Scientia Iranica, Vol. 8, No. 4, pp 241-249
(© Sharif University of Technology, October 2001

Testing Reactive Systems on the
Basis of Formal Specifications

S. Sadeghipour!

Using Extended Finite State Machines (EFSMs) in the specifications of reactive systems increases
the preciseness and understandability of requirements. This paper focuses on the problem of
testing based on EFSMs. While testing based on Finite State Machines (FSMs) has been
extensively investigated in the literature, issues concerning testing based on EFSMs have not
been adequately addressed. Here, after providing an overview of testing methods based on
FSMs, a novel strategy for testing based on EFSMs is presented.

INTRODUCTION

Today software systems play a significant role in the
daily life and the users of such systems make high
demands on their quality. A major aspect of the
software quality is the correctness of software with
respect to its functional requirements. Testing is
the primary method through which the producer of
software and the user or customer gain confidence that
these requirements are fulfilled. On the other hand, the
use of formal methods in the development of software
promises high product quality, because the precision
of specifications written in a formal language forces
specifiers to express requirements and design decisions
in a clear and unambiguous manner. Formal methods
use mathematical notations and proofs in the specifica-
tion, analysis and design of software systems. The core
of a formal method is a specification notation, which
has to possess a well-defined syntax and semantics.
Some examples for formal specification notations are
Z, VDM, SDL, CSP and LOTOS.

Although the well-structured use of formal meth-
ods contributes to avoiding errors during the construc-
tion process of software and provides the prerequisites
for using tool-supported verification methods, current
proof techniques and tools are mostly too expensive
to be efficiently used for complex tasks such as the
verification of an implementation against its specifica-
tion. Therefore, testing is the main verification method
for software developers who use formal techniques.
Formal methods can improve the quality and efficiency
of test activities. The formal specification of the test

1. DaimlerChrysler AG, Research and Technology, Alt-
Moabit 96a, D-10559 Berlin, Germany.

object could be a solid basis for a systematic and tool-
supported test case and test trace derivation, test input
data selection and test evaluation leading to a cost-
effective software development.

In this paper, testing reactive software systems is
considered. In contrast to a transformational system
which accepts an input, produces the corresponding
output and terminates, reactive systems are charac-
terized by their continuous reaction to various inputs
from their environment. Examples include operating
systems, communication protocols, man-machine in-
terfaces of word processor, data base programs and
the software components used in technical systems
(embedded software). Finite State Machines (FSMs)
build a simple and easily understandable formalism
and suggest themselves to formally specific reactive
systems. However, real systems usually process a
large amount of data and, therefore, Extended Finite
State Machines (EFSMs), which are FSMs extended by
data variables, are frequently used to specify reactive
systems. The main contribution of this paper to
the methodology of software testing is a strategy for
testing based on EFSMs. In order to make the reader
familiar with the relevant research background, a brief
description of testing methods based on FSMs is also
provided. The next section explains the terminology of
testing used in this paper.

TESTING TERMINOLOGY

Concerning the test basis, there is a dichotomy in the
software test: Tests based on program specification
are called black-box tests and tests based on program
structure are called white-box tests. Testing programs
against their specifications is decisive for detecting the

242

missing functionalities, i.e., requirements which are
not implemented. Therefore, when testing a piece of

software, the emphasis should be laid

based testing. However, to realize
strategy, the black-box test should be

on specification
an effective test
accompanied by

an appropriate white-box test in order to execute pro-
gram branches not covered by test cases derived from

the specification. This paper focuses
based testing.

on specification

In testing reactive systems, one| can distinguish
between function and trace tests. Function test refers
to the test of individual functions of the software which
are responsible for the transformation|of data and can
be triggered by certain inputs in certain internal states.
Trace test, or testing the dynamic behavior, means the

test of traces of functions. For the
first, test cases are derived from the

test case describes a certain input situation.

function test, at
specification. A
Then,

test input data are selected for the derived test cases.
After the test execution, i.e., executing the test object
with the selected input data, the test ¢valuation checks

whether each pair consisting of the

test input data

and the corresponding output produced by the test

object satisfies the specification.
the dynamic behavior of a system, t
test traces builds the first activity.

For the test of
he generation of
Test traces are

sequences of functions. The other activities are similar
to the function test, i.e., test input data selection, test

execution and evaluation, while here
have to be selected as input data in or
functions contained in a trace.

TESTING BASED ON FINITE
MACHINES

First, two basic definitions are provid
test methods based on FSMs are desd

Definition 1

A Finite Automaton (FA), also called
4-tuple (S, X, qo, 0), where S is a finite
a finite set of symbols, called the autg
go € S is the initial state, and ¢ :

test input traces
der to trigger the

STATE

ed and then, the
ribed.

an acceptor, is a
set of states, X is

maton alphabet,
S xX < § the

transfer relation. A finite automaton can be visualized

by a directed graph.

Definition 2

A Finite State Machine (FSM), also called a Mealy

automaton, is a 5-tuple M = (5, X, A
a finite set of states, ¥ and A are finite

qo, f), where S'is
sets of input and

output symbols, respectively, go € S is the initial state
and f: Sx L — Sx A the transfer and output relation.

In a deterministic FSM, f is a parti
example, f(g;,%) = (gx,0) means that

al function. For
ifan input: € ¥

S. Sadeghipour

is applied to M in state g;, a transition t;, is executed
and M moves to state g, and produces output o. Such
a transition is denoted by t;x = (g5, qx.%/0). An FSM
is considered to be completely specified if in each state
and for each input symbol, there is a transition leaving
that state.

For the testing methods based on FSMs, the
implementation to be studied has to be specified as
a deterministic FSM M,. (This paper focuses on
deterministic specifications. In the research field test-
ing based on Labeled Transition Systems (LTSs), and
testing methods based on non-deterministic machines
are investigated, e.g., [1,2].) Moreover, it is assumed
that the behavior of the implementation can also be
modelled by a deterministic FSM M, having the same
input and output alphabet as M. The aim of testing
is to check the equivalence of M; and M, i.e., whether
they accept the same traces of inputs and generate the
same traces of outputs for each accepted input. In the
most general case, M; may differ from M; in:

1. The number of states (i.e., M; may have missing or
extra states),

2. The number of transitions (i.e., M; may have miss-
ing or extra transitions),

3. The implementation of the output and transfer
functions (i.e., some transitions of M; may produce
erroneous outputs or enter erroneous states) [3].

In general, extra states or transitions in M;
cannot be detected with a finite number of input
traces. Hence, a test hypothesis which is often used
is that the number of states of the formal model of
the implementation is equal to the number of states of
the specification. The FSM specification is required to
be minimal and completely specified. The minimality
is needed in order to exclude equivalent states, which
result in confusion in the identification of the state
reached by the implementation (see the third step
of the correctness regarding checking below). The
completeness of the specification is required, because
otherwise the implementation can have an arbitrary
behavior for the input traces outside the specification
domain. Moreover, each state has to be reachable, so
that the testing procedure is able to check each state
by the application of an input trace.

As an example, a specification machine M, is
considered in Figure 1 and the pseudocode of an
erroneous implementation M, is presented in Figure 2.
The formal model of the implementation is also shown
in Figure 2. The specification is deterministic, minimal
and completely specified. It is characterized by the set
of states S = {P,Q, R}, the input alphabet & = {0,1}
and the output alphabet A = {a,b}. The transfer
and output function f of M, is described by the
directed graph in Figure 1. The automaton model of

Testing Reactive Systems

Figure 1. Specification of finite state machine M,.

the implementation in Figure 2 shows that the imple-
mentation differs from the specification in a missing
transition, faulty implemented transfer function and
output function. Assuming that the formal model
of implementation does not have more states than
the specification, testing the equivalence between the
specification and implementation is reduced to testing
whether or not each transition of the FSM specification
has been implemented correctly. The procedure of
checking the correctness of the implementation of a
transition ¢;x = (q;, gk, 1/0) consists of three steps [3-5]:

1. M, is brought (e.g., from the initial state qq) to state
g; by an input trace u,

2. Aninput ¢ is applied to M; and the output produced
by M; is checked to see whether it is o,

3. The state reached by M; after the application of
input 7 is checked by a characterizing input trace w
to see whether it is ¢.

The input trace wiw is called a test input trace for
the transition t;;. Different methods of test input
trace generation, e.g., Distinguishing Sequence (DS),
Unique Input/Output (UIO) and W-Method differ in
the third step mentioned above, i.e., in the way the
identification of the state reached after the transition
to be tested has been executed [3,6]. A distinguishing
sequence is an input trace that produces a different
output for each state. A unique input/output for
state s; is a trace of input/output pairs that has
the property that the output produced at s; for this

243

trace differs from that produced from any other state
s; # s; [7]. For an arbitrary FSM, the existence
of distinguishing sequences or a unique input/output
is not guaranteed. In comparison, W-Method which
suggests a characterization set of input traces to dis-
tinguish between the states of an FSM is applicable in
all cases. Set of input traces W is a characterization
set of an FSM M if for each pair of states ¢ and
q', there is at least one input trace in W for which
the machine produces different outputs at ¢ and ¢'.
Thus, given a transition to be tested, that transition
must be executed together with all the members of the
characterization set. Consequently, the testing effort
according to W-Method is generally more than the
other two methods. Moreover, the W-Method does not
require the number of states of the specification and
the formal model of the implementation to be equal,
but only the maximum number of the implementation
states to be known. W-Method is described below in
detail.

W-Method

W-Method, or the method of characterization sets
[4], has been proven to be capable of showing the
equivalence between the specification and the formal
model of the implementation. In order to generate
test input traces for an FSM according to W-Method,
one should build a transition cover of the machine. A
transition cover of an FSM is a set of input traces that
for each input trace reaches the source state of a certain
transition and covers it [6]. A transition cover can
be built by deriving a reachability tree, also called a
testing tree, from the FSM. If the number of states of
the formal model of the implementation is assumed to
be equal to the number of states of the specification, the
set of test input traces T is built by the concatenation
of the transition cover P and characterization set W
of M;: T=P o W. (If the implementation automaton
is assumed to have more states than the specification
automaton, then T is computed in a more complex

Begin

P: If in=0 Then out:=a; goto Q

Q: If in=0 Then out:=b; goto R
If in=1 Then out:=a; goto P

R: If in=0 Then out:=a; goto P
If in=1 Then out:=a; goto Q

End

Figure 2. Pseudocode implementation and its finite state machine M;.

244

Table 1. Test table of M, against M.

Real Output

Test Input Trace | Expected Output

(10) (aa)

(010) (aab)

(110) (aaa)

(0010) (abbb)

(0110) (aaab)
(00010) (abaaa)
(00110) (abbab)

unde fined
(aaa)
unde fined
abab)
aa(unde fined))

(
(
{aba(unde fined))
(

abaaa)

way [4].) An algorithm for building
sets has been given in [8] (Algorithm

characterization
4.1, p 92).

As an example, the specification machine M, of
Figure 1 is considered. The transition cover P of M,

is:

P ={e,{0),(1),(00), (01), (000}, (001) },

where ¢ is the empty trace.
of the input trace (10) can be cons
characterization set of M,, becaus

different output at every state of M.

Set W

consisting only
idered to be the
e it produces a
Assume that

the formal model of an implementation, regarded as

the test object, has the same numbe

r of states as the

specification, namely three. Then, the set of test input

traces T is built as follows:

TZPoW = {(10), (010}, {110), (0010), (0110),

(00010), (00110)}.

Table 1 shows the expected output
sponding real outputs computed by
mentation M, illustrated in Figure 2,
traces from T.

s and the corre-
the faulty imple-
for the test input

TESTING BASED ON EXTENDED FINITE

STATE MACHINES

It is known that FSMs and FAs are merely capable of
computing regular expressions, i.e., their computation
power is much less than the general Turing Machines.

Therefore, FSMs and FAs can har

the specification of reactive systems,

dly be used for
A solution to

this problem is to extend finite automata by data

variables leading to Extended Finite
(EFSMs). In this manner, the exp
the finite machine formalism is notabl

State Machines
ression power of
y increased while

its understandability is maintained. EFSMs are finite

automata whose transitions describe
on (possibly infinite) data types. T

transformations
he data space of

such a machine is characterized by sets of input, output

and internal variables. The details

concerning data

transformations are hidden in trangition labels and

are specified separately within a certa

in formal syntax.

S. Sadeghipour

The formal notation used in this paper is a combination
of Z [9] and finite automata. This notation and a
strategy for testing based on EFSMs are explained in
the consequent sections.

Specification Notation

The specification notation (and the test strategy pre-
sented in the next section) is described with the
aid of a simplified version of the specification of a
cruise control system for cars [10] serving as the
running example throughout the rest of the paper.
In this section, the specification of the cruise control
and, at the same time, an explanation for the main
components of the notation used are presented. As
mentioned previously, the specification notation is a
combination of Z and finite automata. (The Z part
of the notation is enriched by some concepts of the
object oriented version of Z, called Object-Z). Z is
a model-oriented specification language based on the
first order predicate logic and set theory. The central
concept of Z is a schema, which is used to describe
the operations and data state of the software to be
specified. A schema generally consists of a signature,
which declares the variables and their types and a
predicate, which expresses the properties to be ful-
filled. In addition to schemas, 7 possesses syntactical
constructions for specifying data types, constants and
functions.

The cruise control system, CruiseControl, sup-
ports car drivers by controlling the vehicle speed. In
the simplified version presented here, this is controlled
by the cruise control lever having three positions ‘on’,
‘off’ and ‘middle’. The driver can define the current
speed as the requested speed by setting the control
lever on ‘on’. By applying the brake or setting the
control lever on ‘off’, the CruiseControlis deactivated.
The lever is set automatically to the ‘middle’ position
after each activation. Figure 3 shows an automaton
specifying the dynamic behavior of the CruiseControl
which has two states, passive and active, characteriz-
ing the control modes, and two transitions responsible
for operations described above.

Figure 4 illustrates the data types and the oper-
ations of CruiseControl specified in Z. The Z schema
defined by the key word Dara describes the private
data space of the specification. The predicate of
a data schema is an invariant that must be valid

/InitCruiseControl

N

Passive

[Defining]/de fine

Active

[Deactivating)

Figure 3. Dynamic behavior of CruiseControl.

Testing Reactive Systems

245

—— CruiseControl
LeverPositions ::= on | off | middle
PedalPositions ::= activated | notActivated

allowed_,def _: ? SPEED
Yz : SPEED e allowed z <& 40km/h < 2 < 160km/h
Vz:SPEED o def £ & = # 0km/h

—— DaTa DataCruiseControl
requestedSpeed : SPEED

def requestedSpeed = allowed requestedSpeed

in(active) = def requestedSpeed

—— PORT Input_Ports

lever? : LeverPositions
brake? : PedalPositions
currentSpeed? : SPEED

—— PORT Output_Ports
requestedSpeed! : SPEED

— INIT InitCruise Control
DataCruiseControl’; Output_Ports

- def requestedSpeed’ A — def requestedSpeed!

—— GUARD Defining
Input_Ports

lever? = on
allowed currentSpeed?

brake? = notActivated

(— GUARD Deactivating
Input_Ports

brake? = activated V lever? = off

—— OP Define

A DataCruiseControl
Input_Ports; Output_Ports

def requestedSpeed’ A requestedSpeed’

requestedSpeed! = requestedSpeed’

currentSpeed?

Figure 4. Specification of CruiseControl.

before and after the execution of each operation.
The variable requestedSpeed declared in the schema
DataCruiseControl models the speed requested by
the driver and is undefined after the system initial-
ization. In the full version of CruiseControl, this
variable is used to set the requested speed after
resuming the cruise control system. The data type
SPEED is from the puSZ library for dimensioned
physical quantities. Using this library makes it pos-
sible to apply physical units (e.g., km/h for speed)
to numbers. The predicate in is a built-in predi-
cate of uSZ. For example, in (active), as used in
the schema DataCruiseControl, expresses that the
statechart of the specification resides in the state
active.

In the port schemas, variables for the commu-
nication of a software component with its environ-
ment and other components are declared. According
to Z conventions, incoming variables are decorated
with a question mark “?” and outgoing ones with
an exclamation mark “!”. The initialization schema
defines the initial values of the internal data and the
output variables. It is attached to the transition
entering the initial state of the automaton. Variables
decorated by a prime “/” denote the value of the
corresponding undecorated variable after the execution
of the operation. An automaton transition is labelled

by a pair [guard]/op, called a transition function or a
transition relation, where guard and op are specified by
individual Z schemas. A guard describes the condition
for a transition to be triggered. An operation specifies
the data transformations to be carried out by the
transition. The term AS in the signature of an opera-
tion schema Op means the inclusion of the variables
of the S in Op in their simple and primed form.
The transition label [guard]/op is logically interpreted
as guard A op. The absence of any operation (such
as label [Deactivating] in Figure 3) means that the
operation does not change the internal data variables
and produces no output. In order to derive test traces,
it is crucial to have specifications with their whole
information made explicit. Therefore, an operation
NoAction is defined and attached to the corresponding
transition:

0, NoAction=[A DataCruiseControl; Output_Ports|
—def requestedSpeed! A requestedSpeed’
= requestedSpeed).

Moreover, to specify the behavior of an automaton for
the possible inputs which are not covered by the guards
leaving a state, a loop-back transition is attached to
that state. Figure 5 shows the complete automaton

246

S. Sadeghipour

/InitCruiseControl

f\

Pa

[LoopPassive]/
NoAction

[Defining]/define

[Deactivating]/
NoAction

[LoopActive]/
NoAction

Fi

of CruiseControl, having the loop-back transitions and
NoAction operations made explicit, with:

LoopActive=-Deactivating and LoopPassive
=-Defining.

Separate Function and Trace Test

The starting point for designing a test strategy based
on EFSMs is the well-known test trace generation
approach based on FSMs, described |previously. The
problem of carrying over the test methods based on
FSMs to EFSMs is twofold. On one hland, a transition
in an FSM accepts an input and produces an output.
Once it has been tested successfully, it can be regarded
as correctly implemented. However, in an EFSM, the
transitions transform a set of variable values. The
successful test of a transition for somle variable values
does not guarantee that the transition is correctly
implemented for other values of variables. The other
problem concerns the recognition of an executed tran-
sition. In FSMs, different outputs are distinguishable,
yet in EFSMs, different operations may produce the
same output. This analysis leads tg the strategy of
separate function and trace test (SETT strategy) which
is motivated by the test method based on X-machines
[11] and uses the test trace generation methods based
on FSMs. The SFTT strategy can be applied to an
EFSM if the specification and the development process
fulfil the following conditions:

o The transitions of the EFSM have tg be implemented
as individual testable units. If sa, then they can
be tested separately and their correctness can be
assumed during the trace test. Therefore, the first
problem mentioned above does ndgt arise, because
the correctness of the behavior of each transition in
different situations is not subject ta trace test:

e Each operation produces a distinguishing output at
least for a certain input (output distinguishability).
This condition solves the second problem mentioned
above, because it ensures that each transition can be
identified through its outputs;

e The guard of each operation is
input producing the distinguishing output mentioned

ure 5. Complete statechart of CruiseControl.

above, independent of the values of the internal
variables (feasibility). This condition guarantees
that all test traces derived from the machine are
actually feasible.

In order to avoid the complex analyses needed
for checking the conditions of output distinguishability
and feasibility, all the transitions of an EFSM are
augmented with special inputs and outputs. They
are added to the transitions regardless of whether or
not they possess any of the desired conditions and
are used only for testing. In an EFSM augmented
in this manner, each transition can be triggered by
its special testing input, regardless of the values of
the internal variables, and each transition reports its
execution through the special testing output. In the
following, this kind of augmentation for the specifica-
tion CruiseControl is shown. The automaton of this
specification has four differently labelled transitions
(Figure 5). Therefore, two enumeration types contain-
ing four values for the testing input and the testing
output variables are introduced:

TestingInputs ::= de finingIn|deactivatingIn
{loopPassiveln|loopActiveln

TestingOutputs := de fineOut|deactivateOut
|opPassiveQut|opActiveOut

The port schemas Input_Ports and OQutput_Ports are
extended by the input variable testingInput? from
the type Testinglnputs and the output variable
testingOutput! from the type TestingOutputs, respec-
tively. Each guard checks whether the corresponding
testing input variable is set. For example, the guard
Defining is extended as follows:

Guard Defining
Input_Ports
(lever? = on A allowed currentSpeed? A brake?
= notActivated) V
(testingInput? = defininglIn)

Since the transitions labelled by NoAction operation
in Figure 5 have different guards, they are considered

Testing Reactive Systems

247

/InitCruiseControl

[Defining]/de fine

[LoopPassive]/

[LoopPassive]/ OpPassive
Oppassive
[Deactivating]/deactivate
Figure 6. Modified statechart of CruiseControl.
to be different from each other and have to produce : :
different values of the testing output variable. There- /TnitCruiseContral
fore, three new operations, OpPassive, OpActive and
Deactivate, are introduced and the different NoAction - c .
a Passive Active

operations are replaced by them. Figure 6 shows
the modified automaton of CruiseControl. As an
example of the augmented operations, the Z schema
of OpPassive is provided:

O, OpPassive
A DataCruiseControl
Input_Ports; Output_Ports
- def requestedSpeed! A requestedSpeed
= requestedSpeed
testingInput? = loopPassiveln
= testingOutput! = opPassiveOut

The original predicate of the operation is conjugated
with a predicate expressing the presence of the distin-
guishing testing output, provided that the correspond-
ing testing input has been presented.

As the name of the SFTT strategy reveals, the
function and the trace test proceed separately. At
the first stage, the system functionalities, which are
represented by automaton transitions, are tested, and
at the next stage, while the correctness of individual
functions is assumed, the trace test is designed and
executed. In the following subsections, the activities
related to the trace test are described.

Test Trace Derivation

For deriving test traces from an EFSM which has
been augmented according to the procedure described
previously, the test trace generation methods based
on FSMs can be used. W-method is applied to the
automaton of CruiseControl. For this purpose, the
transition labels of the automaton are replaced by
simple symbols. This leads to a finite automaton,
as shown in Figure 7, called the abstract FA of the
original EFSM. The transition cover of the abstract
FA of CruiseControl is given by:

P = {e,{a), {c}, (b), (d), {cb), {cd), {ca}, (cc)}.

The set W = {a} is a characterization set, because
a is accepted at the passive state but not at the

d

a = [LoopPassive]/OpPassive
b = [LoopActive|/OpActive

¢ =[Defining]/Define
d = [Deactivating]/Deactivate

Figure 7. Abstract FA of the EFSM of CruiseControl.

active state. Assuming that the formal model of the
implementation also has two states, the set of test
traces is:

T =PoW = {{(a), (aa), (ca), (ba),
(da}, (cba), (cda), (caa), (cca)}.

A trace which is a prefix of another one can be
eliminated because it is tested by a longer trace. Thus,
the final set of test traces is:

T' = {{aa), (ba), (da), (cba), (cda), (caa), (cca)}.

Test Input Data Selection

The input data for a test trace is a trace of the values of
the input variables capable of triggering the operations
of the test trace. The selection of the test input data
proceeds as follows:

e For every test trace ¢ = (fi...f.) accepted
by the abstract FA of the considered EFSM, a
trace (in;...in,) of the values of the variable
testingInput? corresponding to the transitions ap-
pearing in ¢ is selected. The values of all other input
variables are arbitrary.

o If test trace t = (fy ... f,) is not accepted by the
abstract FA, then there is an initial segment of ¢,
t" = (fi... f&), k < n, which is accepted by the
automaton (for £k = 0, ¢’ is the empty trace). The
trace of the values of the variable testingInput? cor-
responding to ¢, (in, ...inging41) is, then, composed
of the input trace (iny...iny) corresponding to ¢t
built as described above, and an input 1Mk+1 which

248

S. Sadeghipour

Table 2. Test input data and the expected outputs for traces of T

Test Trace Values of Testing Input? Values of Testing Output!
(aa) (loopPassiveln lgopPassiveln) (opPassiveOut opPassiveOut)
(ba) {loop Activeln) {(not opActiveOut))
(da) {(deactivatingIn) ((not deactivateOut))
(cba) {definingIn loopActiveln loopPassiveln) (de fineOut opActiveOut (not opPassiveQut))
(cda) {definingIn deactivatingln loopPassiveln) | (defineOut deactivateQut loopPassiveQut)
(caa) (definingIn loopPassiveln) (de fineOut (not opPassiveQut))
(cca) {definingIn definingIn) (de fineOut (not de fineOut))

would have caused the specification to exercise the
function fry if it had been accepted by the abstract
FA.

Table 2 provides the traces of the values of the
variable testingInput? for traces from T".

Test Evaluation

Due to the distinguishability of testing outputs for
each transition, the procedure of test evaluation is
straightforward. A test is successful if the expected
trace of testing outputs is observed.

In order to explain the identification of expected
outputs, a distinction is made between the test traces
which are accepted by the abstract FA and those which
are not accepted.

o Test trace t is accepted by the abstract FA of the
specification. In this case, for each element of the
test trace, which is the name of a transition function,
its specific value of the testing input variable has
been applied to the implementation. Therefore, for
each value of the testing input varjable, an observer
expects its corresponding output. For example, con-
sider the trace (cda) from Table 2, which is accepted
by the abstract FA of Figure 7. Acdording to the sec-
ond column of the table, the applied test input trace
is (de finingIn deactivatingIn loopPassiveln). Ac-
cording to the kind of augmentation of the spec-
ification described before, this input trace must
generate the output trace (defineQut deactivateOut
loopPassiveOut };

e According to the construction of the test input data,

described in the previous subsect
output for a test trace not accepte
FA differs from the above case
member.

on, the expected
d by the abstract
only in the last

In a correct implementation, the last

value of the testing output variable for such traces

may be undefined or be any value

corresponding to the last testing input.

except the value
As an

example, see the last row of Table 2 for the test trace

(cca), where the ouput de fineOut is not allowed to
occur twice.

The last column of Table 2 shows the expected
traces of the values of the testing output variable
testingOutput! for the test traces from T

CONCLUSIONS

An overview of testing methods based on finite state
machines and the strategy of Separate Function and
Trace Test (SFTT) on the basis of extended finite
state machines are presented. For the application of
SFTT strategy to an EFSM, the specification and
development process have to fulfil some conditions.
The key condition is the presence of individual testable
units for the transitions of the EFSM. For the cases
considered, this condition does not hold, therefore,
an alternative strategy, called Combined Function and
Trace Test (CFTT), described in [12] was developed.
In order to facilitate the usage of these test strategies
in the industrial practice of software development, a
tool environment is being developed at the Software
Technology Labour of DaimlerChrysler.

In addition to testing, model checking is a verifica-
tion method based on finite state machines, which has
become popular in recent years [13,14]. The objective
of model checking is to check the correctness of a
model against a property. The property might be taken
from the requirements specification, which is usually
written in a temporal logic language. The checking
is accomplished by the complete exploration of the
state space of the model. The objective of a black-
box testing strategy, as described in this paper, is
basically different from the objective of model checking:
Model checking applies a white-box approach and
investigates the relation between a model, having a
known structure, and a specification. However, testing
tries to check the correctness of a program, considered
as a black-box, against a specification (or a model). In
practice, model checking should be done after building

Testing Reactive Systems

a model in order to detect the modelling errors. Testing
is accomplished after the implementation in order to
detect programming errors.

ACKNOWLEDGMENTS

The author wishes to thank his colleagues Professors
Harbhajan Singh and Kirill Bogdanov for their coop-
eration and many fruitful discussions on testing based
on formal specifications.

REFERENCES

1.

Brinksma, E. “A theory for derivation of tests. In
PH.J.”, The Formal Description Technique LOTOS,
van Ejik, C.A. Vissers and M. Diaz, Eds., North-
Holland (1989).

Peleska, J. and Siegel, M. “From testing theory to test
driver implementation”, FME’96, Industrial Benefit
and Advances in Formal Methods, M.C. Gaudel and
J. Wood-cock, Eds., pp 538-556, Springer (1996).

. Ural, H. “Formal methods for test sequence genera-

tion”, Computer Communications, 15(5), pp 311-325
(1992).

. Chow, T.8. “Testing software design modeled by finite-

state machines”, IEEFE Transactions on Software Engi-
neering, SE-4(3), pp 178-187 (1978).

. Lee, D. and Yannakakis, M. “Principles and methods

of testing finite state machines - A survey”, Proc. of the

[EEE, 84(8), pp 1089-1123 (Aug. 1996).

10.

11.

12.

13.

14.

249

. Fujiwara, S., Bochman, G.V., Khendek, F., Amalou,

M. and Ghedamsi, A. “Test selection based on finite
state models”, IEEE Transactions on Software Engi-
neering, 17(6), pp 591-603 (June 1991).

Hierons, R.M. “Extending test sequence overlap by
invertibility”, The Computer Journal, 39(4), pp 325-
330 (1996).

Gill, A., Introduction to the Theory of Finite-State
Machines, McGrow-Hill (1962).

. Spivey, J.M., The Z Notation. A Reference Manual,

Prentice Hall, New York, 2nd Ed. (1992).

Grieskamp, W., Heisel, M. and Dérr, H. “Specifying
embedded systems with statecharts and Z: An agenda
for cyclic software components”, In Proc. Formal As-
pects of Software Engineering - FASE’98, number 1382
in LNCS Springer (1998).

Ipate, F. and Holcombe, M.
method that is proved to find all faults”, International
Journal on Computer Mathematics, 63, pp 150-178
(1997).

Sadeghipour, S. “Testing cyclic software components of
reactive systems on the basis of formal specifications”,
Ph.D Thesis, Technische Universitat Berlin, Fachbere-
ich Informatik (1998).

Burch, J.R., Clarke, E.M. and McMillan, K.L. “Sym-
bolic model checking: 10%° states and beyond”, Infor-
mation and Computation, 98, pp 142-170 (1992).
Grumberg, O. ad Long, D.E. “Model checking and
modular verification”, ACM Transactions on Program-
ming Languages and Systems, 16(3), pp 843-871 (May
1994).

“An integration testing

