Scientia Iranica, Vol. 8, No. 4, pp 312-321
®© Sharif University of Technology, October 2001

Research Note

Combination of Scalable Caching Methods for
Weakly Coherent Shared Memory Model

K. Zamanifar*, J.M. Nash! and P.M. Dew'

In this paper, highly scalable caching methods are described for a weakly coherent shared memory
model called WPRAM in which explicit synchronization operations are used to guarantee data
coherency. The schemes described here are applied to barrier synchronization and a form of
pairwise synchronisation employed by the WPRAM and a combination of the two. An example of
the barrier caching method application is shown using the simplex method for linear programming.
A parallel sorting algorithn is used to demonstrate the combination of barrier and tag caching

schemes.

Results are based on simulation of a scalable distributed memory machine. An

analytical model is used to|describe the performance of the algorithm and verify the simulation

results.

INTRODUCTION

The emergence of a number of parallel computa-
tional models, including the BSP [1], LogP [2] and
WPRAM [3] aim to address the problems of writing
a parallel software that is both scalable and portable.
These models present the programmer with a well-
defined cost model to analyze the performance of the

algorithms. There is a growing acceptance that general

purpose parallel computers need t
scalable shared memory computation
ability to exploit data locality for g
Today, this is commonly achieved
model onto a distributed memory

be based on a
al model, with the
ood performance.
by mapping the
computer with a

scalable interconnect (supporting li

ear increases in

bisection bandwidth). This results in a two-level
memory hierarchy, in which data is either local or
shared across the machine. The next few years will
see a trend towards cache coherent multiprocessors,
using the techniques employed by machines such as
KSR (cache-only memory) and DASH (distributed
directories). This will simplify the programming model
by presenting a single level memory hierarchy, consist-
ing of a system-wide shared address space. Multiple
copies of a shared variable are, then, automatically
maintained in a coherent state by the machine.

* Corresponding Author, Department|of Computer Engi-
neering, University of Isfahan, Isfahan, IL.R. Iran.

1. Scalable Systems and Algorithms Group, School of Com-
puter Studies, University of Leeds, West Yorkshare, LS2
9JT, UK.

One of the reasons for the success of sequential
computing is that the explicit form of data transfer
between different memory hierarchies has been hidden
from the programmer through the use of suitable
caching techniques. In a parallel system, the main
problem to overcome for the introduction of a caching
system is the cache coherency problem. This relates
to the fact that the copies of a variable resident in the
caches of multiple processors must be invalidated when
the value of variable is updated, in order to maintain
the consistency of the system.

Snoopy-based cache coherency schemes [4] are
limited to small-scale multiprocessors, because of the
limited bandwidth of the shared bus. Hardware solu-
tions to the cache coherency problem for multiproces-
sors with point-to-point connections usually employ a
directory-based scheme. Due to the increased complex-
ity of hardware solutions to the cache coherency prob-
lem, software assisted schemes [5] have been proposed,
which are under the supervision of the compiler (static
schemes) or supported by the operating system kernel
(dynamic schemes). To support scalability for a large
number of processors, storage requirements and run-
time overhead related to the cache coherency scheme
should be constant or grow sublinearly with the total
number of processors.

In this paper, a highly scalable and practical cache
coherency scheme for barrier and tag synchronizations
is described. The next section is devoted to the
barrier caching scheme and simplex method as a case
study. Then, the tag caching scheme is described. The
combination of the two schemes and a parallel sorting

A Weakly Coherent Shared Memory Model

algorithm as a case study are explained followed by the
simulation results. Finally, the analytical performance
model is discussed very briefly and the paper ends with
some conclusions.

BARRIER CACHING METHOD

The cache coherency problem arises from the fact that
the copies of a variable resident in the caches of multiple
processors must be invalidated or updated when a
new value is written to the variable. According to
weak ordering semantics [6], the contents of caches
and the shared memory should be consistent at barrier
synchronization. The barriers divide the computation
into a sequence of supersteps [1].

Overview of the Method

The cache coherency problem can be solved by
variation of the bulk synchronous cache retention
method [7]. The method requires that access to
a variable can determine if its coherency is to be
maintained by the use of barrier operations. This
can be solved by providing a matching pair of barrier
statements [8]: One to denote the start of the superstep
(barrier_begin) and one to denote the end (barrier_end).
This defines the environment of data accesses. The
barrier_begin statement allows the underlying system
to select the associated caching method, for main-
taining cache consistency. The barrier_end statement
will then synchronize the processors. This preserves
the coherency of shared data at the point where all
processes are synchronized by execution of barrier_end
statement.

Self-invalidation cache coherency schemes are usu-
ally software-assisted cache coherency schemes [5,9].
The complexity of hardware-based cache coherency
schemes and the limited scalability of bus-based
cache coherency schemes have made software-assisted
schemes attractive. Software-assisted cache coherency
schemes operate at compile-time (statically) or at run-
time (dynamically). There are two classes of inval-
idation schemes: indiscriminate invalidation [10,11]
and selective invalidation [9,12]. The indiscriminate
invalidation scheme invalidates the entire cache line at
certain points in the program. The selective invali-
dation scheme limits the number of the elements of a
cache line to be invalidated. The former scheme is fast
but not efficient. This is because some elements within
the cache line which are invalidated can potentially be
valid, leading to a loss of temporal locality and poor
hit ratio. The latter scheme, by keeping some elements
of a cache line beyond certain points in the program,
increases the hit ratio, however, because of sequen-
tial selection and invalidation of data items, it may
be much slower than the indiscriminate invalidation
scheme. In dealing with the third issue, the approaches

313

used in indiscriminate and selective invalidations are
very similar. The ends of some computations, called
computational units, and the boundaries of parallel
loops [10] are identical. In a cache coherency scheme,
the main factors which improve the data locality and
support scalability are: retention of data across the
caches and maintaining their coherency in a scalable
manner.

In the Bulk-Synchronous Parallel (BSP) model
[13], memory is consistent at synchronization points.
The simple invalidation scheme can be used to cache
all the data read during the superstep and to invali-
date them at a synchronization point. Although this
scheme is scalable, it is not efficient. Limited cache
retention scheme [7], which permits some data to be
retained across synchronization boundaries, has been
used in scalable caching methods for a weakly coherent
memory. In this research, which aims to study the
use of caching methods in the support of a scalable
shared memory for the class of MIMD machines (in
particular, a shared memory is weakly coherent, i.e.,
data is coherent at points of synchronization), the
most relevant caching method is the cache retention
algorithm. Self-invalidation, retention of data across
synchronization points, low storage overhead and the
potential to be implemented both in hardware and
software are attractive features of this scheme.

The caching scheme is based on the following
principle. If a process is currently reading a variable,
the process can, then, guarantee that no other process
will be updating that variable within that superstep
(although other processes may also be reading the
variable). Similarly, if a process is updating a variable,
no other processes will have access. This leads to the
following implication: If a process does not access a
variable in the current superstep, another process may
be updating its value and so the cached copy must be
invalidated before the next superstep begins.

The caching scheme which supports this method
is based on the use of a state tag for each variable. The
state tag can take the values 0, 1 or 2. When a cache
line is initially read from the shared memory, the tag is
set to 2. Each time a barrier_end statement is executed,
the state of the tag is decremented. The value of the
tag will thus decline to 0 if it is not used within the next
superstep. A tag value of 0 denotes an invalid variable.
Accessing a variable within a superstep will reset the
tag value back to 2. The scheme is inherently parallel,
since each cache can be updated independently. A
potential disadvantage with this scheme is that some
cache lines may be unnecessarily invalidated, since
although a processor does not access a cache line in
a superstep, no other processor accesses the associated
variables either.

The contribution of this work is the proposal of a
practical and highly scalable cache coherency scheme

314

for a weakly coherent memory, developed from the

cache retention method for barrier

synchronization.

This can be used to support data locality and main-

tain the coherency of the shared data.

The barrier

caching method does not suffer the limitations of the
broadcasting mechanism of the snoopy-based cache
coherency scheme, which limits scalability, nor does it
have the serialization problem inherent in directory-

based schemes. The barrier caching
ently parallel, since the contents of e
invalidated independently. This met
to both hardware and software based
the related overheads due to validat
finding, and updating a variable in

method is inher-
ach cache can be
hod is applicable
schemes, because
ing, invalidating,
a cache line are

acceptable in both hardware and software environ-
ments. A potential disadvantage with this scheme is
that some variables in a cache line may be unnecessarily

invalidated in the next superstep, if
access those variables in the current
affects data locality.
Case Study: Parallel Simplex M
The simplex method was chosen beca

ity (it is implemented using a data pa

processes do not
superstep. This

ethod

use of its simplic-
rallel approach of

a very regular structure) and its non-trivial mapping
from a two-level to a one-level memory hierarchy. The
method can be used to derive the values of a set of

n variables zj ...2%,, which minimiz
function z of theses variables. Thi
set of d constraints on these variab
summarized as follows:

Minimize z = Z(cj.:vj) for 7=1...

J

Subject to

Z(aw.xj) S bL for 1 =1|..

J
z;>=0for j=1...n and

A = (a;;), with b; and c; repres

e some objective
5 is subject to a
es. This can be

d<<n.

enting the given

constants. Parallelism can be exploited by distributing

the n columns of A across the prog

€SS0IS.

The sim-

plex algorithm has been written using three different
memory hierarchy models, to demonstrate the issues

of performance and program desig

n. The first is

based on the two-level memory hierarchy, in which a
process explicitly moves data between the shared and

local memory. The second method
memory hierarchy, in which all data
the shared memory. The final m
employs the caching technique.

uses the one-level
is accessed through
ethod additionally

Figure 1 shows a part of the related pseudo
code based on the one-level memory hierarchy [14].
b, pivot_column and pivot.index are shared variables

K. Zamanifar, J.M. Nash and P.M. Dew

BARRIER_BEGIN (1);

if chosen process

{
pivot_column «— A_segment[pivot];
pivot_indez « index of the pivot row;

}
BARRIER_END (1);
BARRIER_BEGIN (2);
update A_segment using pivot_column and pivot_index
BARRIER_END (2);

Figure 1. One-level memory hierarchy solution.

which can be accessed through the cache. Each process
holds a unique block of A, denoted by A_segment(].
The main body of the algorithm consists of two super-
steps which proceed in a series of iterations. In each
iteration, all processes search their set of columns for a
negative objective coefficient value for ¢;. One process
can then be selected from the successful processes. This
can set the pivot column (together with the index
of the pivot row) for the current iteration in first
superstep. The other processes, since they do not
access these variables, will set the associated state tags
to 0 at the end of the superstep. This guarantees
that they will read the updated values in the next
superstep. In the second superstep, all processes can,
then, access these results to update their A_segmentf].
The algorithm completes when there are no negative
objective coeflicient values remaining.

TAG CACHING METHOD

Pairwise synchronization provides a more flexible
mechanism than barriers for designing irregularly
structured algorithms. The WPRAM model supports
this through tag variables. One process may set a
tag (T_set), which can then cause another process
which is waiting on the tag (T-wait) to be resched-
uled. To support the cache coherency under pairwise
synchronization, a mechanism that allows the caching
system to decide which appropriate cache coherency
scheme to be used is needed. Therefore, the caching
method in a pairwise synchronization environment is
based on the use of a matching pair of tag statements,
i.e., tag_begin and tag_end. The use of tag_begin and
tag-end statements preserves the coherency of shared
data at the point where both processes are synchro-
nized.

Tt should be noted that in cases where one process
wants to update the shared memory and the other
one wants to read the updated value, a pairwise
synchronization is usually used. Under the proposed
caching regime, it is obvious that the reader process
must refer to the shared memory to read the updated
value which has been updated by the writer process.
This is because the cache related to the reader process
contains the state value of the data, even though the

A Weakly Coherent Shared Memory Model

Shared Variable A

Barrier_begin 1

Barrier_end 1

P1

P2

P3

Read A
Initialise state (2)
Cache A

Assign V=A

Decrement state

(2) — (1)

Read A
Initialise state (2)
Cache A

Assign V=A

Decrement state

2 —

Read A
Initialise state (2)
Cache A

Assign V=A

Decrement state

(2 —Q)

Barrier_begin 2

Barrier_end 2

Tag_begin
Write A
Initialise state (2)
Assign A=V
Writethrough A
T_set

Tag-end

Decrement state

Tag_begin

T_wait

Read A
Initialise state (2)
Cache A

Assign V=A
Tag.end

Decrement state

Decrement state

(2) — (1) 2 — (1) (1) — (0)
Barrier_begin 3
Read A Read A Read A
Initialise state (2) | Initialise state (2) | Initialise state (2)
Assign V=A Assign V=A Cache A

Barrier_end 3

Decrement state
(2) — ()

Decrement state

2 —

Assign V=A

Decrement state
(2) — (1)

315

Figure 2. Combination of the barrier and tag cache coherency schemes.

associated state tag can be 1 or 2. Therefore, the
cache coherency scheme for pairwise synchronization
environment necessitates all read references to bypass
the cache and go directly to the shared memory. Under
the barrier caching scheme, when a variable is initially
read from or written in the shared memory, the state
tag is set to 2, and write references update the shared
memory through the cache. According to the expla-
nation for the tag cache coherency scheme, tag-begin
statement causes all read references to be cached from
the shared memory. The tag-end statement switches
the scheme off.

COMBINATION OF BARRIER AND TAG
CACHING METHODS

Combinations of barrier and tag cache coherency
schemes, based on a unified caching system, support
different kinds of parallelism, such as divide-and-
conquer algorithms. In divide-and-conquer algorithms,
a problem is partitioned into smaller parts, solutions
for the parts are found, and then they are combined
into one solution for the whole. In such a class of
algorithms, at each level, the processes can be barrier
synchronized and within each level, the interprocessor

communications occur based on pairwise synchroniza-
tion. An example of this class of algorithms is the
parallel sorting algorithm which is explained in detail
in the next section.

Under this integrated scheme, the tag cache co-
herency scheme will be active in the presence of the
barrier cache coherency scheme. While the barrier
cache coherency scheme decreases the state tag of
the shared variables at barrier synchronization points,
after a tag_begin, all subsequent read references will
reference shared memory.

Example Code

Figure 2 shows a program example in a combination
environment of barrier and tag synchronizations using
three processes P1, P2 and P3.

First superstep:

Each of the three processes read a copy of the
shared variable A into a private variable V. All
of the state tags of the cached copies of A are
initialized to 2. At the end of the first superstep,
all of the state tags are decremented to 1. The
cached copies are valid in the next superstep
(because the state tags are 1).

316

Sup
ste

K. Zamanifar, J.M. Nash and P.M. Dew

—
h
'
|
'
v
|
'
'
)

coherency

Barrier_begin
read items

sort (n/p)
barrier_end

Barrier_begin
read items

sort (n/p)
barrier_end

Barrier_begin
read items

sort (n/p)
barrier_end

|

| 1

coherency

Barrier_begin
write key
barrier_end

]

e ee-e-----> Barrier i ._._ Barrier |

Barrier
coherency

Tag
coherency

Barrier_begin
read key

partition (n/p,key)

Barrier_begin
read key
partition (n/p,key)

t

]
i
J

----1

merge (n/p)

tag_begin tag_begin tag_begin tag_begin

tset t_wait t_set l_wait t.wait tset t_wait t._set

& | |

£ || ,
kN

merge (n/p)

Barrier_end

Barrier_end

Barrier
coherency

3 Barrier_begin

write key 1
barrier_end

Barrier_begin
read key 1
barrier_end

Barrier_begin
write key 2

barrier.end Barrier_begin

read key 2
barrier_end

| |

Figure 3. Overview of the parallel sorting algorithm.

Second superstep:
There is a pairwise synchroniza
and P2. P2 must be blocked y
A, then P2 can read the upds
Using the barrier_begin primiti
system decides to use the barrier

tion between P1
ntil P1 updates
ited value of A.
ve, the caching
cache coherency

scheme. Through using the tag begin primitive,
the caching system decides to temporarily switch

to the tag cache coherency s

heme. In this

superstep, P1 updates A in the cache and in
the shared memory and unblocks P2. P2 caches

A even though the state tag
its cache is 1.
A in the cache P2 is not con

f variable A in

This is because the value of

sistent with the

value of A in the shared memoary, so tag cache

coherency scheme bypasses the

P2 to read A from the shared

contents of the caches and the sh
coherent at the second barrier

The variable A in the cache P3 ig

ache and causes

memory. The
ared memory are
synchronization.
invalid, because

it has not been referenced within the previous

two supersteps.

Third superstep:
All processes again read A. P1 and P2 can
retrieve A from their caches. P3 must access the
shared memory.

Case Study: Parallel Sorting Algorithm

The combination of the barrier and pairwise synchro-
nizations, makes this algorithm suitable to be tailored
based on the combination of caching methods. The
implementation is based on a study reported in [15].
In parallel sorting algorithm, it has been assumed
that the input data is randomized. This assumption
provides the load balancing of each node. In one-level
memory hierarchy implementation, all data movements
are carried out in the shared memory through the
cache. Figure 3 gives an overview of the parallel sorting
algorithm. The algorithm consists of the following
computational supersteps:

Superstep 1
Each processor initializes the counters and also
creates, initializes and unsets a pair of tags.

A Weakly Coherent Shared Memory Model

Superstep 2
The data is sorted. In this superstep, data locality
is supported by the barrier caching method.

Superstep 3

The winner processor computes its median ele-
ment and writes it to the shared global memory,
while the loser processors are waiting to access
it in the next superstep. The use of the bar-
rier_end operation guarantees the consistency of
the read and write accesses to this median ele-
ment.

Superstep 4

This superstep integrates both barrier and tag
caching methods. The median element is used
by all processors to partition their data in left
and right segments. Data locality is maintained
by barrier caching method. The processors then
exchange their segments so that the first half have
the left segments, and the second half have the
right segments. The use of the tfag_begin and

tag_end statements guarantees the data consistency
of the read and write accesses to each segment.
Each new pair of segments held by a processor
is merged. The processors recursively divide into

317

independent halves. Both halves carry out su-
persteps 3 and 4 concurrently. The algorithm
terminates when the subdivisions contain one pro-
Cessor.

SIMULATION RESULTS

A simulation of the WPRAM exists on the Sun Sparc
workstation. The simulator supports the weak memory
coherency model of the WPRAM and also the caching
methods. A well-defined cost model based on the
performance figures of the IMS-T9000 processor and
IMS-C104 packet router [16] has been implemented in
the simulator. Figure 4 shows the effect of varying
the number of processors on the completion time and
speed-up for the simplex method. In the case of
64 processors and 6400 matrix columns, adding the
caching scheme increases performance by 74%, with
a drop of 37% from the solution using a two-level
memory hierarchy. In Figure 4, n is the number of
variables and d is the number of constraints in the
simplex method. In a two level memory hierarchy, a
processor explicitly moves data between shared and
private memory. Figure 5 depicts the results for the

24 T r T Y T T
' Two-level memory =] Two-level memory
One-level memory —— 1 One-level memory - —1
One-level memory with caching —%- - 20 One-level memory with caching
i
~ 1000
2 [o
E - 3
s °
g o
2 =3
R)
7
£
19
&)
100 1 1 i 1 1 1 1
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
Number of processors Number of processors
Figure 4. Simulation results for parallel simplex method, n = 6400 and d = 8.
T T T T T T T
10004
0
E
)
E o
- 2
g 100 v
B [
b= a
8. 0
g
)
&}
10] L L 1 1 1 1 0 1 1 L 1 1 1 '

8 16 24 32 40 48 56 64
Number of processors

8 16 24 32 40 48 56 64

Number of processors

Figure 5. Simulation results for the parallel sorting algorithm.

318

parallel sorting algorithm. In the case
and 4K problem size, the speed-up is

PERFORMANCE MODEL

In this section, a performance model
is described, which can be used
completion time of an algorithm u
technique [17].
a scalable interconnection network,
increase in the bisection bandwidth as
are added. The performance model
levels:

¢ Machine model: The set of operatio
level which dominate performance,

¢ WPRAM model:
WPRAM model,

The operati

of 64 processors
around 13.5.

for the WPRAM
to estimate the
sing the caching

An assumption, here, is the use of

giving a linear
more processors
consists of three

ns at the machine

ons within the

o Workload model: A high level characterization of the

cache access patterns.

Machine Model

The costing of the machine operations is divided into

two groups: Those which perform
and those which have access to the
assumed that the network packetizes

fixed size packets and that these pa
same number of data bytes as a cac

local operations
network. It is
lata accesses into
ckets contain the
he line. A cache

reads miss-results in a cache line being obtained from

the shared memory, with the associ
through the network. A write to th
generate a single packet.

The network is characterized
parameters:

ated packet sent
e cache will also

by the following

e D: The network latency. This is the delay between

Table 1. Machis

K. Zamanifar, J.M. Nash and P.M. Dew

a processor sending a packet and it being received at
the destination;

e ¢g: The granularity. The minimum sustained time
period between a processor sending consecutive pack-
ets. Under the assumption of a scalable network, this
is a constant value;

o L: The line/packet size (byte).

Each processor is modelled by a small number of local
operations:

o 0,: The send overhead. The time that the sender is
engaged in the transmission of a packet;

e 0,: The receive overhead. The time that the sender
is engaged in the reception of a returned packet;

o {: The time that the receiver is engaged in receiving
a packet of information and sending back a reply;

o s;: The cost of an integer operation;

o sp: The cost of a floating point operation;

¢: The time to read/update a cache line.

Table 1 provides example costs for the T9000/
C104. The costs include a number of lower level
issues for the T9000 processor, one example being the
dynamic creation and termination of local processes
when issuing messages.

WPRAM Model

The performance model for the WPRAM includes the
cost of performing local computation and the access of
a line of data, either locally from the cache, or accessed
through the network. Table 2 presents an overview
of the costs. The read access to the shared data will
either find a valid cache line or require remote access,
resulting in a packet being sent through the network. A

ne costs for the IMS-T9000/C104 architecture (time in ns).

D

g9 O,

Or t 8; sy c L

414 = log P + 2600

2872

10,000

1656

1390 | 10 [20 | 160 | 16

Table 2. WPRAM costs.

Barrier_begin()

Barrier_end()

WPRAM Operation | Status Cost

Read() hit Rpiy =c¢

Read() miss Rpmiss = max(c + 0s,9) + 2D + max(t, g) + or
Write() hit Whie = max(c + 0s,9) + 2D + max(t, g) + or
Write() miss Wmiss = max(c + 0s,9) + 2D + max(t, g) + o
Read&add() Ropg = max(os,g) + 2D + max(t, g) + or

By = s;

Be = 2log P(max(0s,9) + D + o;)

A Weakly Coherent Shared Memory Model

read hit simply uses the cost ¢, defined at the machine
level. A read miss contains the following costs:

* max(c+ 0,,9): The delay in sending the packet into
the network is either the cost of initially checking the
cache for the data (c) and the overhead of sending
the packet o, or the network granularity cost g, if
this is greater;

¢ 2D: The network latency incurred by accessing the
remote destination;

e maz(t,g): The delay in the destination processor
accessing the data and generating a reply;

* o,: The overhead in receiving the resulting packet.

This is summarized in Figure 6. A write hit and
miss have the same cost. Both involve accessing the
cache to check for a valid line of data (and updating
the data if present) and then writing the data to the
shared memory. The read&add concurrent operation
does not involve any cache access, since the variable
is always directly updated in the shared memory. The
beginning of a barrier is simply marked by setting an
appropriate flag for that process (an integer operation).
The end of a barrier involves the synchronization of the
processors. This can be accomplished by the use of a
balanced spanning tree. The weakly coherent memory
model also allows the pipelining of data accesses. The
method for costing multiple remote data accesses is
demonstrated in Figure 6. The completion time of
the two operations shown in the figure can be derived
by analyzing the critical path. After the overhead
incurred by generating the two packets, the second
packet must progress through the network, incur an
overhead at the destination, and finally travel back
to the destination processor, with a final overhead for
receiving the result. This is under the assumption
that the receiving overhead o, is not greater than the
overhead incurred at the destination processor. The
access of z such packets can, then, be modelled as
rmax(c + 05, 9) + 2D + max(t, g) + o,.

Workload Model

The workload model aims to characterize the patterns
of cache hits and misses, so that an estimation of the
completion time of an algorithm can be generated from
the related WPRAM operation costs.

319

Table 3. Workload model.

My hit Probability of a read hit
Mypmiss Probability of a read miss
Mawhit Probability of a write hit
Mymiss Probability of a write miss

Characterizing the Cost of Shared Data Access

A shared data access operation can be parameterized
as to whether it is a read or write access, and the
probability of the access being a cache hit or miss.
The latter will depend on issues such as the size of the
cache line and the size of the data set being accessed
by a processor compared to the size of the cache. The
relative sizes of the data set and cache will effect the
likelihood of a valid cache line being replaced by a
new line of data, due to address conflicts. Table 3
summarizes these parameters. The cost of reading n
bytes in shared memory can, then, be costed as:

n(mrhitRhit + m'rmissRmzss)'
Similarly, the cost of writing n bytes is costed as:
n(mwhitWhit + mwmissziss)‘

Estimating the Probability of a Cache Hit

The probability of a read or write hit can depend on
two factors:

e The relative size of the data type being accessed and
the cache line. Given a variable of size x bytes, each
remote access of a new line of data will also retrieve
another L/ — 1 similar variables, where L is the size
of the cache line in bytes;

e The size of the total data set being accessed com-
pared to the size of the cache. It is assumed here
that a line of data is stored in a random location in
the cache, for example, using some simple linear cash
function on the shared address [18]. Figure 7 shows
the cumulative probability distribution function of
such a conflict occurring, probeony, for different ratios
of the data set and cache sizes. In this paper, a
reasonably large cache size compared to the data set
is assumed, resulting in a negligible probability of a

Figure 6. Costing single and multiple remote access memory.

320
1 | T T o=
0.8} 1K - -1
64K -4
o
2
= 0.6} 4
3
(o)
el
3
ey
‘B 04t ~
2
£ d
B]
t
!
0.2} / e
]
!
an
0 A a A sab 2 il wd Laasd s
0.001 0.01 0.1 1 10 100 1000

Data set size/cache size

Figure 7. The probability of an address conflict for
different ratios of data set size and cache size.

conflict. A more detailed analysis cpuld estimate the
probability of a conflict by fitting ja normal density
function to this result.

Bringing these terms together, the probability of a
hit for a read access is M, = (1 —z[L){1 — probeony),
under the assumption that the cost is amortized across
all of the variables within the cache line. The probabil-
ity of a write hit is directly related fo the probability
of a conflict, giving muypit = 1 — probeony-

COMPARISON OF THE SIMULATION AND
ANALYTICAL RESULTS

Figure 8 shows the estimated completion time of the
simplex method based on T9000/C104 platform and
the related simulation results. The correspondence
between the two is close, considering the reasonably

T T T T T T T
Analytical results £~ 1
Simulation results ——-
“
g 1000 {1 -
e \
L) -\\
£ LN
- N\
: .
S WO
a, SN~
§ 3 e 'E’::—_————-—-———‘—‘_—_
100 1 1 1 1 1 1 1 T

8 24 40 56

Number of|processors

K. Zamanifar, J.M. Nash and P.M. Dew

simple set of costs used in the performance model.
Furthermore, the estimated completion time of the
parallel sorting algorithm and the related simulation
results (for n = 4 K) are illustrated in Figure 8.
There is a good agreement between the analytical and
simulation results for parallel sorting algorithm. The
reason for some variation in the case of 64 processors
and 4096 items is the reduced effectiveness load bal-
ancing.

CONCLUSION

This paper is concerned with the potential use of
caching techniques within a multiprocessor. The ideas
are based on the use of a weakly coherent shared ad-
dress space, employing barrier and pairwise operations
to support data consistency. This type of environment
is supported by the WPRAM computational model,
developed at Leeds University, and has been used as
the basis for the study in this paper. The barrier
caching method is based on the idea that a cache line
can be in one of the three states. A change in the state
occurs when a barrier operation is executed and can
be carried out independently by each processor. It is
a practical and highly scalable cache coherency scheme
for a weakly coherent memory.

A complementary caching method called the tag
caching scheme is also proposed for a form of pairwise
synchronization employed by the WPRAM model. The
integrated scheme allows tag synchronization between
barriers, supporting more dynamic forms of paral-
lelizm. In other words, it provides explicit support for
MIMD algorithms which aim to provide efficient im-
plementation. A study, using the simplex method and
parallel sorting algorithm, has shown the practicality of
this method, using simulation results based on an IMS-
T9000/C104 platform. An associated performance
model has been developed, which corresponds closely
with the simulation studies.

T T T T T T T
1000 Analytical results £~
Simulation results -e- J
-]
E LN
o RN
g X
= R~
] .,
9 100 S 4
z e
E]
3
&} J
10 1 1 1 1 1 1 1
8 24 40 56

Number of processors

Figure 8. Simplex method and sorting algorithm

A Weakly Coherent Shared Memory Model

REFERENCES

1.

Valian, L.J. “A bridging model for parallel computa-
tion”, Communications of the ACM, 33(8), pp 103-111
(1990).

Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A.,
Schauser, K.E., Santos, E., Subramonian, R. and von
Eicken, T. “LogP: Towards a realistic model of parallel
computation”, in Proc. of the 4jth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pp 1-12, San Diego, CA (1993).

Nash, J.M., Dew, P.M. and Dyer, M.E. “Scalable
parallel algorithm design”, in Proc. of the General
Purpose Parallel Computing, British Computer Society,
Parallel Processing Specialist Group (1993).

. Archibald, J. and Baer, J.L.. “Cache coherence pro-

tocols: FEvaluation using a multiprocessor simulation
model”, ACM Transactions on Computer Systems,
4(4), pp 273-298 (1986).

Cheong, H. and Veidenbaum, A.V. “Compiler-directed
cache management in multiprocessor”, JEEE Com-
puter, 23(6), pp 39-47 (1990).

Dubois, M. and Scheurich, C.
herence and event ordering in multiprocessors”, IEEE
Computer, 21(9), pp 9-21 (1988).

“Synchronisation, co-

. Barnaby, C. “Scalability of the cache on a bulk syn-

chronous multiprocessor”, Technical Report, INMOS
Ltd, 1000 Aztec, West, Bristol, UK (1991).

. Zamanifar, K., Nash, J.M. and Dew, P.M. “Designing

scalable caching methods for the WPRAM model”, In
Proc. of the First Annual CSI Computer Conference
(CSICC ’95), pp 21-28, Sharif University of Technology,
Tehran, Iran (1995).

. Min, S.L.. and Baer, J.L.. “A performance comparison of

directory-based and timestamp-based cache coherence
schemes”, In Proc. of 1990 International Conference of
Parallel Processing, pp 305-311 (1990).

10.

11.

12.

13.

14.

15.

16.

17.

18.

321

Veidenbaum, A.V. “A compiler-assisted cache coher-
ence solutions for multiprocessors”, In Proc. 1986
International Conference Parallel Processing, pp 1029-
1036 (1986).

Owicki, S. and Agarwal, A. “Evaluating the per-
formance of software cache coherence”, in Proc. of
the Third International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-111), pp 230-242 (1989).

Smith, A.J. “CPU cache consistency with software
support and using one time identifiers”, in Proc. of
the Pacific Computer Communication’85, K. H. Kim, K.
Chon and C.V. Ramamoorthy, Eds., pp 153-161 (1985).

Valiant, L.J. “Bulk synchronous parallel computers”,
Technical Report MA 02138, Harvard University, Aiken
Computation Laboratory, Cambridge, USA (1990).

Zamanifar, K., Nash, J.M. and Dew, P.M. “Scalable
caching techniques for a weakly coherent memory”, In
Proc. of Abstract Machine Models for Parallel and Dis-
tributed Computing, M. Kara, J.R. Davy, D. Goodeve
and J. Nash, Eds., pp 63-77 (1996).

Nash, J.M., Dyre, M.E. and Dew, P.M. “Designing
practical parallel algorithms for scalable message ma-
chines”, in Proc. of the WTC’95 World Transputer
Congress, pp 529-544 (1995).

May, D. and Thompso, P. “Transputers and routers:
Components for concurrent machines”, Technical Re-
port, INMOS Ltd, 1000 Aztec, West, Bristol, UK
(1990).

Zamanifar, K. “An analytical performance model for a
weakly coherent shared memory model”, in Proc. of the
Forth Annual CSI Computer Conference (CSICC’98),
pp 21-28, Sharif University of Technology, Tehran, Iran
{1998).

Mehlhorn, K. and Vishkin, U. “Randomized and de-
terministic simulations of PRAMs by parallel machines

with restricted granularity of parallel memories”, Acta
Informatica, 21, pp 339-374 (1984).

