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Research Note

Stochastic Activity Networks: A
New Definition and Some Properties

A. Movaghar!

Stochastic Activity Networks (SANs) are a stochastic generalization of Petri nets which have
been defined for the modeling and analysis of distributed real-time systems. In this paper, a
new definiton for these models is presented. This definition is based on a unified view of the
system in three settings: nondeterministic, probabilistic and stochastic. Some general properties

of these models are also investigated.

INTRODUCTION

Stochastic Activity Networks (SANs) are a stochastic
generalization of Petri nets which have been defined
for the modeling and analysis of distributed real-time
systems [1,2]. These models are more powerful and
flexible than most other stochastic extensions of Petri
nets including some notable models such as stochastic
Petri nets [3] and generalized stochastic Petri nets [4].
In this paper, a new definition for SANs is proposed.
This definition is based on a unified view of the system
in three settings: nondeterministic, probabilistic and
stochastic. Two important aspects of concurrency
are distinguished, namely, nondeterminacy and par-
allelism. The former is concerned with conditions
where the completion of an activity may result in
different system behaviors. The latter, on the other
hand, refers to cases where there are several activities
competing for completion and there is an uncertainty
as to which one of these activities may complete
first. In a nondeterministic setting, nondeterminacy
and parallelism are represented in a nondeterministic
manner. In a probabilistic setting, nondeterminacy
is specified probabilistically but parallelism is treated
nondeterministically. In a stochastic setting, both
nondeterminacy and parallelism are modeled proba-
bilistically.

Using the above framework, a new and systematic
definition for SANs is given. The purpose of such a
systematic definition is twofold. First, it allows for a
better and more formal definition per se. Second, it
allows for the use of the model for the analysis of both
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functional and performance aspects of the system. An
important characteristic of distributed real-time sys-
tems is that their functional and performance aspects
are usually intertwined and may not be separated. As a
result, an appropriate class of models for such systems
must include both of these aspects in a unified manner
(5,6] like the systematic definition presented here for
SANs.

This paper is organized as follows. In the next
section, nondeterministic models are defined for con-
current systems. Then, these models are extended
to some probabilistic and stochastic models, respec-
tively. Some general properties of these models are
investigated. Finally, the main results of the paper are
summarized.

NONDETERMINISTIC MODELS

Activity networks [1] are nondeterministic models
which have been developed for representing concurrent
systems. These models are closely related to Petri
nets [7] with the following extensions. The transitions
in Petri nets are replaced by the primitives called
“activities.” There are two types of activities: “in-
stantaneous” activities and “timed” activities. The
former describes events which occur instantaneously,
the latter represents processes which usually take some
time to complete. Instantaneous activities model
nondeterminacy while timed activities represent par-
allelism. A similar approach has also been used in
[4] for representing nondeterminacy and parallelism.
Other primitives which distinguish activity networks
from Petri nets are “gates.” Gates model complex
interactions among activities and, thus, increase mod-
eling flexibility. The following presents an updated
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definition of activity networks which is|slightly different
from that appeared in [1]. The [atter definition
includes extra primitives, called “cases”, for modeling
nondeterminacy which, with the current definition,
can equivalently be replaced by some instantaneous
activities. Throughout this paper, A denotes the set
of natural numbers and R, represents the set of non-
negative real numbers.

Definition 1

An activity network is a 7-tuple (P,[A,TA,IG,OG,
IR, OR) where:

e P is a finite set of places;
e [ A is a finite set of instantaneous activities;
o T A is a finite set of timed activities;

o IG is a finite set of input gates. Each input gate
has a finite number of inputs. To each G € IG,
with m inputs, a function fg : W™ — AN™ is
associated called the function of G| and a predicate
go : N™ — {true, false}, called the enabling
predicate of G;

e OG is a finite set of output gates. Each output gate
has a finite number of outputs. To each G € OG,
with m outputs, a function fg : |[N™ — N™ is
associated called the function of G;

e IRCPx{1,...,|P|} xIGx (ITAYTA) is the input
relation. IR satisfies the following ronditions:

— For any (P1,i¢,G,a) € IR such that G has m

inputs, ¢ < m,

— For any G € IG with m inputs and 1 € M, i < m,

there exist a € (IAUTA) and P, € P such that

(P17ivaa) € IR’

— For any (Plaileva‘)v(Plvj,G27a) € IR7 i :.7 and

Gl = G27

e ORC (TAUTA)XOGx{1,...,|P|}xP is the output
relation. OR satisfies the following| conditions:

— For any (a,G,i,P1) € OR such that G has m

outputs, 1 < m,

— For any G € OG with m outputs and i € N,

i < m, there exist a € (AUT A) and P; € P such

that (a,G,i,Pl) S OR,

— For any (a,Gl,i,Pl),(a,Gg,j,Fl) € OR, 1 = j

and G] = Gz.

Graphically, an activity network is represented as
follows. A place is depicted as (), |an instantaneous
activity is represented as| and a timed activity as L

1,
An input gate with m inputs is shown as m:l> and
1

an output gate with m outputs as i, As an
example, consider the graphical representation of an
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Gate Enabling Function
Predicate
G1 <3
zyi=w1 +1;
if zo < 2
G then zg := z9 + 2;
else if 9 := 2;
then z3 :=xz9 +1
G3 z1 > 2, z1 =1 — 2;
z9 > 1 rgi=xg —1
Gy z<b
Gate Table

Figure 1. Graphical representation of activity network
with a marking.

activity network shown in Figure 1. P, P, P3, Py and
P are places; T1, T», and T3 are timed activities and I,
I, and I5 are instantaneous activities. Gy, G3 and G4
are input gates and G2 is an output gate. The enabling
predicates and functions of these gates are indicated in
a table called “Gate Table.” Note that the function of
G; and G4 are not shown in this table because they
are identitiy functions. A directed line from a place to
an activity represents a special input gate with a single
input and an enabling predicate g and a function f
such that g(x) = true, iff # > 1 and f(z) = =z ~ 1
(e.g., directed lines from P, to I; and from Ps to I3).
A directed line from an activity to a place represents a
special output gate with a single output and a function
f such that f(x) =z + 1 (e.g., the directed lines from
T} to P, and from I; to P;). These special gates are
referred to as “standard” gates. Consider an activity
network as in Definition 1. Suppose (Pk, k,G,a) € IR.
Then, in a graphical representation, place Py is linked
to the k-th input of an input gate G whose output is
connected to activity a. Py is said to be an input place
of @ and G is referred to as an input gate of a. For
example, let TR be the input relation of the model of
Figure 1. Then, (Pl, 1, Gs, Il), (P3, 2,G3, Il) € IR, P,
and P; are input places of I; and G3 is an input gate
of I,. Similarly, suppose (a,G,k,Px) € OR. Then,
in a graphical representation, activity a is linked to
the input of an output gate G whose k-th output is
connected to place Pr. G is said to be an output gate
of @ and Py is referred to as an output place of a. For
example, let OR be the output relation of the model
of Figure 1. Then, (13, Go, 1, Pg), (13, Gs, 2, P]) € OR,
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G2 is an output gate of I3, and P, and P, are output
places of I3.

Like Petri nets, there is a notion of “marking” for
activity networks.

Definition 2

Consider an activity network as in Definition 1. A
marking is a function,

w: P— N,

It is often convenient to characterize a marking u as
a vector, that is, u = (p1,... , ), where u; = p(P),
it=1,...,nand P = {P,...,P,}. In a graphical
representation, a marking is characterized by tokens
(dots) inside places. The number of tokens in a place
represents the marking of that place (e.g., marking
(1,2,1,0,0) in Figure 1). An activity is “enabled” in
a marking if the enabling predicates of its input gates
are true in that marking. More formally, the following
definition can be presented.

Definition 3

Consider an activity network as in Definition 1. a €
(IAUTA) is enabled in a marking p if for any input
gate G of a with m inputs and an enabling predicate
9G,

gG(/'le cee ,/Lm) = tT‘U@,

where pi = u(P:), for some P, € P such that
(Pe,k,G,a) € IR, k=1,...,m.

An activity is disabled in a marking if it is not
enabled in that marking. A marking is stable if no
instantaneous activity is enabled in that marking. A
marking is unstable if it is not stable. For example,
(1,2,1,0,0) is a stable marking in Figure 1. In this
marking, only Ty and T, are enabled. On the other
hand, (2,2,1,0,0) is an unstable marking for the model
of Figure 2. In this marking, T}, T, and I; are the only
activities which are enabled.

An activity network with a marking is a dy-
namic system. A marking changes only if an activity

13

Figure 2. Marking of the model after 71 completes in the
model of Figure 1.
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completes. In a stable marking, only one of the
enabled timed activities is allowed to complete. When
there are more than one enabled timed activity, the
choice of which activity to complete first is done
nondeterministically. In an unstable marking, only one
of the enabled instantaneous activities may complete
(i.e., enabled instantaneous activities have priority over
enabled timed activities for completion). When there
is more than one enabled instantaneous activity, the
choice of which activity to complete first is also done
nondeterministically. =When an activity completes,
it may change the marking of its input and output
places. This change is governed by the functions of
its input gates and output gates and is done in two
steps as follows. First, the marking of the input places
may change due to the functions of the input gates,
resulting in an intermediary marking. Next, in this
latter marking, the marking of the output places may
also change due to the functions of the output gates,
resulting in a final marking after the completion of that
activity. More specifically, consider an activity network
as in Definition 1. Suppose an activity a completes in
a marking p. The next marking y' is determined in
two steps as follows. First, an intermediary marking
p" is obtained from g by the functions of input gates
of a. ' is then determined from u” by the functions of
output gates of a. More formally, u" and p' are defined
as follows:

e For any P, € P which is not an input or output place
of a,

p'(Pr) = ' (Py) = p(Py),

¢ For any input gate G of a with m inputs and a
function fg,
folus, o spm) = (Y5 ),
where pr = u(Px) and pl! = p'(P.) such that
(Pr,k,G,a)€ IR, k=1,... ,m,

o For any output gate G of @ with m outputs and a

function fg,
fG(/‘Llllv"w/J',rit) = (/1'11»--- nu':n)a

where u) = p"(Py) and p} = p/(P:) such that
(a,G,k,PL)€EOR, k=1,... ,m.

The above items summarize the behavior of an
activity network. As an example, consider the model
of Figure 1 with a marking (1,2,1,0,0). In this
marking, 77 and 75 are enabled. Any of these activities
may complete. Suppose 77 completes first, then P,
gains a token and the marking changes to an unstable
marking (2,2,1,0,0), as shown in Figure 2. In this
marking, I, is the only enabled instantaneous activity.
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Figure 3. Marking of the model after I) completes in the

model of Figure 2

Py

Ga T, Ps Gs 'h Py

T3 Py

Ga
/E—J

Figure 4. Marking of the model after T3 completes in the

model of Figure 3.

Accordingly, I; will complete next.

Then, P, and Ps

lose a token each, P, loses two tokens and P; gains
a token and the new marking becomes (0,1,0,1,0),

as shown in Figure 3. In this m

arking, T1, Tb

and T; are enabled. Suppose T3 will complete next.

Then, a token is removed from Py
Ps, and the marking changes to an y
(0,1,0,0,1) as shown in Figure 4. In {
instantaneous activities, namely, I an

Any of these activities may complete.

the one to complete first. Then, a {

and is added to
instable marking
his marking, two
d I3, are enabled.
Suppose I3 is
oken is removed

from P;, two tokens are added to P; and a token to

P, and the new marking becomes (2
Figure 5.

Following the above discussion,
said to be reachable from a marking
of activities a1, ..., an, if the success
ay, ..
i oto u'.

i is said to be reachable

,2,0,0,0,) as in

a marking p' is
1 under a string
ve completion of

. ,an changes the marking of the network from

from p, if ' is

reachable from p under a string of activities or p' = p.

For example, (2,2,0,0,0) is reachable
under T11,T31; and (2,2,0,0,0) ig
(0,1,0,1,0) and (2,2,0,0,0).

from (1,2,1,0,0)
reachable from

The behavior of an activity network is concerned

with the manner in which various
are reached from each other due to {

stable markings
he completion of

timed activities. In order to study this behavior more
formally, the notion of an activity system is used [2].

Definition 4

An activity system is a 4-tuple (Q, A

—, Qo) where:
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Figure 5. Marking of the model after I3 completes in the
model of Figure 4.

e (Q is a set of states,
e A is the activity alphabet,
o —»C Q x A x @ is the transition relation,

e Q¢ is the set of initial states.

A state, ¢, is immediately reachable from state g under
activity a, denoted as ¢ = ¢, if (¢,a,¢') €— .

Next, a notion of equivalence is defined for activ-
ity systems based on the concept of bisimulation [8,9].
Let B and B’ be some arbitrary sets and v C B x B'.
For B C B, let:

v(B")y = {b' | b € B’ and, for some b € B"”, (b,b') € 7}.

Definition 5

Let S = (Q,4,—,Q0) and S’ = (Q',A',—',Qp) be
two activity systems with the same activity alphabet
(ie, A = A'). S and S’ are said to be equivalent if
there exists a symmetric binary relation v on Q U Q'
such that:

* @=7(Q") and Q" =7(Q),

* Qo =(Q) and Qp = ¥(Qo),

o For any ¢i1,¢2 € Q, q; € @' and ¢ € A such that
(g1,¢)) € v and q1 > go, there exists g5 € Q' such

that (g2,q5) € v and ¢ —' ¢4; also, for any ¢, ¢ €
Q', ¢1 € Q and a € A such that (¢7,41) € v and

a

¢, —' gb, there exists g2 € Q such that (g3,¢2) € ¥
and g > ga.

The above mentioned v is said to be a bisimulation
between S and S’. S and S’ are isomorphic if v is a
bijection.

Now, it is possible to formalize the notion of the
behavior of an activity network as follows.

Definition 6

Let (K,po) denote an activity network K with an
initial marking o where K is defined as in Definition 1.
(K,po) is said to realize an activity system S =
(Q, A, —,Qq) where:
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e ( is the set of all stable markings of K which
are reachable from o and a state A if, in K, an
infinite sequence of instantaneous activities can be
completed in a marking reachable from pg,

e A=TA,

e For any p, )/ € Q and a € A, p > p' iff, in K,
p' is reachable from p under a string of activities
ar, where z is a (possibly an empty) string of
instantaneous activities; p = A iff, in K, a sequence
of activities ay can be completed in u, where y is an
infinite sequence of instantaneous activities,

® (o is the set of all stable markings of K which are
reachable from o under a (possibly an empty) string
of instantaneous activities and a state A if, in K, an
infinite sequence of instantaneous activities can be
completed in pg.

The above definition implies a notion of equiva-
lence for activity networks as follows.

Definition 7

Two activity networks are equivalent if they realize
equivalent activity systems.

The following concepts help specify the modeling
power of activity networks.

Definition 8

An activity system is said to be computable if it is
isomorphic to an activity system with a computable
transition relation and an enumerable set of initial
states.

Definition 9

An activity network is said to be computable if the
enabling predicates and functions of all of its input
gates and the functions of all of its output gates are
computable.

Theorem 1

Any computable activity system is isomorphic to an ac-
tivity system realized by a computable activity network
with some initial marking.

Proof

Consider the class of activity networks which only have
instantaneous activities, standard gates and a special
type of gates called “inhibitor” gates. An inhibitor
gate is an input gate with an enabling predicate g and
an identity function such that g(z) = true iff z = 0.
The above class of activity networks corresponds to the
class of extended Petri nets [7]. It has been proven
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that an extended Petri net can simulate a Turing
machine [7,10,11]. Using similar approach, one can
show that an extended Petri net can, indeed, simulate
a nondeterministic Turing machine [12]. It follows that
an activity network with some instantaneous activities,
standard gates and inhibitor gates is, likewise, able
to simulate a nondeterministic Turing machine. This
latter result will be used below to prove the theorem.
Let S = (Q, A, —,Qo) be a computable activity
system. Without loss of generality, let Q@ = A/. Define:

e Forae A, R, = {(3,7);1,7 € N',i > j},

e Fora€ A, G, : N — {true, false}, where G, (1) =
true iff there exists j € A such that i 5 j,

* Rg, = {(1,1);7 € Qo}-

Since S is a computable activity system, G,, R,,a € A
and Rg, are also computable, which means that they
can be simulated by some nondeterministic Turing
machines. Accordingly, using the result mentioned
earlier, G,,R,,a € A and Rg, can be simulated by
some activity networks Kg,,Kp,,a € A, and Kg,,
respectively, which have only some instantaneous activ-
ities, standard gates and inhibitor gates. Now, consider
an activity network K with the set of timed activities
A such that for any a € A, K includes an activity
subnetwork as depicted in Figure 6. In Figure 6,
K¢, and Kg, represent some activity networks which
simulate G, and R,, respectively. Pi,, Ps,, P3q
and Ps are places such that when P, is empty, all
activities of K¢, are disabled and when P;, is empty,
all activities of Kp, are disabled. Initially, P, has
a token but P, and P3, are empty. As soon as Ps
acquires a marking = such that G.(z) = true, Kg,
starts execution and after a finite number of activity
completions, P, loses a token, P», gains one and the
marking of Ps remains the same. When P5, obtains
a token, K, also begins execution and after a finite
number of activity completions, Ps, loses a token, Py,
gains one and the marking of Ps changes from z to
y where (z,y) € R,. K also includes an activity
subnetwork as depicted in Figure 7. In Figure 7, Kg,

o O O

a

a
P2a P3,

Pig

Po,

Figure 6. An activity subnetwork of K corresponding to
an activity a of S.
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O

Py

Figure 7. An activity subnetwork of K|
Qo.

O

corresponding to

represents an activity network which simulates Rg,.
P is a place with an initial marking 1. Initially, Ps

is empty and Kg, starts execution.

number of activity completions, P, 1
marking of Ps is set to x where (1
all activities of Kg, are disabled. Su
no activity subnetwork other than {
Figures 6 and 7. It can be shown that
K defined above, indeed, realizes ax
which is isomorphic to S. O

The above proof indicates th
behavior is concerned, any systemn
computable activity network may als
by a model which has only some st:
inhibitor gates. This, however, may r¢
complex model and, thus, may only

After a finite
oses a token, the
,Z) € Rg,, and
ppose K includes
hose depicted in
activity network
n activity system

at as far as the
1 modeled by a
50 be represented
andard gates and
equire a large and
be accomplished

at the expense of modeling convenience, which is more

formally represented in the following

Corollary 1

Any computable activity network is

corollary.

equivalent to an

activity network which has only standard and inhibitor

gates.

Note that the class of activit
standard gates and inhibitor gates, in
to the class of generalized stochast

when the latter models are viewed

ministic setting. Thus, in a nondete
generalized stochastic Petri nets ar
computable activity networks.

PROBABILISTIC MODELS

The following models are extensions

works where nondeterminacy is spec

y networks with
fact, corresponds
¢ Petri nets [4],

in a nondeter-
rministic setting,
e as powerful as

of activity net-
ified probabilisti-

cally. This is accomplished by assigning probabilities

to various instantaneous activities. A
has also been used in [13] in probabi
nondeterminacy.

Definition 10

similar approach
istic modeling of

A probabilistic activity network is a 8-tuple (P,IA, T A,

IG,0G,IR,OR,C) where:

e (PIA,TAIG,0G,IR,OR) is an

activity network,
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e C:N"xIA — [0,1]is the case probability function,
where n = |P|.

The behavior of the above model is similar to that of
an activity network, except that when there is more
than one enabled instantaneous activity in an unstable
marking, the choice of which activity completes first
is made probabilistically. More specifically, let L be
a probabilistic activity network as in this definition.
Suppose L is in an unstable marking . Let A’ be the
set of enabled instantaneous activities of L in . Then,
a € A’ completes with probability a, where:

C(u,a)
Ea’eA’ C([L, al) .

The above summarizes the behavior of a probabilistic
activity network. In order to study this behavior
more formally, it is necessary to define the notion of
a probabilistic activity system.

@ =

Definition 11

A probabilistic activity system is a 4-tuple (@, A, k, pg)
where:

e (Jis a set of states,
e A is the activity alphabet,

o h = {h(.|g,a);q € Q,a € A} is the set of transition
distributions such that for any ¢ € Q and a € A,
h(.|g,a) = 0 or h{.|q,a) is a probability distribution
over @,

e po is the initial state distribution which is a proba-
bility distribution over Q.

For a € A and ¢,¢' € @, ¢ is sald to be immedi-
ately reachable from g under a with probability ¢, if
h(d'lg,a) = a.

A notion of equivalence for probabilistic activity
systems is now presented.

Definition 12

Let U = (Q,A,h,po) and U’ = (Q', A", W', p)) be two
probabilistic activity systems with the same activity
alphabet (i.e., A = A’). U and U’ are said to be
equivalent if there exists a symmetric binary relation
vy on QU Q' such that:

* Q=7(Q") and Q' = 7(Q),
e For any gy € Q and gy € Q' such that (go,g) € 7,

Z po(a) = Z

q€v({ae}) 7'€v({90})

po(d'),
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e Foranya € A, q1,¢; € Q, and q}, ¢} € Q' such that
(q1,91) € v and (g2, 43) € v,

Z h(Q'qlv a) = Z

q€v({g4}) 9 €v({q2})

The above mentioned « is said to be a bisimulation
between U and U’. U and U’ are isomorphic if v is a
bijection.

The behavior of a probabilistic activity network
may now be formalized as follows.

R'(q'lq1,a).

Definition 13

Let (L, o) denote a probabilistic activity network L
with an initial marking uo where L is defined as in
Definition 10. (L, o) is said to realize a probabilistic
activity system U = (Q, A, h, pg) where:

e Q is the set of all stable markings of L which
are reachable from gy and a state A if, in L, an
infinite sequence of instantaneous activities can be
completed in a marking reachable from g,

e A=TA,

e For any p, 4’ € Q and @ € A such that a is disabled
in p, h(.|p,a) =0,

s For any u,p' € @ and @ € A such that a is enabled
in w, h(p'|p, a) is the probability that, in L, p' is the
next stable marking to be reached upon completion
of @ in p; h(Alu,a) is the probability that, in L, a
sequence of activities axz completes in p, where z is
an infinite sequence of instantaneous activities,

e For any 4 € @, po(u) is the probability that, in
L, p is reached upon completion of a (possibly an
empty) string of instantaneous activities in po; po(A)
is the probability that, in L, an infinite sequence of
instantaneous activities completes in pg.

A notion of equivalence for probabilistic activity
networks may now be provided as follows.

Definition 14

Two probabilistic activity networks are equivalent if
they realize equivalent probabilistic activity systems.

STOCHASTIC MODELS

In the previous section, nondeterminacy has been
treated in a probabilistic manner. Now models
which represent both nondeterminacy and parallelism
probabilistically are presented. This is accomplished
by assigning certain parameters to timed activities
and viewing the model in a stochastic setting. The
following definition is slightly different from those
which appeared in [1,2]. It includes some additional
extensions which allow activities to be processed at
various speeds [14].
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Definition 15

A stochastic activity network is an 11-tuple (P, 1A,
TAIG, IG,IR,OR,C,F 11, p) where:

o (P, IA,TA IG,0G,IR,OR,(C) is a probabilistic ac-
tivity network,

o F={F(|u,a);p € N™ a € TA} is the set of activity
time distribution functions, where n = |P| and, for
any p € N™ and a € TA, F(.|u,a) is a probability
distribution function,

o II: N™ xTA — {true, false} is the reactivation
predicate, where n is defined as before,

e p: N xTA — R, is the enabling rate function,
where 7 is defined as before.

The behavior of the above model is similar to that
of a probabilistic activity network except that here
the notion of timing is explicitly considered. When
instantaneous activities are enabled they complete
instantaneously. Enabled timed activities, on the other
hand, require some time to complete. A timed activity
becomes active as soon as it is enabled and remains so
until it completes; otherwise, it is inactive. Consider
a stochastic activity network M as in Definition 15.
Suppose, at time ¢, a timed activity completes and p is
the stable marking of M immediately after t. A timed
activity a is activated at t, if a is enabled in p and one
of the following occurs:

¢ a becomes inactive immediately before t;
e a completes at ;

o II{u,a) = true.

Whenever the above happens, @ is assigned to an
activity ttme T, where 7 is a random variable with
probability distribution function F(.|u,a). When a
timed activity a is enabled in a stable marking pu,
it is processed with a rate p(u,a). A timed activity
completes whenever it is processed for its activity time.
Upon completion of an activity, the next marking
occurs immediately.

The above summarizes the behavior of a stochas-
tic activity network. This behavior may be studied
more formally using the following concepts.

Definition 16

Let M be a stochastic activity network. The state
process of M is a random process { X (¢);t € R, } where
X (t) denotes the stable marking of M at time ¢.

Definition 17

Let X = {X(t);t € Ry} and X' = {X'(t);t € R4}
be two random processes with the set of states @ and
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Q', respectively. X and X' are said tg
equivalent if there exists a symmetric
on @ U Q' such that:

e 7(Q)=Q and ¥(Q") = @;
e Forany t; € [0, 00), @; € @Q and (

Qi =(@%) and Q4 =1(Q2), i =0,

p[X(t:) € Qi;i=0,... 7]
=p[X'(t:) € Qi1 =0,...,n].

X and X' are stochastically isomorp
a bijection (an equality).

Proposition 1

Let M = (L,F,11,p) and M' = (L/,
stochastic activity networks where L
equivalent probabilistic activity net
L and L' realize probabilistic activ
(Q’Avh,pO) and U' = (Q/»A,vh'la
(A = A’). The state processes of
be stochastically equivalent if there e
binary relation v on Q U Q' such tha

e 7 is a bisimulation between U and

be stochastically
binary relation ~

L C @', such that
,n,neN;

hic (equal) if v is

F' IV, p') be two
and L' are some
works. Suppose
ty systems U =
D), respectively
M and M’ will
xists a symmetric
be

v,

o Foranya € A, ¢ € Q and ¢’ € Q' such that (¢,¢') €

v and a is enabled in both ¢ an
F'(1¢',a), G(g,a) = G(¢',a) and p

d ¢, F(|g,a) =
(g,0) = p'(d,a).

The state behavior of a stochastic activity net-
work is closely related to the notion of a generalized
semi-Markov process as defined in [14,15].

Proposition 2

The following statements are true:

i) Any generalized semi-Markov prdcess with a finite
set of events is stochastically isomorphic to the
state process of a stochastic activity network,

ii) There exists a stochastic activit

y network whose

state process is not a generalized semi-Markov

process,

ili) The state process of any stochasti
with state-independent activity

activity network
time distribution

functions and a false reactivation predicate is a

generalized semi-Markov process.

Now Markovian models are considered:

Theorem 2

Let M be a stochastic activity network as in Defini-
tion 15. The state process of M is a Markov process
iff for any timed activity e which is enabled in a stable

A. Movaghar

marking g and any stable marking p,. in which a is
last activated prior to being enabled in g,

F(Tl:u‘ac,a) =1 - e—a(#,a) 7-’

where a(p,a) is a positive real number which only
depends on p and a.

Proof

Let M = (L, F,11, p) with a corresponding probabilistic
activity network L which realizes a probabilistic activ-
ity system U = (@, A,h,po). Denote X = {X(t);t €
R} as the state process of M.

If. It is noted that for any ¢,6t € R, where 6t is
sufficiently small and any stable markings u, 1’ € @,

PX(t+6t)=p'|X(t) =p, X(t'),0< ¢ < ]

= PIX(t+68t) = w|X(t) =

~ Y a(p,a) p(p,a) h(p, 1) 8t.

a€A

Using the memoryless property of exponentially dis-
tributed random variables and the dynamic behavior
of the model, it can be concluded that X is a Markov
process.
Only if Note that exponentially distributed random
variables are the only random variables with memory-
less property and that X is assumed to be a Markov
process. The proof then follows from the definition of
the dynamic behavior of the model. O

A stochastic activity network is said to be Marko-
vian if its state process is a Markov process.

Corollary 2

Let M be a stochastic activity network with a set of
exponential activity time distribution functions such
that any activity with a state-dependent activity time
distribution function has also a true reactivation pred-
icate. Then, M is Markovian.

Corollary 3

Any discrete-space, continuous-time and time-homo-
geneous Markov process is stochastically isomorphic
to the state process of a Markovian stochastic activity
network.

CONCLUSION

In this paper, a new definition for SANs is presented.
This definition is based on a unified view of the system
in three settings: nondeterministic, probabilistic and
stochastic. The purpose of such a systematic definition
is twofold. First, it allows for a better and more
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formal definition per se. Second, it allows for the
use of the model for the analysis of both functional
and performance aspects of the system. Since the
functional and performance properties of distributed
real-time systems are usually intertwined, these models
are appropriate for representing such complex systems.
Some general properties of these models were also
investigated.
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