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Research Note

Non-Equilibrium Molecular Dynamics
Simulation of Thermal Diffusion Effect

A. Maghari* and N. Seyed Matin!

In this paper, a Non-Equilibrium Molecular Dynamics (NEMD) method is used to calculate the
thermal diffusion factor, ar, for a binary mixture interacting via the Lennard-Jones potential.
The a7 is obtained for Ar-Kr and Ar-Xe mixtures from the temperature and concentration
gradients in the simulation box containing 108 particles. The reduced temperature range for this

simulation is 1.0 < T™* < 3.0.

INTRODUCTION

Thermal diffusion is caused by the relative motion of
the components of a mixture due to the presence of
a temperature gradient. By virtue of this motion,
concentration gradient appears in the mixture and an
ordinary diffusion is produced to eliminate this gradi-
ent. Steady-state is finally reached, in which the sepa-
rating effect arising from thermal diffusion is balanced
by the remixing effect of ordinary diffusion. Partial
separation is then observed with heavy components
mostly in the colder region and the light components
in the hotter region. This phenomenon is known as
the thermal diffusion or Soret effect, which was first
discovered in liquids by Ludwig and later by Soret [1].
The Soret effect can be quantified by thermal diffusion
factor ap, which is defined as the relative concentration
gradient divided by the relative temperature gradient
(2-4]. Thermal diffusion factor is a convenient measure
of the separation of components 1 and 2 caused by
the temperature gradient. The degree of separation
typically increases with increasing temperature. When
the system behaves in this manner, ar has a positive
value, in which the heavier particles tend to be in the
colder region and lighter particles in the hotter region.
In a few systems, light species enrich in the cold region
and then ar decreases in magnitude with increasing
temperature (o < 0) [5].

Thermal diffusion is a relatively weak coupling
phenomenon [6,7]. There are however, situations in
which thermal diffusion is a dominant transport pro-
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cess, e.g., in isotope separation. Kinetic theory predicts
that the thermal diffusion factor depends on the fluid
density, temperature and mass ratio of components and
also is very sensitive to the form of the intermolecular
potential function and their measurements are thus a
precise test for intermolecular potential [2,8].

In this paper, a Non-Equilibrium Molecular Dy-
namics (NEMD) algorithm has been used for direct
calculation of the thermal diffusion factor. The Ar-
Kr and Ar-Xe mixtures with mass ratios ~ 2 and ~ 3
were chosen for the simulations, hence the effect of mass
ratio on thermal diffusion factor can be observed.

HEAT AND MASS FLUX IN A BINARY
MIXTURE

The irreversible thermodynamics gives the entropy
production per unit volume and unit time for a two-
component mixture subject to temperature and com-
position gradients as:

R [f‘—l—;—’”] , (1)

where J4 and Jy are the heat and mass flux, 7 and
YT are the temperature and temperature gradient,
respectively and pi is the specific chemical potential
of species k.

In a binary mixture when Z Ji=0and Z =1,

the following expression can be wrltten

vT 1 [0(p1 — po2)
- - = | =271, 2
JaTz — T [ o2, J1.vz, (2)

where x; is the mole fraction of species i. In the
linear region, when the fluxes and forces are small,
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the independent fluxes are a linear combination of the
forces, i.e,

vT v {(p1 — p2)
Jq=—Lgg T2 _qu—_“——( T 2 ) (3a)
T _
J, = _qu%_LuY(”lT“z_), (3b)

where L,; are Onsager’s phenomenological coefficients.
For thermal diffusion effect, after some manipulation
of Equations 3 at the stationary state, when the mass
flux of each species is zero, the thermal diffusion factor,
ar, of a binary mixture is defined as [4]:

T V.Z‘1>
ar = — = 4
re- ( o) (4)

Equation 4 is the straight way to calculate ar by
computer simulation as well as experimental method.

Up to now, there were two categories of molecular
dynamic simulation methods, namely Non-Equilibrium
Molecular Dynamics (NEMD) and Equilibrium Molec-
ular Dynamics (EMD), which have been used to deter-
mine the transport coefficients [9-11]. An alternative
way, which is considerably different, was introduced for
calculation of thermal diffusion coefficient by Kincaid
et al. [12] and then was improved by Hafskjold et
al. [13,14]. The Kincaid approach has been used in
this paper which is described in the next section.

COMPUTER SIMULATION ALGORITHM

The stochastic boundary conditions are used to es-
tablish a non-equilibrium steady-state in which the
mass fluxes are zero, but temperature and composition
gradients in the X-direction are non-zero. NEMD is
applied to calculate ar. A direct computation of 77T
and y7zr; at steady-state, using Equation 4, leads to an
estimation of ar. 7 is determined by computing a
linear least-square fit of the linear part of z;, in which
two or three points of each side are eliminated and the
derivative of it is evaluated. A similar procedure has
been used to determine y7'. A system of 108 particles,
enclosed in a cubic cell of each side L and fluid reduced
density of N* = Ng3/L3 = 0.40 are assumed, where
N is density number.

Two systems, Ar-Kr and Ar-Xe, were modeled
as Lennard-Jones fluids so that the intermolecular
potential energy is given by:

¢(r) = 4e{(0/r)*? = (a/r)°}, (3)

where ¢ and ¢ are the energy minimum and zero
point of Lennard-Jones interaction, respectively. The
potential is cut at r. that is in our case r, = 20.
There is a mixture of Ny particles of heavier
species (Kr or Xe) and N particles of lighter species
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(Ar). The equation of motion of these particles in this
algorithm is as follows:

midzri/dt =F;y, (6)

where m; is the mass of a particle of species ¢ and F;
representing the total force on particle i. This equation
of motion is solved starting from an initial set of
positions and velocities. Periodic boundary conditions
are used in the Y and Z directions, but not in the X
direction. To have zero mass flux in the steady-state,
the fuzzy-wall [10,12] boundary conditions are used.

The fuzzy-wall boundary conditions prevent par-
ticles from passing through the primary cell faces
perpendicular to the X-axis. By changing the kinetic
energy of reflected particle from fuzzy-wall, the tem-
perature gradient is achieved in the cell as will be
described in the next paragraph. The boundaries at
rz = 0 and 7, = L have the local temperature T, (low-
temperature) and Ty (high-temperature), respectively.
Any particle of species ¢ that is reflected off the fuzzy-
wall at r, = 0 is given new velocity component
vz, vy and v,. The components v, and v, are
generated randomly from Maxwell-Boltzmann velocity
distribution at the temperature T, but vy(> 0) is
randomly sampled from the Maxwell-Boltzmann flux
distribution at the temperature T, whose probability
density function can be written as:

o) = (o) oo [52]. ™

where kp is the Boltzmann constant. At r, = L
the same procedure is used, but T is replaced by
Ty and v, < 0. The lack of periodic boundary
condition in the X-direction caused a failure in energy
conservation, but after long time intervals both kinetic
and potential energies show stationary values. Once
the stationary state has been reached, temperature T
and mole fractions of species 1 and 2 (x; and z2) can be
computed. In X-direction, Equation 4 can be written
as:

T [(dwl/drz)] y )

O = Tz, | (dT/dr,)

In this work the quantities are defined as the
reduced form in Molecular Dynamic (MD) units, which
have been marked with a small triangle (A) and
Lennard-Jones (LJ) units, which have been marked
with an asterisk (*). For example [13]:

* L3 * T %
ot = H _ L, (9a)

T = E’Zz =T (9b)
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Table 1. Reduced quantities used in this work.

Molecular Dynamics
Quantity Lennard-Jones Units ° Unitsy
Density p* = (N/V)d? p2 = p*(L3)?
Temperature T* = kgT/e TA =T+
Mass m* =m/my m® = m*
Time t* = g(m%)lﬂ tD = t*/L*
Length r*=rfo & =r* /L
Velocity v* = v(my /e)l/2 v8 = o*
* 3 A —
Mass flux Ji :Jk,‘f;—l('—";‘-)l/2 Jg =J;

The various reduced quantities are listed in Ta-
ble 1. In the present work the equations of motion are
solved in each time step and the phase space trajectory
of the system is then determined. Runs with about
200,000 time steps were used in both cases, where
each time step was 0.005 (mi0%/e)'/2 and o, ¢ are
the Lennard-Jones potential parameters. The MD
cell was divided into n = 7 layers of equal width,
perpendicular to the X-axis and the derived properties,
Le., composition and temperature of each layer, were
recorded. The average physical quantities obtained
for each sample, included at N = 100 time step,
were saved. Lastly, using central limit theorem, the
mean value of all samples was calculated. The first
K samples that depend on each run for reduction
at transient effect, were discarded. Each run has
been carried out for 10° up to 3 x 10° time steps
on a simulation box containing N = 180, N/2 of
each component. The fluctuation in ap is reduced
with continuation of time steps (Figure 1) which is a
good criterion for steady-state. At the beginning of
simulation if the temperature drift was observed, the
velocities were scaled in each time step to conserve the
total momentum and to maintain the temperature. In
each layer the temperature gradient is given by:

3 1 e
~2~]\7kBT=‘2‘ Z mi(Vl—V2)2§

i€layer

(10)

where Ny is the number of particles in each layer. The
mass flux of component k is:

1
Jk = V Zmi(vi - V)7

where the summation is over all particles of species k
in control volume.

(11)

RESULTS AND DISCUSSION

The equimolar Ar-Kr and Ar-Xe mixtures with total
reduced density of p* = 0.40 modeled by LJ potential
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Figure 1. The fluctuation in ar as a function of time
step. On X-axis each unit equals to 100 time steps.

function were studied. The temperatures of boundaries
are maintained at T/ = 1.0 and T = 030. In
each layer, the mole fraction and temperature gradients
are calculated and ar can then be estimated from
Equation 4. The average value for ar over all layers
was calculated.

Table 2 gives a comparison of the thermal dif-
fusion factor obtained from this work and from lit-
erature data. Our result for Ar/Kr system agrees
with HEX algorithm computed by Hafskjold et al. [13]
within the statistical uncertainty, but there is no
thermal diffusion data for Ar/Xe mixture from the
simulation techniques. Unfortunately, there are no
experimental data for thermal diffusion factor of Ar/Kr
and Ar/Xe at moderate and high densities (selected
reduced density of this work, p* = 0.40, equals to
density 1.16 g/cm® for Ar/Kr and 1.627 g/cm® for
Ar/Xe). For obtaining thermal diffusion factor of dense
gases, one can use the Enskog kinetic theory which
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Table 2. Calculated thermal diffusion factor compared
with literature values. Data are with p* = 0.4, T} = 1.0
and T = 0.3 for both mixtures and potential parameters
for Ar-Kr mixture are o(A) = 3.285, ¢/kp(K) = 192 and,
for Ar-Xe mixture are o(A) = 3.662, ¢/kp(K) = 223.

a1 from ot from ap from
Mixture | This Work [13] Enskog Theory
Ar-Kr 1.24 £0.08 1.5+0.1 1.02
Ar-Xe 1.40 £0.12 - 1.17

needs the equation of state data [15]. In Table 2
the values of ar obtained from the Enskog correlate
high-pressure thermal diffusion data are also shown for
comparison purposes. The discrepancy between the
found values of Ar/Kr and Ar/Xe systems from the
present calculation and the thermal diffusion factor
obtained from Enskog method may be due to the
rigid sphere assumption of the Enskog theory. The
simulation was not performed on different system sizes
other than 108 particles, since ar is not significantly
dependent on system size for N > 256 [12]. How-
ever, NEMD has little size dependence above 100
molecules {9,11].

Figures 2 and 3 show the variation of temperature
and mole fraction of Ar-Xe mixture along the simu-
lation cell. It can be seen that temperature and mole
fraction graphs show a little curvature in the middle
of the curves, where the light component (Ar) has a
tendency to the warmer region and heavy component
(Kr or Xe) to the colder region, which agree with ar
sign (> 0) for these mixtures.
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Figure 2. The variation of reduced temperature 7* = kg
T/e along the simulation cell for Ar-Xe mixture.

151
0.6
L
0.55
o L
2
g |
g 0.5F
<
o] L
=
0.45 |
[\ SN RO S SEUVTI S
0 0.2 0.4 0.6 0.8 1

L

Figure 3. The variation of mole fraction of Ar along the
simulation cell for Ar-Xe mixture.
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