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SCIENTIA
IRANICA

Modeling Performance of Distributed Programs
by Stochastic Decision Free Petri Nets

M. Ghodsi!

In this paper, performance modeling of synchronization delays is considered in a distributed
program which consists of a number of processes that interact via message passing only. A class
of timed Petri nets called Stochastic Decision Free Petri Nets (SDFPNs) is used to model such
distributed programs with deterministic control flow. An exact solution technique is proposed
for this model which does not follow the usual approach of reachability analysis for Petri nets
and solving global balance equations for a Markovian system. Therefore, it does not require
exponential distributions and does not suffer from state space explosion. The complexity of
exact solution is still exponential in terms of the number of transitions. Based on this solution,
an iterative approximate algorithm is also proposed which is applicable to reasonably large models
with much less complexity. Experimental results verify this claim.

INTRODUCTION

In recent years a great deal of interest has been
observed with respect to distributed and concurrent
system research, which has generated a growing de-
mand for cost-effective and accurate performance pre-
diction tools to support design of such systems. In
particular, efficient techniques are needed for predict-
ing the performance measures of distributed programs
running on a network of workstations. Such a tool
requires an appropriate model to represent the im-
portant attributes of the distributed programs and an
efficient solution technique for solving reasonably large
models.

In this paper, the performance modeling of com-
munication delays in a distributed program has been
considered that consists of a number of processes, each
allocated to some node of a computer network. It is
assumed that these processes interact only via deter-
ministic message passing primitives. The performance
of such programs is mainly affected by two kinds of
delays: a) Those due to resource contention (e.g.,
contention for CPU, disks, communication processors,
etc.) and b) Delays caused by synchronization and
communication between processes. The main emphasis
of this paper is on the second aspect, since contention
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can be adequately handled by classical queuing network
models. It is assumed, throughout the paper, that
all processes are cyclic and dynamic process creation
and/or destruction occur in a controlled way.

Many techniques have been proposed for modeling
synchronization and communication delays. One of the
early models is Petri Nets (PNs) which was originally
developed as a specification tool for concurrency and
was later used to model arbitrary synchronization in
concurrent systems [1]. Petri nets have been aug-
mented with a notion of time and used for performance
evaluation. The “time” parameter has been assigned
to places, ([2] timed-place PNs) as well as transitions
([3] timed-transition PNs.) The time value has been
chosen to be deterministic [4,5] or stochastic [6-8]. In
Stochastic Petri Nets (SPNs), the resulting models can
be cast as Markovian models and solved accordingly.
In (7], exponentially distributed transition firing times
are used for the first time. Arbitrary distributions
were first permitted in [9] for transitions that are
not simultaneously enabled. All of these approaches
perform reachability analysis to create the state space
which grows exponentially with the net parameters.
With careful modeling, it is possible to slow down the
growth of state space, as shown in [5]; however, com-
plex models remain intractable. Nevertheless, some
restricted classes of SPNs, like the one in [10], have
been characterized to have product-form solutions.
This has led to development of algorithms for these
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classes of SPNs, similar to those
queuing networks [11].

There have been other approaches to modeling
synchronization and communication delays. Kant
proposed a combination of classical queuing networks
and Petri nets [12]. Heuristic modeling and solution
techniques based upon product form queuing networks
have also been used in many instances [13,14]. Syn-
chronization delays can, in many cases, be adequately
modeled by Markovian models, however, it is typically
difficult to do better than just solving the global bal-
ance equations. Since the state space generally grows
very fast with the model complexity, this approach is
incapable of handling large models.

In this paper, a restricted class of timed-place
stochastic Petri nets called Stochactic Decision Free
Petri Nets (SDFPNs) is used. The times that are
assigned to places can have arbitrary distributions,
representing normal computation including activities
of production, transmission and consumption of mes-
sages. Transitions represent synchrgnization between
sender and receiver, since message passing is the only
interaction scheme available. It is assumed that the
basic message passing is rendezvous, i.e., the sender
must wait until the receiver is ready. SDFPNs
can model many complex distributed programs with
deterministic flow graphs. There |are many “real-
world” programs that do not, however, satisfy the
simplifying assumptions to be modeled by SDFPNs.
For these programs, there seem to| be no modeling
solutions other than expensive reachability analysis
techniques.

Here, an exact solution technique is proposed for
computation of the SDFPNs performance measures,
such as synchronization delay distributions. The
solution does not need reachability analysis and is
not Markovian. The complexity of| exact solution is
still exponential in the worst case and is comparable
to that of Markovian based solutions. However, this
approach promises a good approximate algorithm with
polynomial complexity which is also| presented in this
paper.

There have been several works on analysis of
SDFPNs. Li and Woodside, for example, proposed a
state reduction technique and an iterptive approximate
solution for stochastic marked graphs [15]. In [16], the
authors have found various bounds for asymptotic cycle
time and throughput of SDFPNs. Recently, Sereno has
proposed an iterative approximate solution based on
Mean Value Analysis (MVA) [17] for SDFPNs [18]. The
approach presented here for solving SDFPNs is new in
comparison to previous works.

The organization of this paper is as follows. In
the next section, some definitions and terminologies are
reviewed. Exact and approximate solution techniques
for DFSPN with some examples are also presented.
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Then, the experimental validation of the approximate
solution techniques is discussed.

BASIC TERMINOLOGIES AND
DEFINITIONS

Recall that a Petri Net & = (P,7,&, M,) is a bipartite
graph where P, T and £ are sets of places, transitions
and arcs respectively and M, is the initial marking.
Let,

73: {plap2,"' vpm}q
T = {t1,ts,. .. ,ta},
EC{PxT}U{T x P},

Mo = {m01,m02, s 7m0m}~

For any transition ¢t € 7, *t and t* are respectively
defined as the set of input and output places of t.
Similar sets are defined for input and output transitions
of any place p € P as *p and p*. A marking M is said
to be reachable from My, denoted by My = M, if
there exists a sequence of transition firing, &, such that
starting from Mg and after the firing of o, the PN
ends in marking M. The set of all markings reachable
from My is called the reachability set and represented
by R(M,). A transition t is said to be live if starting
from any M € R(M,), there is a firing sequence that
enables t. A PN is live if all of its transitions are live.
A PN is k-bounded if for all M € R(M,), every place
has at most k tokens. A 1-bounded PN is called safe.

A PN can be represented compactly using matri-
ces. Define matrix A as A™ — A~ where A™ represents
arcs from 7 to P and A~ represents arcs to 7 from P.
(Self loop places are not represented in A. This can be
taken care of by adding an extra transition and place
after those places.) A is an n X m matrix with elements
of 0, 1 and -1 (multiple arcs are not permitted). Also
let M, an m x 1 column vector, represent a marking M.
Then, if My 5 M, there exist a firing vector, F (an
n x 1 column vector), such that M = My + ATF. Fli]
is the number of firings of transition ¢ in ¢. (Note that
there exit F's that result in feasible but unreachable
markings M.)

A Decision Free Petri Net (DFPN), also called
a marked graph [19], is a PN such that for all p €
P, I'pl = |p*| = 1. In marked graphs, places
are eliminated without altering the PN topological
properties. A PN is called Free Choice when for all
p € P, if |p*| > 1, then Vt € p*,*t = {p}. That is,
if p is a conflict input place for a set of transitions,
it should be their only input place. A loop in a
DFPN is a directed cycle in its underlying marked
graph. The notations t € ¢ and p € ¢ will be used
to show that transition t and place p are in the loop
l.
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Figure 1. A simple communication protocol: (a) SDFPN and (b) its marked graph.

For a DFPN X, the following early results are
known that will be used in the analysis [19,20]:

1. The token count in any loop is invariant under any
transition firing;

2. The maximum number of tokens at p € P, in
any M € R(M), is the minimum total number of
tokens in all the loops that include p;

3. X is live iff it does not have a loop with a token
count of zero;

4. Rank of the incidence matrix A4 is n — 1;

5. A safe and live DFPN with a connected underlying
undirected graph is strongly connected:

6. A safe and live DFPN is a union of one-token loops.

A Timed Petri Net is a PN augmented to have
a time parameter associated with either its places or
its transitions. In this paper, timed-place PNs are
considered due to being more natural for modeling
processes. The results presented in this paper also hold
for timed-transition PNs or a combination of both.

A Stochastic Decision Free Petri Net (SDFPN)
is a DFPN with randomly distributed time associated
with its places. Let X;(k),s =1...m,k =1,2,... be
the delay (possibly zero) that is encountered by the kth
token arriving at place p;. The token is “unavailable”
for this period of time which is called computation
delay. After this time, the token becomes available
and, only then, it can enable the output transition
t € p!. The same token may have to wait for the
arrival of other tokens at ¢. This waiting time is called
synchronization delay and is denoted by a random
variable D;(k). The total delay that the kth token
encounters on an arc ¢ (from transition *p; to p}) in the
underlying marked graph is then d; (k) = X;(k)+D;(k).
The time between the kth and the (k + 1)th firings of
a transition ¢ is denoted by Ci(k). It is assumed that
for a given 4, X;(k),k = 1,2,... are independent and
identically distributed and represented by a continuous
time random variable X;. X;,7 = 1,...,m are also
assumed to be independent.

The properties mentioned above for a DFPN are
also true for any SDFPN. Figure 1 shows a SDFPN
model of a simple communication protocol. DFPNs
can only model deterministic synchronizations; thus, a
more powerful PN, such as free choice PN, has to be
used to model non-deterministic behavior like timeout,
bad message, lost of acknowledgments and so on.

SOLUTION TECHNIQUES

Exact Algorithm

In this section, an algorithm is provided for exact
computation of the performance parameters of any
live and safe SDFPN. Consider a transition  with
[*tl = s > 2 which is depicted in Figure 2. Let
€1,4s,. .., ¢ be the loops containing t such that p, € *¢
is included in ¢;, 7+ = 1,...s. Take two such loops,
say ¢; and /5, and assume that the number of tokens
in £, is ¢ and that for ¢; is one. Loop £, must exist
since the net is safe. The tokens on #; never meet at a
place or cross over one another, because of the safeness
property. Thus, they might be considered “colored”
and denoted by T, T5,--- ,T,. Now, focus on the time
period between two consecutive firings of ¢ caused by

Tg-1

Figure 2. Different loops going through transition t.
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one of the tokens in ¢1, say T;. Suppase 7% is the time

of kth firing of t and assume that this
by T). Then, Tk, is the time that ¢ is

firing was caused
fired again by 1.

For notational simplicity, it is assumed that counting
token arrival at transitions is started from the time

transition ¢ is first enabled. Then,
Torq — Tk = Ce(k) + Ce(k + 1)
+...+Cik+qg-1)
kt+q—1

= Y > di(n).

n=k jEZZ

(1)

On the other hand, this period is equal to the

total delay that token 77 encounters
¢y. At the time 74, depending on the
q — 1 tokens in £;, £; is divided into

in a trip around
position of other
q disjoint paths,

L;, i=0---g—1 (see Figure 2). When T} enables a

transition j € L; during (7%, Tk4q], tr

ansition j will be

firing for its (k + 1)th times. Therefore,

Thtg — Tk = Z d](k) + Z dj(k +1)

J€Lo JELy
+oo+ ) dilk+q-1), (2)
J€Ly1
It is also obtained that,
Dy(k)Do(k)...Ds(k) =10 k=1,2,..., (3)

representing the fact that one of the

delays at ¢t must always be zero.
The following lemma helps in
above equations.

Lemma 1

» synchronization

simplifying the

In alive and bounded timed-place Stochastic PN (SPN)

¥, if the distribution of computation
a rational Laplace transform, then
tion delays D;(k) have Unique Limit
(ULD) (when k — o).

Proof

First an equivalent timed-transiti

delays (X’s) has
the synchroniza-
ing Distributions

n SPN is con-

structed. This is trivially done by replacing a timed-

place by two regular places and a

timed-transition

with the same distribution as its firing time. Notice
that in the equivalent SPN, the timed-transitions each

have only one input place and act as

delay stations in

the queuing theory notation; they remove their input
tokens as soon as they become enabled (this firing rule

is different from those chosen by some

authors, but does

not change the result). Since any service time density
with rational Laplace transform can be represented by
a series-parallel network of exponential stages [17], an
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equivalent SPN can be constructed with immediate and
exponentially distributed timed-transition. This model
is now equivalent to the GSPN proposed in [6]. The
state for such a model, defined as the number of tokens
in places at any time, has been shown to have a ULD.
However, since the synchronization delays are defined
for individual tokens, the net has to be considered as
“colored” and the state should be defined accordingly.
It is clear that this model has also a ULD from which
it can be concluded that the synchronization delays
have a ULD too. In fact, it is possible to compute
these distributions from the limiting distribution of the
Markov chain and the state diagram.O

Notice that, practically, almost all distributions
can be well approximated by a distribution with ratio-
nal Laplace transform. One exception is the determin-
istic time distribution. In the rest of this paper, it is
assumed that the computation delay distributions have
this property.

Lemma 2

In a live and safe SDFPN X, all transitions have the
same limiting cycle time distribution.

Proof

From Lemma 1, it can be concluded that the cycle time
distribution of any transition in the net converges. In
this lemma, it is shown that, at the limiting case, the
cycle time distributions are all the same. Consider a
one-token loop, ¢ with r transitions t;,...,t, in that
order. Let S be the set of all states of the equivalent
GSPN model described in lemma 1 and let the random
variable C;, denote the limiting cycle time distribution
of any transition ¢; € £. Also, let S; C S be the set
of states in which the loop token of £ is at the input
place of the transition ¢;. Notice that S;’s are disjoint
sets. For this lemma, concentrate is placed on a subset
of the Markov chain with states in U]_,S;.

Let P(s.,8,) (Su,8» € Se¢) be the probability
that the model changes state from s, and eventually
reaches s, as a result of a sequence of firings v such
that it includes exactly one firing of transition t; and
no other transition in £ appears in . It is clear that
Su € Siy 8y € S and j = (¢ + 1)modr + 1. Also let
Z.» be a random variable that denotes the amount of
delay taken for the system to change the state from
Sy tO Sp. Zu, can be computed from the original
state diagram and in general can be represented in
the form of branching Erlang. Now, to compute the
cycle time distribution for a transition in ¢, say i,
the probability of being at any state s € & is first
found. Then, from the transition function P(s,5)
defined above, all the possible cycles that bring back
the state from any s € & to any state in S can be
obtained. The cycle time for each possible cycle is
represented by a branching Erlang distribution with
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Zuy's as its components. Ci, can now be computed
easily. It can be seen that following the same process
for other transitions gives the same final distribution
for their cycle times. Since the net ¥ is a union of one-
token loops, it is concluded that the limiting cycle time
distributions of all transitions are the same.O

It is known that in any loop ¢ there is one
transition t € ¢, such that for all k, C¢(k) = 3, , di(k).
Therefore, the net cycle time, denoted by a random
variable C at the limiting case, satisfies the following
equation,

C=> d,

el

for any loop £, where d; is d;(k) when k — oco. (Also
D; is used for D;(k), k — o0).

Corollary 1

In a live and safe SDFPN, for any loop ¢ with K,
number of tokens, the following equation holds:

> d; =Ky «C, (4)

Jjel

where C is the limiting cycle time distribution of the
net.

Proof

Proof follows Corollary 1 and Equations 1 and 2 which
were written for the general case. O

The number of distinct loops in a DFPN with m
places and n transitions, and hence the number of equa-
tions in the form of Equation 4 can be exponentially
large. However, only m — n + 1 linearly independent
loop equations are exactly needed. Let L, an m column
vector, represent a loop in the net; its entries are one
for the places in the loop and zero otherwise. Then,
ALT = 0. Since the rank of A is n — 1, exactly
m — n + 1 linearly independent Ls representing a set
of loops called fundamental loops are obtained. If B, a
(m—n+1) xm matrix, represents a set of fundamental
loops, then it can easily be computed from ABT = 0.
In general, if the rank of A is r and the transition and
place numbers are rearranged such that A is non-
singular in,

[ An A
A_{AQI AQZ},

then, B = [I,| — AT, A,[] where I, is the identity
matrix of dimension g = m —n + 1 [20]. (Here ‘|’
represents matrix concatenation.)

The set of equations in the form of Equation 4
written for a set of fundamental loops B can be shown
by:

B(D+ X)=KC, (5)
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1. Foreach k =1...N = H?zl |*t;| cases, take the following
steps:

(a) Let Iy = {k1,k2,...,kn} be the set of place indices such
that D; = 0 for j € Iy; one for each transition. Also, let
Ii, denote all other indices, i.e., I, = {1,2,...,m} — I}.
Solve the set of equations Q) D(*) = QD = Y where
Q) is Q whose jth columns, 7 € I, have been eliminated.
Similarly, D(*) is D without its jth elements (j € I).
The solution to this set of equations is of form ng) =
™ o)
=17
step.

X; for i € Ie. Tf Q™) is singular ignore this

(b) Compute the probability of occurrence of this case,

P{DM >0,vjeli} if case k
occurs
0 otherwise

Plcase =k} = {

2. Compute the distribution function and mean of the synchro-
nization delays, D;,i = 1...m,

N
P{D; <d} = Z P{ng) < d,case =k}
k=1

N
= Z P{DM <d, DM >0,5€I,}.
k=1

Algorithm 1. Exact algorithm.

where X[¢] = X, D[{] = D; and K[i] is the number of
tokens in the loop represented by the ith row of B. C
can be eliminated in Equation 5 and, thereby, (m — n)
equations of the following form are obtained:

QD=-QX =Y. (6)

The rank of @ (a (m — n) x m matrix) is m —
n, since the elements of K are all positive integers.
Considering n equations in the form of Equation 3, i.e.,

[[ pi=o weT, (7)
piE*t

m equations have to be solved for m unknown Ds.
However, the fact that X and D are all random
variables should be remembered.

Assuming that the joint probability of D, = 0
and D, = 0 for any p,, ps € * is zero, the set of
Equation 7 gives N = [, |*t:| possibilities each of
the form D;, = D,, = ... = D; = 0 where p;, € ".
It is now possible to present an exhaustive algorithm
for the exact solution of any SDFPN, which is shown
in Algorithm 1.

Lemma 3

Algorithm 1 correctly computes the limiting distribu-
tion of the synchronization delays.

Proof
From the assumption that P{D, = D, = 0} = 0,
for p,,ps € *t, it is clear that the cases mentioned in
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Algorithm 1 are disjoint. It remains
probability of a case k for which Q¥

to show that the
is singular is in

fact zero. It then follows that 3", P{case = k} = 1
and since the limiting distribution is unique, the proof

is complete. Now, assume that for a k
Then, there exists a non-zero 1 x (m
bT such that b7 Q%) = 0. Without 1

Q) is singular.
— n) row vector
oss of generality,

suppose that the indices are rearranged such that I =
{m-n+1,m-n+2,...,m}. Then, Q = [Q(k) Q(Zk)]

k) . .
where Qg )is an (m —n) x n non-zerg matrix. The set

of equations can then be written as:

x® ]

(k) plk) — _ otk k)
QWD® = - [Q Qg}[xék)

By multiplying both sides of the above equation

by b7,

)
0= [o bTQ(Q’“)] [ b
X

|

or BTQY X ¥ = 0 with non-zero b and Q5. This is a
dependency relation among random variables X;,p; €

I, which contradicts the assumpti
P{case =k} = 0.0
It is easily seen that the above a

be used for timed-transition DFPNs|

on.  Therefore,

gorithm can also
Moreover, the

following lemma shows that this technique can also be

applicable to bounded SDFPNs.

Lemma 4

Algorithm 1 also applies to any bounded SDFPN

provided that the unsafe places h
exponential distributions.

Proof

If the stated condition is true, the
given for the correctness of equation
Equation 4 is also true. This is becaus
lessness property of the exponential di
allows to statistically assume that tl
unsafe loop do not cross over one ano
an unsafe place can be thought of as
queuing theoretic sense.O

The complexity of this algorith
which is comparable to that of M
balance solution techniques used in
ever, it seems possible to identify
cases using simple analysis and as a
complexity of the algorithm to some

Examples

ave delays with

n the argument
s in the form of
e of the memory-
stributions which
e tokens on the
ther. Notice that
2 delay station in

m is exponential
larkovian global
10st SPNs. How-
the “impossible”
result reduce the
extent.

Counsider Figure 1 for the first example. For simplicity,

assume that Xo = X4 = 0 and X,,1

=1,3,5,6, have

exponential distribution with rates of u;,¢ = 1,3,5,6
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respectively. There are three fundamental loops, a set

of which is {p1,p2},{p1,ps,ps,pa} and {ps,ps} each
with one token. The equations are:

di+dy=dy +ds+ds +ds = ds + ds,

D1 = D5 == D2D4 = D3D6 = 07

and thus,
0 -1 11 1 0
Q=11 100 -1 -1
and:
X5 — Xy
YZ_QX:Q:{X5+X6—X1]

There are only four cases. For the first case, & = 1,
D, = D3 = 0. The solution for this case is:

Dy = X3 4+ X5,

D¢ = X1 + X3 — Xo,

P{k =1} = P{X3+ X5 > 0, X; + X3 — Xg > 0}
— P{X, + X3 > Xs)
=1—pap3/(p + pe)(p3 + e)-

For the second case, k = 2 and Dy =
which:

Dy = X5 4+ X6 —- X;,

D6 = O, for

D3 = Xg — X1 — Xj,
P{kZQ}IP{X5+X6>X1,XG>X1+X3}
— P{X¢> X1+ Xa) =1 - P{k=1}.

This means that it is not necessary to consider the
other two cases. (The probability of both cases indeed
turns out to be zero.) The distribution of Ds can be
computed using:

P{D; < d} =P{0< X5+ Xe— X <d, X > X1+ X3}
+P{0< X5+ X5 <d, X, +X;3> X5},

P{D;<d}=P{0< Xe— X1~ X3<d, Xs+Xs>X,},

P{Dg<d}=P{0< X, +X3—Xs<d, X+ X3 > 0},

which can be computed easily. The mean values of the
synchronization delays are as follows:

Hi1 3

ElDs] = pe(pn + pe) (s + pe)
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Figure 3. An SDFPN considered for the test of the
algorithm.

1 1 1
E[De]:—+——'—+ H1p3 :
m ops o e (1 + pe)(ps + mug)
1 1
E[DQ] = 4 — 4 H1H3 )
w3 ps pe(pr + pe)(ps + pe)

Notice that, in this example, only one of the mean
values needs to be calculated using the method shown
in Algorithm 1. The rest can be computed using the
fundamental loop equations which always hold for the
mean values. System throughput can then be found
using Little’s law.

For the second example, consider the system of
Figure 3. There are seven independent loops for which
the following equations can be written. Notice that
equations for any undirected loop may also, with a little
of care, be written. An arbitrary direction is chosen,
then the total delay on the loop would be the sum of
the delays on arcs which have the same direction minus
the total delay on the arc having the opposite direction.
The total number of tokens in such a loop is computed
similarly:

di+dy+d3=dg+dg+ds+ds+ds =dr+di+d12,
ds +dg —d7 =0,

dy+ds —ds —ds =0,

dy + dio — d11 =0,
D1D¢=DyD12=D5D3=D7Ds=D19D11=D;=0.

Approximate Solution

In order to present the approximate solution, first the
exact results are presented for a simple SDFPN %; with
only one transition ¢ and m self loop places p;,¢1 =
1...m. The cycle time distribution for ¥ is C = dy =
... = dn,. Following the exact algorithm, there are
m cases. In the case k, D,(ck) = 0 and Dg-k) = X —

293

X;, Vj#i. Therefore:

P{D; < d}

I

D PO< Xie—X: <d, Xp—X; >0 #14,k}
k=1

m o) z;+d Ty
S [ [T s,
k=1 ;=0 Jxr=0 z;=0

J#ik

x fxi (@) fx, (x:)dz;

:/a::() /:i+di H Fx; (w) fx, (xx)dzs

k=0 %Ta jAi
o Jj#ik

X fxi(xi)d‘ti

- /O I Fx e+ )| @ (8)

J#i

Equation 8 can also be derived directly from the
fact that C = max{X,;,7i = 1...m} and thus,

m

Fo(t) = [] Fx.(4). (9)

It is assumed that: (a) It is adequate to work
with mean and variance values, and (b) All distri-
butions can be approximated by simple Erlang (ED)
or Branching Erlang (BED) depending on their co-
efficient of variations. Here, only the fitted ED is
considered. The formulae will be more complex for
BED. In fact, the result would be more accurate
if Coaxian approximation is used for the distribu-
tions because the distributions of Ds generally have
a mass at zero which is not captured by ED or
BED.

Let the fitted ED for X;,7 = 1...m, have k;
stages, each with mean service rate of p,. First, the
mean and variance of C; are found as the cycle time
distribution of the net ¥; without place p;. That is,
Fo,(t) = [Ij=1 jz Fx,;(t). The distribution is, then,
fitted, by an ED used in Equation 8, to find the mean
and variance of D;. First, m = 2 is considered and
a recursive formula is used to compute for m > 2.
Assuming that Fgo(t) = Fx,(t)Fx,(t), the first two
moments of C can be computed as (p is defined as 3—1):

E[C]:Zﬁ[l—kf(ki;j)(;%;)m

(ullf:Nz)]]’ (10)
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ki+2
% ( Hi > < Hp
H1 + o M1+ p2

C is approximated by an ED. Now, E

+ 1 +j>
j]. (11)

quations 10 and

11 can be applied recursively to compute the fitted ED

for C;. That is, if G(1,t) = Fx, (¢) is

G(n,t) =G(n~1,0)Fx,_, j=2.

then G(m — 1,t) = F¢,(t).
Similar formulae can be derive

defined and

.m — 1,ij ?5 1.
(12)

d for E[D,;] and

E[D?] using the fitted ED of C; in Equation 8. Notice
that if the only interest were the mean of D;, the
recursion 12 could be continued one more time and the

mean value of the net cycle time, C
then E[D;] = E[C] — E[X,].

The approximate algorithm is b
ative use of the exact solutions for a.
that are considered for each transitig
are similar to ¥; and can be exactly
iteration, it is assumed that the appro
the means and variances of all synch
(Ds) are available. X; is presented
transitions, except t and allowing th
freely. Tokens, however, will face X
different delays. All loops around
found, using the method of stages an

could be found,

ased on the iter-
] simple nets %,
n t. These nets
solved. At each
ximate values for
ronization delays
by opening all
e tokens to flow
s and Ds as two
t can be easily
1 from the values
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found in the previous iteration, the mean values and
variances of the delays that are encountered by each
single token in loops around t can also be obtained.
Now, Equations 10, 11 and 12 are used to find new
mean values and variances for D;s, synchronization
delays at t. This is done for all transitions and this step
is repeated until all values converge. A more formal
description of the approximate algorithm is shown in
Algorithm 2.

It is difficult to formally argue about the conver-
gence of the above procedure. However, the experi-
mental validation shows that the algorithm converges
for reasonable parameter values.

The complexity of the approximate algorithm is
O(Knm?) which is quite fast compared to the exact
algorithm (K is the number of iterations.)

EXPERIMENTAL VALIDATION OF
APPROXIMATE ALGORITHM

A series of experiments was run to evaluate the
accuracy of the approximate solution presented in
the paper. Four SDFPNs were chosen to test the
algorithm, each with different characteristics, one of
which is shown in Figure 3. The number of places were
between 10 and 25. For each net, several test data
with different delays were created. Branching Erlang
distribution was used to fit all the distributions with
different coeflicients of variation. The total number
of tests performed was 20. The convergence criteria
had a relative error of less than 0.001. A program was

1. From the basic loop equations of Qd = 0

where pi; € *t; and for some zero/one v3

m

9:,(X, D) = Z

aip X5 + Zbika~
k=1 k=1

k#3

=g:,.(X,D)+ D

1lues of as and bs:

iy

find » = |*t;| simultaneous equations of the following form for each transition ¢;:

9, (X, D)+ Diy =94, (X, D)+ Dy =|...

Such equations surely exist but it is better to choose those for which the g functions have the fewest terms possible.

2. Initially assume that E[D;] = Var[D;] =

3. Repeat the following steps until mean v

Ofori=1...n.

lues for all Ds converge:

(a) For each transition t;, compute the means and variances of gi; as:

k=1 k=1

k)
Var(g:;] = Zaik Var[Xg] + Z
k=1 k=1
ks

Dk]a

51'1:: Var[Dk]

(b) Treat g;;s as the Xs for a single transition ¢ in simple net ¥;. Use Equations 10, 11 and 12 to compute the new values for £[D;]

and Var[D;].

Algorithm 2. Approximate algorithm.
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written to symbolically compute good loop equations
for each transition of the input net and calculate
the approximation results. Each input net was also
automatically converted to a simulation language that
is used by PAWS package [21]. The results of the
mean values of the cycle times and the synchronization
delays of the approximate algorithm and simulation
were compared.

As expected, the largest errors occurred when
most delays were near the threshold. The largest error
for mean synchronization delays was 16% but that for
standard deviation was 27%. The largest errors and
standard deviation for the mean values of the cycle
times were 7% and 12%, respectively. The mean error
for synchronization delays of all these tests was found
to be 9%. For the mean cycle times this was 4%. These
ranges of error are acceptable for most purposes.

No convergence problems were observed in any
verification runs. The maximum number of iterations
needed was 17. However, on average, 9.6 iterations
were sufficient for convergence.

Although the approximate algorithms have not
been verified with a complicated real-world system, it
seems that these experiments are enough to expect
the same performance for even complicated systems
that can be modeled by SDFPNs. Many experiments
conducted by the author show that small models tend
to become more unstable and are prone to more errors
compared to complex models with many synchroniza-
tion steps.

The main source of error in this approximation
is the dependencies among the delays. It is assumed
that Ds and Xs are independent when computing the
variance of gs. Moreover, in Equations 8, 10 and 11
independent Xs are assumed. These are not true in
general for gs. The approximate algorithm was made
possible, however, by these simplifying assumptions.

CONCLUSIONS

In this paper, an exact solution technique has been
presented for any safe and live stochastic decision free
Petri net which can be used to model deterministic
distributed programs as well as other systems. The
algorithm does not do reachability analysis and avoids
the use of classical Markovian modeling techniques and,
therefore, neither suffers from state space explosion nor
demands exponential distributions. It allows arbitrary
distributed time attached to places and/or transitions.
The net behavior is represented by simple equations
which can easily be written using the fundamental
loops. The exact algorithm also applies to bounded
SDFPNs provided that the unsafe places have delays
with exponential distributions. However, the complex-
ity of the algorithm for computing the distributions
or even the mean values for synchronization delays

295

is exponential which is comparable to that of other
existing approaches. Finding the regions in which each
of the N cases can occur is also an expensive procedure
which is called upon once in an iteration. Identifying
the “impossible” cases beforehand and use of a good
region finding algorithm can reduce the complexity of
the algorithm to some extent.

In spite of its complexity, the algorithm promises
good approximate techniques, one of which was pre-
sented in the previous section. The proposed ap-
proximation gives reasonably accurate results without
incurring exponential complexity, however, it is difficult
to analyze the introduced errors.

In order to compute actual delays suffered by pro-
cesses, resource contention and interprocess communi-
cation must be considered simultaneously. This can
be done by solving the contention and communication
models iteratively, one feeding the other. Note that a
process waiting for rendezvous does not compete for
system resources, therefore, communication delay can
be incorporated in the contention model via a delay
station. Further work on this is underway.
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