writing “1” in it. On the other hand, a denial in
acquiring the lock means that the other node possesses
the lock and when it is released, the current request will
automatically take effect. Hence, the node receiving
the denial should either check the lock regularly until
it is released or write “1” in the lock to quit and try
another time. This concept is only effective for two
ports.

As IDT7054 was a new product at the time of
design, no semaphore logic had been implemented in
it. The other possible reason for the lack of semaphore
logic could be the complexity of logic for four ports.
This is because there might be more than two nodes
requesting the lock and other factors such as priority
should be included in the mechanism. Consequently,
the overall logic could be more complicated.

In the absence of a hardware lock, software
locks should be exploited. TOKEN passing is the
only method cited in the literature for this purpose
(13]. This method and the two new methods de-
vised to control the lock in software are discussed
briefly.

TOKEN Passing

In this method, the lock belongs to a node with an ID
that matches the TOKEN which resides in a dedicated
location. When finished, the owner passes the lock to
the next node in the cycle by writing the ID of the
new owner in the token. Each node should check the
token regularly to determine its turn in possessing the
lock.

This scheme is easy to implement, but the prob-
lem is that the nodes that are busy with other tasks and
are not involved in the communication at that time are
also included in the token passing cycle. Therefore,
regardless of its activity, each node should check the
token regularly and pass it to the others. Failure to
pass may result in long delays for the nodes waiting for
the token.

High-Speed Interprocessor Communication in MultiCom

The Lock with BUSY Signal

In this new method, only those nodes queued for the
lock are considered in the TOKEN passing cycle. As
shown in Figure 7, each requesting node should register
in a dedicated location, provided that the BUSY flag is
not active, otherwise the node should keep checking
until the flag is cleared. The lock belongs to the
node with the ID that matches the number in the
OWNER. When the current owner finishes with the
lock, it determines the next owner by checking all the
registered nodes and passes the lock to the next node
in a circular priority.

Before determining the new owner, the BUSY flag
1s set to prevent other nodes from registering. This is
essential for blocking probable concurrent read/write
operations.

In the process of determining the next owner, if
there is no request pending, the current owner sets
another flag called No-owner. This is to signal the
next requesting node to take the responsibility for
determining the owner. The details of the algorithm
are as follows:

¢ Each node registers its request if BUSY is inactive,
otherwise keeps trying;

o If there exists a current owner (No-owner flag is
not set), the requesting node keeps checking the
OWNER. When it matches the ID of the node, the
lock belongs to the node;

e If there is no owner, the requesting node sets the
BUSY flag to block other requests. Note that
there might be more than one node attempting

Node-1 request

Node-2 request

Node-3 request

Node-4 request

-
—
-

. —
-
-
-
-
—

Figure 7. Lock with BUSY signal.

327

to register simultaneously at this situation and a
short delay is required to make sure that other
probable requests that might be still in action, have
been registered successfully. Considering all the
requests, each requesting node determines the owner
in a circular priority where the previous owner has
the lowest priority. The node with the ID that
matches the determined owner, writes its ID in the
OWNER, clears the BUSY and the No-owner flags
and proceeds to use the locked area of the shared
memory. The other nodes, if any, perform the regular
checking of the OWNER to determine their turn in
acquiring the lock;

e When the owner finishes with the lock, it sets the
BUSY flag to disable the incoming requests and
clears its own request. Then, it checks the other
requests to find the next owner according to the
priority cycle and writes the new owner’s ID in the
OWNER. If there is no pending request for the lock,
the node sets the No-owner flag. At the end, it clears
the BUSY flag.

This algorithm was quite successful in practice
and a fair distribution of the ownership was observed.
Although the overhead of the algorithm is slightly high,
the good point is that the registered nodes are free to
do other tasks while their turn to acquire the lock is
determined by the other nodes. The only remaining
contention is the probable setting of the BUSY flag by
more than one node at the same time. However, as
they all write the same information in the BUSY flag,
the contention has no drawbacks. If a lower overhead
is desired, the algorithm can be changed to the one
explained in the next section.

Fast Lock

The structure of this lock is the same as the previous
one except that each node is responsible for acquiring
the lock individually. As shown in Figure 8, the No-
owner flag is no longer needed. The algorithm works
as follows:

¢ If not BUSY, each requesting node raises the BUSY
flag to block the other nodes from registering and
enters its request in an appropriate location. In
heavy demand for the lock, usually more than one
request could be registered;

o After a short delay to make sure that all probable
requests are entered, each registered node determines
the potential owner using the circular priority. The
winning node proceeds to use the shared memory,
while the losing nodes keep determining the owner
repeatedly until it matches the ID of the node:

o After finishing with the lock, the current owner
removes its request and writes its ID in the Previous-

328

Node-1 request

Node-2 request

Node-3 request

Node-4 request

——
——
——

Figure 8. Fast lock.

-—
-—
—

-

Owner. If no other request is pending, it also clears

the BUSY flag;

¢ By changing the Previous-Owner and removing the

relevant request by the current owner,

the other

registered requests, if any, determine the new owner

and proceed accordingly.

The algorithm is efficient and very simple. The associ-

ated overhead is also low. The only

drawback is that

the registered nodes should continuously determine the

next owner to win the lock. In addition, the requesting

nodes may face a raised BUSY flag more frequently.
It is worth mentioning that another algorithm

was also tested on the system, whi

h was based on

queuing for the lock in a first-in-first-qut list. However,
this method was not completely successful because

of the probable contention that it c
registering or moving in the queu.

Broadcast and Multicast

Omne advantage of using dynamic all

the same data is to be sent to more

puld cause when

cation is that if
than one node,

instead of sending it to each of them individually,

multicast or broadcast can be used.
once the data is transferred into a
sent to more than one node.
can receive the data from the same
with the other nodes. Broadcasting
eliminate the overhead of getting m
multiple transfers of data into the b
the overhead to the overhead of one
performance is expected to rise.
Broadcast and multicast can be
applying minor changes to the prot
in the allocation table can also ho

Ead

The idea is that
buffer, it can be
h involved node
buffer in parallel
and multicasting
ultiple locks and
nffers and reduce
attempt. Hence,

implemented by
col. Each entry

Id the broadcast

N. Asgari and N. Burgess

information by assigning a bit to each node. If the bit is
set, the corresponding node will receive the broadcast
data.

The transmitter checks the status of all the
receivers and if ready, allocates a buffer, writes the
broadcast information in the relevant entry in the
allocation table and transfers data to the buffer. Then,
it writes the buffer number into the mailbox of each
receiving node and generates an interrupt for each of
them.

The receiver gets the number of the buffer in use
from 'its mailbox, reads the data from the buffer and
clears its flag bit in the corresponding entry in the
allocation table. If the entry shows that there are no
more nodes to receive the data, the last receiver de-
allocates the buffer.

RESULTS AND DISCUSSION

Multiport memory was interfaced as an external mem-
ory for TMS320C50 nodes. In the node processors, a
2-byte read from the external memory takes one cycle
and a write takes two cycles. Therefore, in total, a
2-byte communication takes three cycles or 150 ns for
a cycle time of 50 ns. Hence, the communication rate
for each node is 13.3 Mbytes/s. If all of the four nodes
communicate at this rate without any overhead, the ag-
gregate communication rate for the entire system would
be 53.4 Mbytes/s. Note that the ideal rate is stated
for comparison purpose only and is not attainable in
practice. This is because several overheads in the
system such as checking the readiness of the receivers,
queuing and allocating buffers, interrupt latency, and
also the finite length of the shared memory buffers
degrade the upper bound. The experiments illustrate
that the length of the buffers in the shared memory
is the main factor in rate measurements. Other
important factors are the overhead of getting the lock
and allocating a buffer in dynamic allocation.

With the total communication rate as the focus
of the experiment, MultiCom was tested under static
allocation, dynamic allocation and broadcasting. The
results are presented in the next sections.

Static Allocation

Static allocation was successfully tested on the system.
Apart from other outcomes, it confirmed that the inter-
processor communication with multiport memories was
feasible and could offer a great increase in the system
performance. As shown in Figure 9, by increasing the
buffer length, the communication rate increases and
approaches the ideal bandwidth. The maximum rate
obtained was 45.5 Mbytes/s, showing 15% overhead.
This rate was obtained for the buffer length of 336
(150 hex), which was the maximum buffer size for the

High-Speed Interprocessor Communication in MultiCom

100

75

Communication rate"
—0— Overhead

% Overhead
o
S

-
o
Communication rate (Mbyte/s)

[~
(=33

05[]

59 = |

3‘3

12 23 = |

olenmm] AP AT

1 2 3 5 10 21 42 84 168 336 Ideal
Buffer length (words)

0

Figure 9. Results of static allocation.

shared memory size of 4K. Considering unavoidable
overheads in the system, 15% is a reasonable value and
demonstrates the effectiveness of the protocol under
heavy traffic. Further performance rise can be expected
for larger shared memory, however, the upper bound
cannot be exceeded. For the memory size and, hence,
the buffer size reduced to half, the rate dropped to 41.2
Mbytes/s and the overhead rose to 23%.

The results also demonstrate that a good per-
formance with reasonable overhead is achievable even
with small buffer sizes (100 or more). Therefore, a
large shared memory is not a requirement for this
structure. Increasing the buffer size beyond 336 will
only improve the performance slightly and may not
satisfy the cost/performance criteria. The latency for
the static allocation was 2.4 us for a 4-byte message
and 12 us for a 128-byte message. Higher processor
speed and wider data path can lower the latency.
The limiting factor is the speed of the memory in
use.

Dynamic Allocation

Considering the reasonably close performance to the
maximum rate achieved for the static allocation, there
is not much to gain in applying dynamic allocation.
However, there are two main reasons for using this kind
of allocation:

¢ The ultimate goal of this structure is to use at least 8
or 9 ports for the shared memory. Under static allo-
cation, a memory with N-port should be divided into
N(N — 1) buffers. Therefore, the buffer size would
be very small for large N. Moreover, as the number
of ports increases, the internal connections inside the
memory chip increase considerably resulting in less
space for the memory cells. Hence, a probable 8-
port memory will have a small capacity and dividing
it into 56 buffers will yield even a smaller buffer
size. This in turn will reduce the performance.
Considering the fact that not all of the buffers are
used simultaneously, a better management of the

329

memory, such as dynamic allocation, is required to
prevent the performance loss due to small buffer size:

¢ As explained later, broadcast and multicast, which
increase the system performance considerably, are
only attainable in dynamic allocation.

Figure 10 depicts the communication rate for different
buffer lengths and buffer counts. The number of
allocations made for each buffer was also recorded in
the experiment. An interesting result was achieved
from these statistical figures; they showed that for
four nodes and under heavy traffic, no more than six
buffers were required (in a rare case, the seventh buffer
was used only once). Therefore, for four nodes, only
half of the buffers used in static allocation were used.
The dependency between the number of nodes and the
buffers in use was evaluated by the performance model
in [11].

The highest communication rate was 45.8
Mbytes/s, which was achieved for 6 buffers of 672
words. As expected, the increase in performance was
not significant compared to the static allocation, but
it is anticipated that this method can perform much
better if a large number of ports and small memories
are to be exploited. Furthermore, its advantage in
broadcasting will be shown in the next section.

For 5 buffers of 806 words, although the buffer
length was increased, the performance dropped because
some nodes had to wait for a buffer to be freed.
Increasing the number of buffers to 7 declined the
performance, as the extra buffer was not used, but
the buffer size was reduced. The rate obtained for a
buffer size of 336 was 40.8 Mbytes/s compared to 45.5
Mbytes/s for static allocation. This reveals the extra
overhead endured by the system because of the lock
mechanism and the allocation process.

Dynamic allocation enjoys the benefits of a better
memory management, but suffers from the overhead
imposed by the serial nature of the lock and its
implementation in software. A better performance can
be expected if a hardware lock, such as semaphore

Mbytes/s
60 53.4
50 45.8
3 39.3 40.8 i
I
- Tea
p 40 d
= L] o
- Q (7] °
gsorts 2 3
5 9 “i “i 1 ©
m -~
eI i |5 ‘
) -1 & e
O 1wl jikd |2 34
S ERLAS {7k © g
oL Aoy B 1 B
256 336 576 672 806 Ideal

Buffer length (words)

Figure 10. Communication rate in dynamic allocation.

330

logic, is exploited and/or the allocation procedure is
improved. Compared to static allocation, latency is
slightly higher due to the lock mechanism.

Broadcasting

Broadcasting is one of the major advantages of the
dynamic allocation. Data is written|into the shared
memory buffer once, but it can be received by more
than one node. Hence, a considerable saving in time
can be achieved by avoiding duplicate writes and a
higher communication rate is expected.

The best communication rate for broadcasting
was 68.2 Mbytes/s for the buffer length of 806 words.
This value is about 50% more than a normal com-
munication. Even the upper bound communication
bandwidth was exceeded by 30%. The total number
of buffers involved in communication did not exceed
four. These results confirm that dynamic allocation
performs better than static allocation.

Comparison of Results

Different results obtained from MultiCom are com-
pared in Figure 11. The results demonstrate that both
static and dynamic allocations can achieve a reasonably
good performance that is close to the unattainable ideal
case. Furthermore, dynamic allocation illustrates its
advantage by the use of broadcasting, which outper-
forms even the ideal case.

The result of a previous work in this area is in-
cluded for comparison; in this system,|Intel 486DX2/66
processors were used as nodes and IDT7006 dual-port
memories (16 Kbyte, 45 ns) as shared memory. A
cluster of five nodes was reported to be near com-
pletion in [8]. Under light traffic condition and for
a buffer length of 1000 words, the measured rate for
sending a packet of data to the dual-port memory was
quoted around 2 Mbytes/s. The same rate could be

Mbytes/s

75/

(2]
o

| CTT
'S
£l

'S
o

w
(=]

Communication rate

Upper bound
4.0

—
o

4 buffers of 806 words

12 buffers of 336 words

0 L
Previous work Static Dynamic Ideal
(Dual port)

Broadcast

Figure 11. Comparison of results.

N. Asgari and N. Burgess

applied for receiving data from the dual-port memory.
Therefore, each node had a communication rate of 1
Mbytes/s. The overall communication rate was not
stated; however, for comparison, an upper bound can
be estimated for a four-node system. In order to have
a full connection between all the nodes, this system
would require six blocks of dual-port memory between
the nodes and each node should be connected to three
different memory blocks. Under these conditions, the
upper bound communication rate would be 4 Mbytes/s.

The results obtained from MultiCom show a great
deal of improvement over the previous work in terms
of both performance and cost. The communication
rate is increased more than 11 times and the number
of blocks of memory is reduced six times (one 4-port
memory compared to six dual-port memories, which is
about four times reduction in cost). The increase in
performance could be even higher if an exact value of
the communication rate rather than an upper bound
was available. Moreover, broadcasting demonstrates
an increase of at least 17 times in performance. It
is worth mentioning that broadcasting is not possible
with a structure that uses dual-port memories.

CONCLUSION

In this paper, the design of MultiCom, a small mul-
tiprocessor that uses multiport memory for its inter-
processor communications, is discussed. The shared-
memory management was achieved using both static
and dynamic allocations. Dynamic allocation is supe-
rior to static allocation because of a better memory
management and the ability to perform multicast-
ing/broadcasting. Two new algorithms to implement
software locks for obtaining the ownership of the shared
memory were also presented. The achieved communi-
cation rate for the overall system was 45.5 Mbytes/s for
static allocation, 45.8 Mbytes/s for dynamic allocation
and 68.2 Mbytes/s for broadcasting. The system
illustrated a great increase in performance as well as a
good reduction in cost, with no requirement for the use
of large shared memory. It also enjoyed a much simpler
design and a great deal of reduction in the connection
buses compared to a system using dual-port memories.

REFERENCES

1. Feng, T. “A survey of interconnection networks”, IEEE
Computer, 14(12), pp 12-27 (1981).

2. Hoffner, Y. and Smith, M.F. “Communication be-
tween two microprocessors through common memory”,
Microprocessors and Microsystems, 6(6), pp 303-308
(1982).

3. Boianov, L.K. and Knowles, A.E. “Higher speed trans-
puter communication using shared memory”, Micropro-
cessors and Microsystems, 15(2),-pp 67-72 (1991).

High-Speed Interprocessor Communication in MultiCom

. Wyland, D.C. “Dual-port RAMs simplify processor
communication”, Microprocessors and Microsystems,

12(10), pp 585-94 (1988).

. Pryce, D. “Dual-port static RAMs. Specialized memo-
ries ease communications”, EDN, 34(8), pp 83-9 (1989).

. Jagadish, N., Kumar, M.J. and Patnaik, L.M. “An
efficient scheme for interprocessor communication using
dual-ported RAMs”, IEEE Micro, 9(5), pp 10-19
(1989).

. Khan, G.N., Mahmud, K., Igbal, M.S. and Rashid,
H.U. “RSM - a restricted shared memory architecture
for high speed interprocessor communication”, Micro-
processors and Microsystems, 18(4), pp 93-203 (1994).

. Campbell, S. and Kumar, M.J. “The design and devel-
opment of the COMPS architecture”, Australian Com-
puter Architecture Workshop (ACAW’96), Melbourne,
Australia, pp 177-187 (1996).

10.

11.

12.

13.

331

Forsell, M.J. “Are multiport memories physically fea-
sible?”, Computer Architecture News, 22(4), pp 47-54
(1994).

Asgari, N. and Burgess, N. “The structure and design
of MultiCom, a small multiprocessor with multiport
memory based communication”, 8rd Australasian Com-
puter Architecture Conference, Perth, Australia, pp 15-
24, Springer-Verlag (1998).

Asgari, N. and Burgess, N. “Interprocessor communica-
tion in tree structured multiprocessors using multiport
memory”, in 4th Australasian Computer Architecture
Conference (ACAC’99), Auckland, NZ, pp 161-172,
Springer-Verlag (1999).

Cypress Semiconductor Corporation,

Dual-port RAMs, San Jose, CA (1996).

Mick, J.R. “Introduction to IDT’s four port RAM”,
Application Note AN-45, Integrated Device Technology,
Santa Clara, CA (1996).

Understanding

