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Research Note

Evaluation of Carrier Density and
Gain Profile in a Semiconductor Laser

H. Golnabi!

In this paper, a precise method for computing the optical gain/loss in an optically pumped
semiconductor material is reported. Variations of the gain coefficient, as a function of pump
light frequency for different band gap energies, temperature and carrier densities, are described.
In another study, variations of the electron and hole densities are simulated and the resulting
integrals are evaluated numerically. The changes of carrier density in an intrinsic GaAs
semiconductor as a function of the position of the quasi-Fermi levels in the conduction or valence
bands for different temperatures, are also reported. For GaAs laser, accurate normalized densities
are obtained as a function of temperature. The normalized densities at 7' = 300°K are at the
ratio of 1.98:1:0.4 for T' = 200, 300 and 400°K, respectively. The peak gain values, normalized
at the same room temperature, are at the ratio of 2.05:1:0.36, for 7" = 200,300 and 400°K,
respectively. Comparing the results presented for the carrier density and gain, with other studies,
this method provides an accurate result. It is noted that temperature has a dominating effect on
the gain profile and, as a result, on the laser overall performance as observed in the experiments.

INTRODUCTION

In recent years, many applications have been found for
semiconductor lasers in the field of electro-optics, com-
munication, optical pumping and control systems [1-
3]. Developing efficient laser systems demands devices
with a high gain and good beam quality which require
a low injection current. To reach a high performance,
advances are made in theoretical aspects and the
related manufacturing techniques [4]. As a result,
considerable achievements have been made in this
field both theoretically and experimentally. Different
design geometries and structures have been developed
in recent years.

An important issue in optical amplification has
been the problem of population inversion and the gain
coefficient in such a medium. To understand the
physics of laser operation, density of the states, transi-
tion probability and stimulated emission are studied
extensively in semiconductor materials prepared by
homojunction and heterojunction methods. However,
there are a few points which still need more attention in
optimizing such devices. For example the role of band
gap variation, induced light energy and carrier density
for better performance must be reconsidered. The aim
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of this study is to simulate such a device and provide
useful information which can be implemented in design
and fabrication of such optical amplifiers.

To study the gain in a semiconductor material
experimentally, a strong optical pump for creating an
inversion by moving the quasi-Fermi levels into the
bands is required. In this method, the net gain can be
measured by monitoring the input and output probe
beam coming out of the slab material under study [5].
This study can provide useful information concerning
the gain in terms of the pump beam criteria and the
semiconductor material for such amplifiers. In the case
of laser operation the direct bias voltage, instead of the
optical pumping, accomplishes the inversion. For the
semiconductor laser, the theory of the interaction of
light with matter is used and for such a device the gain
must be studied.

THEORY

In this analysis, the semiconductor model is considered
to have an upper-level (conduction band), where elec-
trons can flow and a lower-level (valence band), where
the holes can flow. If an electron of momentum +#k
(h, Dirac constant and k, wave vector) in the valence
band absorbs light, it is excited into the conduction
band, leaving behind a hole of momentum —2k in the
valence band. The energy of the photon inducing this
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transition is given by:
hiw(k) = e.(k) + en(k) + Eg+ 6Eg
=e(k)+ Eg+ 6E,, 1)

where €5 (8 can be e or h for electron or hole,
respectively) is the reduced-mass energy related to the
carrier and the total reduced-mass energy ¢ is related
to the momentum by:

(k) = (R2K?)/2m,, (2)

where m, is the reduced mass defined by Equation 6.
In Equation 1 Eg is the zero-field band gap energy and
6E, is a reduction term in the band gap energy due to
the interband electron-electron and hole-hole coulomb
and the fermions exchange correlation. Interaction
with electron-hole coulomb attraction can be important
for low carrier densities. Such coulomb attraction can
create excitations, which are similar to an H-like atom,
consisting of a bound electron-hole pair. For instance,
the excitation Bohr radius in GaAs is 1243 nm and the
excitation Rydberg energy is approxymately 4.2 meV.
This is small compared to 13.6 €V for the H atom and
also to the room temperature energy of 25 meV.

According to [5], the gain equation for a typical
semiconductor laser is as follows:

y(v) = BZI(hV)(ny/C)pred(hV)[fC(Eb) - fv(Ea)]’ 3)

where Bs;(hv) is the quantity which determines the
transition rate of the electron between the upper and
lower levels in the presence of radiation. The second
coefficient is the inverse of the group velocity and
pred{Av) is the density of carriers which can participate
in the amplification process. Function f.(FE;) gives the
occupation probability distribution of electron state b
with energy E, in the conduction band and f,(E,)
shows the occupation probability function for the hole
state, E,, in the valence band. The difference of
these two probability functions, reported in Equation 3,
shows the net occupation probability of the electronic
upper state and the vacancies in the lower state.
The transition probability is defined as in [6]:

Boi (hv) = [e2h/(6meeon§)][(1 + A/Ey)/
(142L/3E))(1 — me/mo), (4)

where e is the electron charge, h the Planck constant, €g
the free space permittivity, E, the band gap energy, m.
the effective mass of the electron and n, the effective
index of refraction (3.75 for GaAs). Here A is the spin-
orbit coupling (0.33 eV for GaAs). The third term
prea(hv) is the density of state per energy interval dE
which can participate in the photonic process given by:

prea(hw) = 1/(4n%)(2m, B2 (hw — Eg)'/%, ()
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Therefore, m, is the reduced mass determined from:
m, = memh/(me + mh)v (6)

where my, is the hole effective mass (m;, = 0.55 mg and
m. = 0.067 mg for GaAs semiconductor).

Finally, the last term in Equation 3, which gives
the net rate of stimulated transitions can be found as
follows: First, it is necessary to define the energy of
states E, and E, in the respective bands and then using
quasi-Fermi levels, one can define f.(E,) and f,(E,).
Considering [5], the following can be written:

Ey = E, + [mn/(me + mp)|(hv — E,), (7a)
E, = E, - [m./(m. + mp)](hv - E,). (7b)
Thus, the occupation probability functions are:
fe(Ep) = [1 + exp(By — Fu/kT)] 7, (8a)
fo(Ba) = [L + exp(F, — Ea/kT)] 7, (8b)

where F,, and F, are the quasi-Fermi levels and k is
the Boltzmann constant. To determine these levels,
a fixed temperature (T" = 0°K) is assumed, then the
injected density of carriers are known at that particular
temperature and hence, the following can be written:

F, = E. + h?/(2m.)(3n%n)?/3, (9a)
F, = E, — B?/(2m3)(37°p)*?, (9b)

where n and p show the electron and hole density,
respectively. The temperature dependence of n and p
is discussed in the next section. Therefore, with these
equations in hand, the gain variation as a function of
different parameters has been studied.

In the next section, the variation of the electron
and hole densities as a function of the related param-
eters is considered. Following analysis given in [5], it
can be written that:

n =1/(2r2)[2m. /K22 /(5 — )24z
{exp[(e — Fn)/kT] + 1}, (10a)
p=1/(2n")omn /R [ (B, - o)1 /2de

{exp[(Fp — €)/kT} + 1}, (10b)

where in Equation 10a integration is from E. to infinity
and in Equation 10b is from zero to E,. To evaluate
these quantities, substitutions ¢ = E, + v and ¢ =
E, — u in Equations 10a and 10b are made and the
following are identified:

x = u/kT, (11a)
a = exp{[F, — E,]/kT}, (11b)
b= exp{|E. — F.}/kT}, (11c)
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where a, b and z are all dependent on energy and
temperature. Considering the above substitutions the
following are abtained:

n =1/(27%)[2m. kT /h?)?/? {exp

— (B. - F)/kT} / 22z (e +1/b), o
a

p =1/(2n?)[2mupkT/h?>/*{exp

(F, - E)/KT]} / 22dzf(e* +1/a),
(12b)

where integration on z is from zero to infinity. For the
case of (a,b) >> 1, the integral in Equation 12 can be
evaluated in closed form which results in 71/2/2. This
is a good approximation for semiconductor electronics
such as transistors and diodes, in which the Fermi levels
are in the gap and thus factors a and b are much greater
than one. If a semiconductor was in equilibrium so that
F, = F, = Ey, then the product of n and p would yield
a constant which depends on the gap energy E. — E, =
E,, temperature and effective masses in the bands, but
not on the position of the Fermi levels.

However, a semiconductor laser is not a system
in equilibrium; furthermore, the replacement of the
denominators of Equations 12 by the exponential is not
valid because at least one of the quasi-Fermi levels must
be in a band for an inversion and thus (a, b) may be less
than one. Hence, the integral of the form:

I=2/x'/? /ml/Qd:c/[e’” + 1/(a, b)], (13)

must be evaluated numerically. To evaluate this
integral, three approximations are considered. In the
first case, an integration range of zero to 100 instead
of zero to infinity is assumed. In the second case, to
evaluate this integral y = z/(z + 1) is assumed, thus
this integral becomes:

I= [vPaya -yt 1K),

where integration is from zero to one and K = 1/(a, b)
for hole and electron states, respectively. Finally, in
the third approximation the variable y = 1/(z + 1) is
used and the resulting integral evaluated.

The gain formula given in Equation 3 is analogous
to the gain for the conventional lasers and provides a
good means for comparison. However, in order to have
a better view of the gain, the gain function a(v,T)
from the expression based on the interaction of light
and matter described in [7,8] is considered as:

a:A/ V{14 (e — 6)2/4*]H{fo (K)+fu(k) — 1} }de,
(15)
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where integration is from zero to infinity and A4 is a
constant defined by:

A = v? [ [26hy(2n2a3 B3/, (16)

a, is the excitation Bohr radius and Epg Rydberg
energy is given by:

a, = h%e/(me?), (17)
Ep = h/(2ma,), (18)

and £ is the permittivity of the medium.y is usually
given in terms of its inverse, the carrier-carrier scatter-
ing time (y = 1/7). In Equation 16 v is the angular
laser oscillation frequency and parameter ¢ is defined
in [8]. In terms of the reduced-mass energy, e, the
energy detuning (difference between the induced and
laser photon energies) is:

Mw—v) =¢ — hé, (19)

where A is laser detuning and, relative to the renor-
malized band gap, is given by (using Equation 1):

hé =hv — Eg — 6Eg. (20)

For a semiconductor laser a, given in Equation 15
must be positive. For simplicity if the linewidth
function is assumed to be a Dirac-function, gain occurs
for fe + fn —1 > 0, which according to Equations 21
means that the electron-hole plasma should have a
population inversion. Thus, if the gain exceeds the
cavity losses, laser action can occur.

It must be noted that both the carrier density
functions f. and f, are functions of the reduced-
mass energy, ¢,0 and temperature. The carrier (elec-
tron/hole) probability functions are:

fe= 1/{exP[IB(5/me — pe)] + 1}, (21a)
fo = 1/{exp[B(e/mpn — pr)] + 1}, (21b)
where m, = m./m (k can be e or h) is the ef-

fective mass ratio, used for the electrons and holes,
respectively and 8 = 1/kT. Parameter ug (u. and
pr) in Equations 21 is the carrier chemical potential,
which is chosen to yield the total carrier density .
Quasi-Fermi level and chemical potential are taken as
synonyms (compare Equations 21 and 8). However,
as discussed before, using chemical potential consid-
eration, the reduced-mass energy and reduced-mass
notations like H-atom are used due to the e — e and
e — h interactions. From Equations 21, it can be seen
that ug equals the carrier energy, g, for which fg is
precisely one half. This chemical potential depends
on the material temperature and is decreased, as the
temperature is increased. The chemical potentials are
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chosen so that the total carrier number density, N, for
all temperatures remains constant. The value of this
parameter is positive for electron while it is negative
for hole. The total chemical potential p, + pp is a
crucial parameter in semiconductor laser theory since
it defines the upper limit of the gain region similar to
(F, — F,) limit. It can be shown that the inversion
is achieved if the reduced-mass energy, e, obeys the
relation 0 < € < pe + fn.

RESULTS

For the first study, a simple program is arranged
to compute and plot the gain coeflicient given in
Equation 3 for GaAs semiconductor. Figure 1 shows
this gain as a function of the induced light frequency
(photon energy) at various temperature. The temper-
ature value is changed from T = 95°K to 305°K. As
shown in Figure 1, when temperature decreases, the
gain increases; for the highest temperature in Figure 1,
gain is approximately 1 x 105 m~!. Any increase in
temperature will decrease the gain, which is around
0.55 x 10° m~! at T = 305°K. Similarly one can see
the absorbing loss factor of the GaAs material for the
same temperature change as shown in the same figure.

As temperature is changed, the loss changes in
magnitude and profile. For T = 95°K, the loss is
at minimum, while at 7' = 305°K, it is at highest.
The gain curve grows at the induced light frequency,
corresponding to gap energy of E, = E. — E,. For
the frequency value corresponding to energy of F, — Fp,
it reaches zero and at higher induced light frequencies
there is loss instead of gain in the semiconductor. For
T = 0°K, the gain reaches zero very sharply, while
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Figure 1. Optical-gain (loss) variation as a function of
pump light frequency for GaAs semiconductor at different
temperatures. The injected carrier density is assumed to
be n=p=1 x 108cm ™2 and band gap energy E,=1.43 eV.
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at higher temperatures the decrease is at slower rate
(Figure 1). Also, as the temperature increases, the gain
profile gets wider and the gain bandwidth increases and
it is minimum for T' = 95°K. A similar feature is noted
for the loss profile as can be seen in Figure 1.

The dependence of optical gain in GaAs on
frequency and injected carrier density is presented in
Figure 2. The injected carrier density was changed
from 1 x 108 to 3 x 108 (cm~3) and the results were
compared. As the carrier density was increased, the
gain coefficient was increased correspondingly. Using
a similar approach, Vahala et al. [9] calculated the
dependence of optical gain in a GaAs p — n junction
on frequency and injected carrier density. Casey and
Stern [10] gave absorption and spontaneous emission
for such a material. The peak value of the gain for
such laser is approximated as:

Ymax = Bg(Ninj - Nth)7 (22)

where B, = 1.5 x 1071 cm? at T = 300°K and B, =
5 x 10716 cm? at 77°K. Ny,; is the injection carrier
density in ¢cm™3 and Ny, is approximately 1.55 x 10!8
cm~3 (see [11]).

Recent articles in the literature have focused on
the single or Multiple Quantum-Well (MQW) lasers
and discussed the gain for different materials and
geometries [12,13]. The final form of the gain for a
bulk semiconductor or quantum well material is given
as a function of the injected current density, rather
than carrier density. However, carrier density is of
great importance to the proper design and optimization

Gain coefficient (1/m)

x 1014

Frequency (Hz)

Figure 2. Variation of optical gain (loss) in GaAs versus
pump light frequency and injected carrier density. Curves
from top to bottom show carrier density of A=3x10'8
B=2.5x10'%, C=2x10"%, D=1.1 x 10'® and E=1x10'®
cm 2. The temperature is assumed to be 295°K and the
band gap energy E, = 1.43 eV.
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of semiconductor lasers. Many publications have been
devoted to theoretical gain calculation, but as indicated
in [14] there are still some inconsistencies for gain
expression in GaAs. For MQW lasers the expression
for gain and spontaneous emission in semiconductors
has been written within the framework of Fermi Golden
Rule. Within this frame work, the major components
of gain calculations are the electron, hole density of
state and the transition matrix element describing the
interaction between the conduction and valence band
states. In such analysis they calculated the magnitude
of the momentum matrix elements.

In Figure 3, the effect of the band gap energy
on the gain (loss) profile is considered. Here, this
parameter varies from 1.40 to 1.45 eV (E, for GaAs
is about 1.436 eV) and the results are plotted. As can
be seen in this figure, the gain coefficient is less sensitive
to this variation and a minor change in the band gap
energy does not have a noticeable effect on the gain
(loss) magnitude. The carrier density here is assumed
to be 1.2 x 10'® cm~3 and temperature is 7 = 295°K.
Also, as noted in Figure 3, the gain energy range and
the threshold pump energy are determined from the
relation such as F,, — F, > hv > E,.

To evaluate the integral (Equation 14) in Figure 4,
the density integral is shown as a function of the
integral variable z for different K(1/a,b) values. Pa-
rameters a and b show the position of the quasi-Fermi
level in the valence and conduction bands, respectively.
As mentioned in the first approximation, this integral
is calculated for the range of 0 to 100 and for higher
x values is close to zero. Curve A corresponds to

x 108

Gain coefficient (1/m)
o
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Figure 3. Dependence of optical-gain (loss) in GaAs on
pump light frequency and band gap energy. Curves from
left to right correspond to band gap energy of E,=1.40
(A), 1.41(B), 1.42(C), 1.43(D), 1.44(E) and 1.45 eV (F),
respectively. Here T' = 295°K and carrier density
n=p=12x10"% cm™3.
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Figure 4. Density integral as a function of the integral
range for the first approximation for different K values.
Curve marked A shows (a,b) = 0.1, curve B is for

(a,b) =1 and curve C shows results for (a, b) = 10.

(a,b) = 0.1 (Fermi levels within bands), B to (a,b) =1
(Fermi levels just at the edge of the related bands)
and curve C represents the results for (a,b) = 10
(Fermi levels in gap)}. It must be pointed out that this
integral has a limiting value of I = 7'/2/2 = 0.88 when
the effect of K in the denominator of Equation 14 is
ignored. Increasing (a,b) value increases the integral
value; curve A has a larger value than B while curve
C has the smallest value. Only curve A satisfies the
laser condition. Also as (a,b) is increased, 1/(a,b)
gets smaller and as it reaches infinity the integral value
approaches the limiting value of 0.88. For the case of
both (a,b) >> 1, the quasi-Fermi levels always are in
gap, which does not meet the laser condition and at
least one of the Fermi levels should be within bands.
The result of the third approximation for new
variable y is plotted in Figure 5. In this computation y
is defined to be 1/(1 + z) and the range of integration
for y is from zero to unity. The density integrals for
different K values as mentioned before are presented
in this figure. As (a,b) increases, the density integral
increases. It is noted that there is a y value that
maximizes the integral value and the peak of the
density function shifts to higher y values as parameter
(a,b) is increased. Similar to Figure 4, as the (a,b)
value is increased, the density function becomes more
spread. The physical importance of the variations of
K and integral variables & or y can be seen from
Equation 9. Parameter u shows the energy variation
and x demonstrates the ratio of this energy change
to the kT values. Therefore, = shows the height
of the density integral and (a,b), depending on the
Quasi-Fermi level energies, displays the spreading of
the function. If the density integral is multiplied by
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Figure 5. Density integral as a function of the integral
range for the third approximation for different K values.
The curve marked A shows (a,b) = 0.1, curve B is for
(a,b) =1 and curve C shows results for (a,b) = 10.

a constant (see Equation 10), the carrier density is
obtained at a particular temperature.

In the first part the electron density for different
temperature ranges of 77 = 100,200,300 and 400°K
was computed. Figure 6 shows the electron density
in an intrinsic GaAs semiconductor as a function of
the position of the quasi-Fermi level b for different
approximations. Positive energy corresponds to the
position of the quasi-Fermi level in the conduction
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Figure 6. Electron density in an intrinsic GaAs as a
function of the position of the quasi-Fermi level b in the
conduction band for different cases at temperature of

T = 100°K. The solid line shows the resulting density for
assuming | = 71'1/2/2 = 0.88. Curves denoted by square,
star and cross symbols show the results for the three
approximations, respectively.
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band for electron, while the negative energy value
corresponds to the position within the forbidden band
gap. Similar comments apply to the valence band
for the hole and at zero energy these levels are just
at the edge of the respected bands. The energy
range is from -0.06 eV to 0.21 eV, which covers the
whole range of the possible Fermi level in the band
energy diagram. The solid line shows the results for
assuming density integral equal to I = 7!/2/2 = 0.88.
Other curves denoted by different symbols correspond
to the results of the three approximations described
above. It is noted that at low temperatures, the
three approximations provide similar results. Here
the electron density for energies above or below the
conduction band is considered. The electron number
density rapidly decreases towards the higher energies
above the conduction band edge. However, the electron
density at such lower temperature peaks for the solid
curve while for other cases it is negligible.

Increasing temperature decreases the electron
density and the results for T = 300°K are shown
in Figure 7. Comparing these results with those of
Figure 6 for T = 100°K, two points can be made.
First, as mentioned above, the number density is
reduced by a factor of 200. Second, the results for the
limiting case and approximations show a considerable
difference. However, the first (square) and second
(star) cases show almost the same results, while the
third approximation provides a lower electron density
(denoted by cross) below the conduction edge. At

x 1018
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Figure 7. Electron density in an intrinsic GaAs as a
function of the position of the quasi-Fermi level b in the
conduction band for different cases at temperature

T = 100°K. The solid line shows the resulting density for
assuming [ = 71'1/2/2 = 0.88. The curves denoted by
square, star and cross symbols show the results for the
three approximations, respectively.
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energies higher than the conduction, all the results
overlap with each other as shown in Figure 7.

A similar study is performed for the hole density
and Figure 8 shows this result for 7 = 300°K. For a
better comparison, densities were plotted for both cases
at similar temperatures. As can be seen in Figure 8,
a similar feature is observed for the hole density as
a function of the variation for the quasi-Fermi level
energies in the valence band for different temperatures.
If the result of this figure are compared with that of
Figure 7 for electron density, it can be observed that
the hole density is higher by a factor of 23.5, which is
expected from the effective mass ratio.

Important physical inter-operations are as follows.
Considering Figures 7 and 8, the electron and hole den-
sities are very strong functions of lattice temperature,
T. Compare Figures 6 and 7 for electron densities at
different temperatures. Also the difference between the
electron and holes density functions is noteworthy. For
example from Figure 7, at room temperature, T =
300°K, it takes approximately 3.3 x 107 electrons/cm?®
to move the quasi-Fermi level for electrons to the edge
of the conduction band (energy zero in Figure 7).
According to Figure 8, it takes 0.735 x 10'° holes/cm?
(23.5 times as many as electrons) to make F, =
E, (move the quasi-Fermi level to the edge of the
valence band corresponding to zero energy in Figure 8).
Therefore, it is suggested that electrons should be
created or injected into a region which is heavily doped
p-type. The physical reason is that electrons are lighter

x 1019
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Figure 8. Hole density for the GaAs material as a
function of the position of the quasi-Fermi level a in the
valence band for different cases at temperature of

T = 300°K. The solid line shows the resulting density for
assuming I = 7*/2/2 = 0.88. The curves denoted by
square, star and cross symbols show the results for the
three approximations, respectively.
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than holes and the number given corresponds to the
ratio of effective masses for two carriers (about 23.5).

For equal electron and hole deunsities (steady
state, say 1.27 x 108 holes/cm?, the quasi-Fermi level
for the electrons is inside the conduction band ([E, —
F,)/kT = =2.05 , E,— F,, = —0.05 eV at T = 300°K),
where the quasi-Fermi level for the holes is still in
the forbidden gap ([F, — E,]/kT = 2.05,F, — E, =
0.05 eV); however, the difference F,, — F, equals the
band gap E, = 1.436 eV. The necessary condition
for amplification is that a pumping mechanism creates
an inversion expressed by the F,, — F, > hv > E,
inequality. Therefore, if one pumps harder to meet
this condition and to create more electron-hole pairs,
one obtains net optical gain.

The results reported show the gain at fixed values
of the electron and hole densities. As described in
Equations 12, these densities are variable and changing
with parameters such as energy, temperature and the
effective reduced masses. Now the next question is
how do n and p vary with respect to these parameters?
To answer this, the exact integration of Equations 12
has to be considered. Since the effective masses only
change the results by a constant factor, the effect of
temperature and energy is considered in evaluating
such integrals.

In order to check the reported density functions
with the numerical evaluations, the normalized func-
tions as given in [8] were considered. The function
which appears in integral of Equation 15 is ¢}/2d,(k) =
e!/?[f.(k) + fu(k) — 1], so normalized densities are
represented as €/2f,,e1/2f, and €/2d,. In this way
the numbers can be compared precisely. Figures 6 to 9
of that report show the density of electron ¢1/2f,(k)
(vertical axis), holes €'/2f,(k) and all e'/2d,(k) in
units of (27)2Eg versus reduced energy ¢ in meV for
T = 300°K.

To evaluate the gain, it is necessary to know the
Fermi-Dirac distributions for the electrons and holes
to be used in Equation 15. The normalized probability
distributions as a function of the reduced-mass energy
¢ are shown in Figure 9. The solid line shows the
normalized electron probability function £'/2 f,(k), the
dashed line shows hole probability £1/2f,(k) and the
dot-dashed line shows the function e/2d,(k). All
functions in the units of (27)2ER versus the reduced-
mass energy ¢ are in meV. Here it is assumed that
T = 300°K, a carrier density is 3.5 x 108 carriers/cm?,
a, = 1.243 x 107% cm and Er = 4.2 meV. Where
me/m = 1127, mp/fm = 8.82,u. = 4.73kT and
prn = —0.86kT. In Figure 9, the distribution of this
function versus the reduced-mass energy is obtained
and is similar to the result provided in [8,11]. It is
noted that each distribution has a maximum value
at a particular ¢ value. For the given conditions f.
is maximum at ¢ about 80, fr at about 150 and
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Figure 9. The normalized distribution function as a
function of the reduced-mass energy . The solid line
shows €'/9f.(k)], the dashed line shows €'/3f1 (k) and the
dot-dashed line shows the £!/2d k) all in the units of
(27r)2ER versus € in meV. Here T' = 300°K and a carrier
density of 3.5 x 108 carriers/cm?, a, = 1.243 x 107% c¢m
and Er = 4.2 meV, where m./m =1.127, ms/m=8.82,

e =4.73 kT and pp = —0.86 kT.

probability difference d, at about 50. In this figure,
in order to obtain the real carrier density f. and fs,
one must multiply these numbers on the vertical axis
by a factor of [(27)2ER]/e!/?] (compare Figure 9 with
Figures 6 to 9 of [8]).

Similarly in Figure 10, density function is defined
as e}/2d,(k) = /2[f.(k) + fa(k) — 1] (vertical axis)
versus reduced-mass energy, ¢. Figure 10 shows
the normalized density function for a GaAs laser as
a function of the reduced-mass energy for different
temperatures. The real density difference d, can be
obtained by multiplying the given numbers on the
vertical axis by factor [(27)2Eg]/e!/?], for that specific
reduced-mass energy. Other parameters are the same
as before, except T which is changed in this study. A
comparison of Figure 10 with Figures 6 to 10 of [§]
indicates the validity of the computed results.

To define the gain function expressed in Equa-
tion 15, this function is plotted for the GaAs semi-
conductor laser. Figure 11 shows this gain profile as
a function of the detuning energy for three different
temperatures. Other parameters are the same as
before, described in Figures 9 and 10, except T' which
is changed in this study. In Figure 11, the gain, «,
{vertical axis) is shown versus detuning energy, Aé, for
different temperatures. Numbers on the vertical axis
given for the gain can be obtained by multiplying by a
constant related to A, as defined in Equation 16. As
seen in Figure 11, an increase in temperature reduces
the gain by spreading the carriers out. This spreading
is because of the carrier density, as seen in Figure 6,

H. Golnabi
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Figure 10. The normalized density function for a GaAs

laser as a function of the reduced-mass energy for different

temperatures. The plotted function is €'/2d, (k). The real

density can be obtained by multiplying the given numbers

by factor [(27)2ERr]/e/2. Other parameters are the same
as before and T is changed in this study.
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Figure 11. The normalized gain profile as a function of
the detuning energy (%8) for different temperatures in a
GaAs laser. The gain values can be found by multiplying
the given numbers by a factor of A defined in Equation 16.
Other values are the same as before for the GaAs laser.

which shows this variation for the electron density
function. Furthermore, Figure 11 is compared with
Figures 5-7 presented in [11]. The peak gain values
and distributions obtained in this study are consistent
with that report. It must be pointed out that other
parameters chosen were also the same. This manifests
the validity of the reported numerical results.

As discussed, F, shows the probability of a state
being filled in the conduction band and F), illustrates
the probability that a state in the valence band is filled.
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Hence, the probability of an empty state (hole state) is
1 — f v for each band. The transition rate for a — b or
b — a is proportional to the probabilities that the state
a and b will be occupied times the probability that b
(or a) will be empty and thus will accept the electron
after it has interacted with the photons. As described,
with increasing temperature, f.(1 — f,) increases and
fo(1=f.) decreases. With any decrease in temperature,
f. increases and f, decreases, so the gain factor, which
according to the Equation 3 depends on f,— f,, shows a
rapid increase with respect to this parameter. Also, the
gain peak is shifted toward higher reduced-mass energy.
Looking at these figures, it is noted that the peak values
for each curve is determined by the condition da/dé=0.

In summary, two major points can be drawn
from this analysis. First, the major parameters which
control the gain profile are material type and charac-
teristics, band gap, carrier density and temperature.
Second, among the parameters studied, lattice temper-
ature plays the most important role in the gain profile
and performance of such semiconductor lasers.
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