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Theoretical Analysis of Spectral
Hole-Burning in All-Optical Gain-Stabilized
Multi-Channel Fiber Amplifiers

A.R. Bahrampour* and M. Mahjoei!

In this paper, spectral hole burning effects and gain dynamics of all-optical gain-clamped multi-
channel fiber amplifiers are modeled. The Cabezas and Treat simple model is used to write the
propagation and rate equations of an inhomogeneous laser medium. The governing equations are
an uncountable system of partial differential equations. After some mathematical manipulations,
averaging over the fiber amplifier length and introducing an approximation method, the system
of infinite partial differential equations are converted to a finite system of ordinary differential
equations. The model is applied for hole-burning effects and transient response analysis of the
surviving channels and relaxation-oscillations of the compensating (laser) signal of a WDM
Erbium Doped Fiber Amplifier (EDFA). The results are in qualitative agreement with the

published experimental results.

INTRODUCTION

Trivalent rare-earth ions doped optical fibers find a
major field of application as traveling-wave fiber ampli-
fiers for optical fiber communications as an alternative
to semiconductor laser amplifiers {1,2]. The Er3*-
Doped Fiber Amplifier (EDFA) with a flattened gain
is a key device for Wavelength Division Multiplexing
(WDM) transmission systems and has been used in
WDM transmission experiments at over 1Th/s [3,4].
The main problem facing WDM optical fiber networks
with fiber amplifier cascades is gain dynamics. These
amplifiers are generally operated near saturation and
since the total output power of a saturated fiber
amplifier is nearly constant, the output power of each
channel will depend on the number of channels present.
When the number of channels changes as a result of
network reconfiguration, it will induce transients to
gain in other surviving channels through transient cross
saturation in the amplifier. One of the important
schemes which is demonstrated to control the unwanted
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power excursions of surviving channels in rare earth
ions doped fiber amplifiers is the gain clamping by
an all-optical feedback loop [5,6]. The main goal
of the scheme is that the maximum value of the
power excursions of the surviving channels should be
less than a fraction of a dB for any possible change
in channel loading. In an all-optical feedback loop
with homogeneously broadening active medium, for all
wavelengths in the gain bandwidth, gain clamping is
obtained. However, in an inhomogeneously broadened
system it is achieved only for wavelengths in the hole
burning bandwidth. Hence, gain clamping bandwidth
(i.e., the spectral hole burning behavior) is strongly de-
pendent on the broadening type of the active medium.
Inhomogeneous broadening effects, such as spectral
hole burning, are observed in some fiber amplifiers
[7-9]. The homogeneous model is used by previous
investigators [10-12]. In this paper, the Cabezas
and Treat simple inhomogeneous model [13] is used
to describe the spectral hole burning and relaxation
oscillation in Erbium Doped Fiber Amplifiers (EDFA)
ignoring the population of the lower laser level in
the analysis. For this reason the differences between
our theoretical calculation and published experimental
results are noticeable. Finally a new method for
the numerical solution of the inhomogeneous medium



126

balance equations is introduced. The results of the
numerical solution are in good qualitative agreement
with the experimental results, presented in [10].

GOVERNING EQUATIONS

Gain saturation in amplifiers with hole burning and
cross relaxation (c.r.) has been studied by Cabezas and
Treat [13] whose analysis is presented. By integrating
the light intensity spectral density distribution of the
beam I{v,r, g, z) on the radial and azimuthal coordi-
nates, the beam total power spectral density p(v, z) at
position z in the fiber amplifier is given:

2r oo
p(v,2) = / / (v, r,p, z)rdrde.
o Jo

The normalized optical density spectral is defined as:
=1I(v,r.9,2)/pv, 2).

It is assumed that Z(v,r, ¢, z) is separable such
that for each optical mode, i(v,r, ) is independent of
z [11]. Let n{v,r, ¢, z) be the number of inverted ions
per unit volume per unit frequency interval in the fiber
amplifier which is called spectral inversion. The rate
of change of the inverted population spectrum is given
by:
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where o"(v,v') is the stimulated emission cross-section
of the atomic line centered at v, v’ is the stimulating
frequency and 7 is the lifetime of the upper laser level.
The first term on the right hand side is the loss due
to stimulated emission and the second is the loss due
to spontaneous emission. In the third term, Ny is the
total density of particle available for pumping, and g(v)
is the probability distribution of transition wavelength
fluctuations caused by inhomogeneous broadening cen-
tered at v, and normalized to unity is the fraction able
to be pumped giving Nog(v) — n{v, 7, ¢, z) as the actual
number pumped. The pump rate w is proportional to
the pump power and is of the same dimension as the
Einstein parameter 4 = =, like F, in the last term,
which gives the cross relaxation rate. The total number
of inverted atoms per unit volume is given by:

N(r,p,z) = /000 n(v,r, o, z)dv. (2)
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Assuming that the erbium ion distribution is
radially symmetric and decreases monotonically from
r = 0, the equivalent radius of the doped region is [14]:

= No(r, ¢, 2)

1
No(O, 0 0y "drde)®,

besr = (2
1r=15
and the average density is:

f027r fooo n(v,r, ¢, z)rdrdy
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The overlap integral of the n(v) population is:

f27r i, ren(v,r e,z )rdrdgo

(v, v, 2) = )

If the erbium ions are well confined to the center
of the optical modes, with a Gaussian approximation
to the optical mode, the overlap integral (I'(v,1)) is
nearly constant and independent of the frequency v
and v’ [14].

Now integrate both sides of the rate equation over
the fiber core, divide by the effective area and from the
definition of T'(v,v') and (v, 2):

on(v,z)  _ ot v, v)p(v',2) , , Ay, 2)
T——H(V,Z)F/O mng—f—dlj - ——T_
+w[Nog(v)—n(v, 2)+F[g(v )/o’r;(z/’,z)duLﬁ(V,z)]
0
Vv € [0, 00]. (3)

The bandwidth of the atomic line is smaller
than the inhomogeneous line width of the medium
and is assumed to be the minimum frequency inter-
val for which cross relaxation processes are infinitely
fast.

Light in the amplifier can be considered to be
propagating as a number of laser beams of narrow fre-
quency bandwidth centered at the optical wavelengths
Ap = i (k =1,2,...,m). Then, it can be assumed that
the optical power spectrum p{v, z) of the light in the
amplifier can be written as follows:

p(v,2) = Zpk

For this power spectrum the rate equation is
rewritten as follows:

6(v — ). (4)
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where 5 = 72 . is the effective area of the fiber core.
Both sides of the above equation are integrated over the
frequency interval [0, c0] and the differential equation
of the total population inversion (V) is obtained as:

8 z
_—PZZLECS (v, 2)o" (v, v )dv
SO i, - me)L ()

In order to obtain the set of integrals on the right
hand side of the Equation 3, the moment functions
Qir i,...,i; (2) are defined as follows:

W, v ), 2dv,
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where j is called the order of moment func-
tions. The rate Equation 3 is multiplied by
o(v,viy)a(v,vi,)...0(v,v;;) and is integrated over the
frequency variable (v), then the differential equations
of these variables are obtained as:
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where the parameters a.
following relation:
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The uncountable system of the rate equations is
converted to a countable system of partial differential
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Equations 6 and 7. The remaining equations describe
the propagation of the beams through the fiber, i.e.:

2
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k=1,2,...,m+2, (8)
where each beam is travelling either in the forward
(ur = 1) or backward (ux = —1) direction. Here
whviAvy is the contribution of spontaneous emission
from the local n population and it amplifies through
the amplifier. The number of modes p is normally
2, as in the case of the optical fiber supporting only
the two polarization states of the lowest order optical
mode [15], and [}, is the intrinsic fiber loss. After some
mathematical manipulations and using the overlap
integral the propagation equations are rewritten as
follows:

Z_:a;tk 62 —ukpkf/ (v, )i (v, z)dv

+uk,uh1/kA1/k/ a(v, z)o (v, ve)dv — urlipr,
0

k=12, ..,m. (9)

For an open loop system, the first term on the
left hand side of Equation 8 is negligible in comparison

with sz , while for transient times of a closed loop

nyt)
AT
i

system Figure 1, it is of the order of where

Til is the cavity decay rate at oscillating wavelength,

Aty 1y ¢en is the threshold population inversion for lasing
at A; and Z—i%z is the instantaneous ratio of laser gain
to cavity loss [16] and is not ignorable. Hence, in
transient response analysis of closed loop network, the
propagation equations must be considered in the form
of Equation 9. Coupling terms on the right hand
side of Equation 5 can be arranged into three groups:
lasers, amplified signals and pumps. The amplification

A
VA TF A
___lCoupleL: lEolator‘ WSC

As EDF

Pump laser diode

Figure 1. Scheme of an all-optically gain stabilized fiber
amplifier, VA (variable attenuator), TF (tunable filter),
WSC (wavelength selective coupler) [18].
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process of the second group is represented by px(z,t) =
exp(Gi(z,t)) fu(t) where Gi(z,t) is the gain function
till the position z and time ¢t and fi(t) is input power
at wavelength \;. By neglecting the Amplification of
Spontaneous Emission (ASE) term in Equation 9 this
equation is rewritten for the amplifying signals in terms
of gain Gy, as follows:

we 0G.  OCx uk fi

2k Tk TR ulT [, — —kJk

ve Ot + P ve fr
k=1,2,..,m (10)

where é‘{—t’ﬁ is denoted by f x and m; is the number of
amplifying signals. The propagation equation for the
lasers power p; is as follows (u; = 1):

19 a
___ﬂ + —]ﬁ = FPIQI — l[pl + ,UthlAqulv
v, Ot 0z
l=my +1,m1 +2,..,ma, (11)

where my—m; is the number of oscillating wavelengths.
The propagation equation for the pump powers is as
follows [11]:

op
upa_;i =~ (ap +lp) Py,

p=mgs+1,me+2,..,m,

where (m — mg) is the number of pump lasers and
ap = 04(Ap)I'Ng is the absorption coefficient at pump
wavelength.

Now, another simplification can be applied. This
simplification is based on the averaging of the governing
equations over the length of the active medium (L).
Integrating Equations 7, 10 and 11 over the length of
the active medium and using the <> notation for the
averaged functions ({f) = } fOL f(z,t)dz) the following
is obtained [17]:

ul{ge)  vklk 1 g

L * neL kL

dG'k Ve —
TR AL

k=1,2,...,m, (12)

where Gy, = Gi(L,t) for a beam entering at z = 0.
While for beams entering at z = L ,G = G¢(0,t) and
N = Sg_:z ~ 0.75 [18]:

L2 — P ) — vl + ),

l:m1+1,m1+2,..‘,m2, (13)
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where v; =~ (1 — f;) /L and f; is the feedback rate at
oscillation wavelength [18]. Furthermore:

d{giy siz,....i;)
q 2 Y (pr) (.

Qi iy ) ~
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j=12,.. (14)
and:
up(pp(L,t) — pp(0,8)) = —L{ap +1p) < pp >,
P=ms+1,me+2,...,m. (15)

The systems of ordinary differential Equations 12 to 14
and 6 are called averaged balance equations.

NUMERICAL SOLUTION OF THE
BALANCE EQUATIONS

In an erbium doped fiber amplifier the *Iy; /3 —* I15)2
transition corresponds to the 980 nm pump band
and *Iy3/5 —* I 5/, transition corresponds to 1520 —
1570 nm signal band and the resonant pumping in the
1460 — 1500 nm band. Other pump bands and the
potential for more complex phenomena such as pump
Excited State Absorption (ESA) are associated with
other energy levels of Er®t. Negligible ESA occurs
for 980 nm, or 1480 nm pump amplifiers [19]. In this
work the measurement of only absorption and emission
spectra does not establish the relative contributions
of homogeneous and inhomogeneous broadening to the
observed line width. This is important to know because
it may significantly affect the pumping and saturation
behavior of the amplifier. Generally, the observed
cross-section spectra o,.(v) are the convolution of
homogeneous cross-section (rt’;,e(u) with the probability
distribution g(v) of the transition wavelength fluctua-
tions caused by inhomogeneous broadening [20,21}, i.e.:

+ o0
Gac(v) = / ot (gl — v, (16)

—_00

or:
Ua’e(I/) = UZ,e(V) *g(l/)7

where  denotes the convolution integral. The proba-
bility distribution g(v) of the transition wavelengths is
assumed to be Gaussian centered at v, [20] i.e.:

g(v) = (k/Av)Exp{—4Ln2[(v — va)/ AV},

k= (47an2)%/7r,
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where Av is inhomogeneous broadening bandwidth.
By applying the Fourier transform method, the solu-
tion of Equation 16 is obtained as:

o (v)=F! {%’]ﬂ}

)

(17)

where F and F~! are used to denote the Fourier and
inverse Fourier transform which are calculated by the
FFT algorithm. Measurements of alumino-silicate and
fluoride glasses have shown the inhomogeneous line

width to be comparably less than the homogeneous
line broadening. Germanium silicate glasses, appear
to have greater inhomogeneous line width (~ 8 nm)
than the room temperature homogeneous line width
(3—4 nm) [14]. Two examples of the room-temperature
absorption and stimulated emission spectra obtained
from erbium-doped silica glass fibers are shown in
Figure 2 [11]. The fiber of Figure 2a had omnly
germanium as an index-raising co-dopant while the
fiber of Figure 2b had aluminum added to improve the
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a) Typical emission and absorption cross-section spectra
in an erbium-doped fiber co-doped with aluminum
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b) Typical emission and absorption cross-section spectra
in an erbium-doped fiber co-doped with germanium [11]

Figure 2. A typical experimental emission and
absorption in an Erbium doped fiber co-doped with
aluminum or co-doped with germanium.

129

solubility of the Er®t in glass. Adding Al also broadens
the amplifier gain spectra [22]. In this work for typical
absorption and emission spectra, which are shown in
Figure 2, the homogeneous cross-sections (af{,e) are
obtained and results which are shown in Figure 3 are
used for the solution of the Cabezas and Treat balance
equations. By neglecting the population of lower laser
level, the present work can be applied to 1480 nm
pumped erbium doped fiber amplifier. In the preceding
section it has been shown that the governing equations
on an all-optical gain clamped fiber amplifier are an
uncountable system of partial differential equations.
Then, after some mathematical manipulations and
averaging over the fiber length, this system of partial
differential equation is converted to a countable system
of ordinary differential equations. Since the moment
functions are rapidly decreasing functions of the order
of moment functions (5}, the truncation method with
respect to the order of moment functions is a suitable
method for the numerical solution of the governing
system of ordinary differential equations. The number
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1500 1550
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b) Erbium doped fiber co-doped germanium
Figure 3. Theoretical homogeneous emission and
absorption cross-section Uf,a obtained by the
deconvolution method.
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of ordinary differential equations (A) of the truncated
system is given by:

N=ma+Y s(i,ma), (18)

=0

where s(i,m) is the number of independent compo-
nents of a symmetric tensor of order ¢ in an m-
dimensional space (see Table 1). The number of
ordinary differential equations of the truncated system
(N) is a strongly increasing function of the order of
moment function (7). Table 2 shows the variation of the
number of equations (') with respect to the number of
amplifying signals, laser and the order of moment func-
tions. The truncated system of equations are rapidly
convergent and low order moment functions give good
approximation for the solution of the governing system
of equations. Error is defined by the norm topology
induced by the inner product on the L? Hilbert space.

= [ 1) =m0 P av (19)

The experimental cross-sections for (Al, Ge) o(A)
calculated from the fiber fluorescence and absorption
spectrum [21] are shown in Figure 2 and it is assumed
a Gaussian distribution with 1/e width Ay; = AX; /2
and AX; = 11.5 nm is the inhomogeneous line width

Table 1. Number of independent components of a
symmetric tensor of order i(= 1,2) in an m-dimensional
space (s(i,m)) as a function of (m).

s(i,m)

m+m(m —1)/2!

m + m{m — 1) + m(m — 1)(m —~ 2)/3!
m+ 3/2m(m — 1) + m(m — 1)(m — 2)/2!
+m{m — 1)(m - 2)(m — 3)/4!

5 m+ 2m(m — 1) + m(m — 1)(m — 2)
+m(m — 1)(m — 2)(m — 3)/3!

+m(m — 1)(m — 2)(m — 3)(m — 4)/5!

NG IFICN O S N

Table 2. Number of governing equations (A) versus the

order moment functions {J) and number of propagating
wavelengths.

m | s(1,m) | s(2,m) | N=1+m+
s(1,m) 4+ s(2,m)
1 1 1 4
2 2 3 8
3 3 6 13
4 4 10 19
5 5 15 26
6 6 21 34
7 7 28 43
8 8 36 53
9 9 45 64
10 10 55 76
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for g(v) inhomogeneous broadening distribution [21}.
Then by the homomorphic deconvolution method [23]
the homogeneous cross-section spectra o”()) are cal-
culated and demonstrated in Figure 3. This shows
the contribution of several transitions between the
41372 and *I;5;, Stark manifolds. The truncated
governing system of differential equations is solved by
the fourth order Runge-Kutta method for different
values of j and results for an optical inverter are shown
in Figure 4, which are in qualitative agreement with
Fatehi’s experimental results [24]. The homogeneous
approximation is inaccurate at high input or oscillating
power. Also if the model is applied to an eight-input
all-optically controlled WDM amplifier system, spec-
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Time {micro sec.)
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280
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E 240
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o
200
200 400 600 800 1000
Time {micro sec.)
(b)
280
Inverter j = 4
2
E 240
St
o
2
o
a,
200

200 400 600 800 1000
Time (micro sec.)
(c)
Figure 4. Theoretical step response of an optical fiber
inverter.
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tral hole burning and relaxation oscillation in surviving
channels are obtained as experimentally observed by
Luo et al. [10]. Figure 5 shows transient response of the
surviving signal output power for three different laser
wavelengths. When the 1557.8 nm signal is modulated
on and off, corresponding to the worst case scenario
addition and loss of seven of the eight WDM channels
as shown in Figures 4 and 5, numerical results for
different values of j are indistinguishable and 7 = 3
gives an accurate result.

The relaxation oscillation which appears in Fig-
ure 5 can be described by the homogeneous models [12].

Lasing wavelength=1532 nm
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ol | ]
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I I S ™
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Time (micro sec.)

Figure 5. Theoretical transient response of surviving
channel output power to dropping/adding seven of eight
channels (a) The lasing wavelength is 1532 nm, (b) The
same as (a) except that the lasing wavelength is 1540 nm,
and (c) The same as (a) except that the lasing wavelength
is 1555 nm.
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At A; = 1532 nm (Figure 5a), the laser AGC suppresses
transients in the surviving channel, but not completely.
The steady state value of the surviving signal with and
without 1557.8 nm signal present, differs by as much
as 0.04 mWatt. This failure of the laser AGC arises
from spectral hole burning, i.e., inhomogeneity of the
erbium gain medium, which cannot be described by
the homogeneous model. The transition between these
two gain levels requires an order from 100 to 200 usec
reflecting the slow gain dynamics of the erbium gain
medium.

CONCLUSION

In this paper, a theoretical model has been pre-
sented for analysis of inhomogeneous all-optical gain-
stabilized optical fiber amplifier. The calculation
algorithm presented is an ultra fast numerical method.
The number of governing differential equations depends
on the number of the input signals and is much less than
the number of equations in the conventional method for
the solution of inhomogeneous broadening lasers. This
simple equation provides aqualitative description of the
relaxation oscillation and spectral hole-burning effects
in Luo et al. [10] experimental observations in a WDM
fiber amplifier system.
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