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FEM Simulation of Two- and
Three-Electrode Spark Gap Discharges

S. Khorasani! and H. Golnabi*

The discharge process in two- and three-electrode pure-nitrogen spark gaps is simulated using
Finite Element Method (FEM) to solve for the electric potential and field. The effects of
secondary electron emission, photo-ionization and recombination mechanisms are taken into
account. Current growth and the evolution of ion and electron distributions in the discharges are
studied and an oscillation due to cathode streamer movements has been observed, in agreement
with the theoretically estimated values. The study of complete discharges has been possible
by introducing proper absorbing boundary conditions over the electrodes, by which numerical
instabilities have been suppressed. The simulation results for different values of applied voltage,
pressure, gap distance, series resistance and series inductance are discussed. In the case of three-
electrode spark gaps, the effect of the trigger voltage on the current buildup speed is considered.
Agreement between the calculated closing time for the two-electrode spark gap and a reported

empirical formula is observed.

INTRODUCTION

The simulation of avalanche breakdown and ionization
growth has been considered in several papers. In
earlier works [1], the one-dimensional problem had
been solved, with the approximation that the radius of
the discharge is much larger than the gap separation.
However, this condition is not always met and a more
exact formulation appears by assuming a cylindrical
charge distribution and applying the disk method to
evaluate the electric field [2]. To integrate the charge
density variations, the method of characteristics was
introduced for low pressures and low overvoltages,
and good agreement between theory and experiment
was observed. The method was, then, applied in
other works [3-5]. Discharges with high pressures
and high overvoltages were considered in [6] using
the method of characteristics with very short time
intervals. An improved one-dimensional simulation
has been reported in [7], in which some numerical
instabilities associated with the finite difference scheme
used had been removed, resulting in a more stable
scheme. Due to the significance of the changes in the
effective discharge radius, a two-dimensional treatment
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was presented in [8]. However, the computation was
only extended to the end of the first cathode-directed
streamer. The early stage of channel formation in a
short-gap breakdown was considered in {9] by solving
the two-dimensional Poisson equation and conservation
equations corresponding to electrons, ions and excited
particles. In [10], a kinetic model for the glow phase of
an air spark gap was developed in which heavy-particle
collision effects are included, and the results were
noticed to be in good agreement with the empirical
formula presented in [11]. An extensive study of the
triggering mechanism in trigatrons was made in [12].
In the two previous works, the structure of a
two- [13] and a three-electrode triggerable spark gap
with variable gap distance [14] for nitrogen laser drive
was described, both operating with pure nitrogen gas.
The cross-section diagrams of these spark gaps are
presented in Figure 1. In this paper, the discharge
behavior in the above spark gaps is simulated to study
their performances. In view of the numerical accuracy
and stability required for simulations of discharges
especially in three-electrode spark gaps, the variational
Finite Element Method (FEM) [15,16] was chosen
and applied. As will be discussed, proper absorbing
boundary conditions have been introduced to permit a
continuing simulation after the first cathode-directed
streamer, thus extending the simulation to longer
times. In the simulation results presented here, a
series of oscillations was noticed which was related to
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Figure 1. Cross-sections for the two- and three-electrode
nitrogen spark gaps [13,14].

the delay in the propagation of electrons across the
gap. The observed period shows good agreement with
the predicted theoretical values. Also, the effects of
series inductance, resistance, gap separation, pressure,
applied gap and trigger voltage on the current growth
have been studied.

MATHEMATICAL MODEL

To analyze the time evolution of a spark gap discharge,
the current growth due to several carrier-generation
mechanisms has to be considered. There are three
mechanisms contributing appreciably. The first one is
ionization by fast electrons moving towards the anode
electrode, which results in a nearly exponential increase
in the densities of positive and negative carriers, i.e.,
ions and electrons. This is referred to as the primary
ionization and is responsible for avalanche behavior in
the breakdown. The second mechanism is the release
of secondary electrons from the cathode surface by
positive N ions falling onto the latter. However, for
the atmospheric pressures involved here, the dominant
effect is the photo-ionization [17] resulting from the
excitation of atoms by the electrons; the transport
of radiated photons to the cathode surface and the
subsequent release of electrons. It should be noticed
that for nitrogen gas, the effect of negative N, ions
was negligible due to their instability; also, the primary
ionization by ions is small and is ignored throughout
this calculation. However, the effect of recombination
of electrons and positive ions is significant near or below
breakdown and hence is not neglected.

Taking all of the above mechanisms into account,
the continuity equations for the two charge species are
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found as:
ape . Pe —
ot - - a(E,p)Je - V‘Je - ? =
+ &E,p)peve = V-(peve) - £, (1a)
dp; ;
P (B, p). - v - 2
ot T
= —a(E,p)peve — V.(pivi) — p; (1b)

where p. = pe(r,t) < 0 and p; = pi(r,t) > 0 are
the electron and (positive) ion volume charge densities,
r = rf + 2% is the position vector and ¢ denotes time,
Je = peve(E,p) and J; = p;v;(E,p) are the electron
and ion current densities with v. and v; the electron
and ion drift velocities, respectively. a(E, p) is the first
Townsend coefficient, or ionization coefficient, which is
equal to the number of ionizing collisions of an electron
moving one unit distance, and is expressed as a function
of the local electric field strength E and gas pressure p.
Also, the del operator, 57 = £#9/9r + 20/9z, is defined
in axisymmetric cylindrical coordinates. Numerical
values of &, v, and v; in terms of the local electric field
and pressure for nitrogen gas were obtained from [18],
through fitting by some proper functions. 7 is the
characteristic recombination time of the two charge
species and is considered to be independent of the
applied voltage [17]. Since at the breakdown voltage,
the recombination rate roughly balances the generation
rate, an approximation to the recombination time 7 can
be written as:

7 & [a(Ey, p)ve(Es, p)] L, (2)

where E; is the breakdown electric field estimated
from an empirical equation for the breakdown voltage
Vs [19]:

Vi = 6.72+/pd + 24.36 pd. (3)

Here, d is the gap separation in cm and V, and p are
given in kilovolts and bars, respectively.

As can be seen from Relations 1, the ionization
coefficients and drift velocities are functions of the local
electric field E, which is obtainable as the gradient
of the potential distribution. For the first stages
of breakdown, when the current is in the range of
several microamperes, the effect of space charges on
the potential field may be neglected, for which Laplace
equation provides good results. However, the effect of
space charges becomes significant at higher currents.
To obtain an accurate solution, it is necessary to solve
Poisson equation for the scalar electric potential ¢ =
o(r,t). It is evident that the gap separation is small
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enough to neglect the displacement current density, and
a scalar potential can be defined as:

e + 1
glp=—Le Tl (4a)

£
E:—v¢a (4b)

in which ¢ is the permittivity of the nitrogen gas,
being approximately equal to the permittivity of free
space, £g9. If the gap length is much smaller than
the wavelength of the associated electromagnetic wave
determined by the order of the current buildup rate,
then the second Kirchohff law for current conservation
(KCL) is applicable and the displacement current
dD/dt can be neglected. Therefore, the magnetostatic
approximation of current distribution is valid and the
electric potential description of the electric field would
be consistent.

Equation 4a is subject to the boundary condi-
tions:

o(r,t)|z=0,r>r, =0

on the cathode surface, (5a)
o(r,t)|s=q = Vy(t)

on the anode surface, (5b)
¢(r,t)|:=0,r<r, = Vi(t)

on the trigger surface

(for a triggerable spark gap), (5¢)
do(r,t
%_)lr:[),r:rmax =0

on the axis of the spark'gap and the rest

of the boundary, (5d)

where V,(t) and Vi(t) are the time-varying potentials
of the anode and the trigger (if any) and r; is the
radius of the trigger. Condition 5d imposes axial
symmetry about the r = 0 axis and also prevents
the current density field lines from leaking out of the
system over the boundaries 7 = T,.x; thus, the sum
of the electrode currents is always zero, as required
by Kirchoff second circuit law. Obviously, in practice
this condition is not satisfied exactly; however, it is
required later for compatibility with the equations for
the external circuitry. It also results in a small error in
the calculations, since in practice the current density
lines are not simply confined to such boundaries.

The set of Equations 1 results in charge accu-
mulation near the electrodes with opposite polarities.
To suppress subsequent numerical instabilities, proper
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absorbing boundary conditions have been introduced
as:

%'z:d—_——v--]e+%

on the anode surface, (6a)
%%|z=0=—V~Ji—%+p?e

on the cathode and trigger surface, (6b)
pi(r,t)]z=a =0

on the anode surface, (6¢)

where 6 is the characteristic distance of the absorption
rate, here equal to the height of a finite element.
The physical interpretation of the absorption terms is
simple: On the anode surface, the electrons enter the
electrode metal, and on the cathode surface, the ions
recombine with the electrons, with a rate proportional
to the current density. Equation 6c¢ states that the ion
density over the anode is nearly zero. This process
is fairly comparable to the current transport in p —n
junctions by holes and electrons. If this absorption
mechanism is ignored, an artificial charge accumulation
over the electrode surface will be developed. These
charge layers would produce a very strong reverse
electric field which counters the external gap field.
Therefore, the current buildup would be stopped and
the gap current reduces to zero.

It is possible to express the absorption mechanism
by allowing the electrode boundaries to be ‘transpar-
ent’ with regard to the charge species which are trav-
eling towards them. This is implemented numerically
through Equations 6a and 6b. In each time step, some
of the accumulated charge over the electrode surface
should be depleted. A simple picture of this process
can be drawn in two ways: either a time constant is
associated with the absorption, or the current density
decays to zero with a length scale. If the proper time
constant is considered, some measurements might be
required. However, for this purpose, the second picture
is more adequate which is as follows.

The used finite element formulation produces a
piecewise linear distribution of the variables. There-
fore, the relative charge distribution is dropped to
zero in a length equal to or shorter than a finite el-
ement length. Numerically, shorter absorption lengths
reproduce the same results while larger absorption
lengths result in a net extra charge accumulation.
This is because shorter absorption lengths cannot be
‘sensed’ by the finite elements, since the variation of
parameters are supposed to be linear. Correspondingly,
the selection of a larger length leads to the absorption of
charges across two or several finite elements. However,
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there is only one single boundary element over the
anode or the cathode surface across the gap, so that
a net charge accumulation would be observed.

The effects of secondary electrons and photo-
ionization have been included in an additional bound-
ary condition for the electron charge density p. over
the cathode and trigger surfaces [8]:

_Jo(r,t) _ dix )
ve(r,t) ‘ve(r,t)

Pe (I’, t)|2=0 =

Yph r rr o ,
+Ve(r,t) // B(r', t)g(r,1")pe( ,t)dqz%)

where Jo(r,t) is the photo-electric current density [7]
and V denotes the axisymmetric integration enclosed
volume within the gap. Jy is an externally triggered
current by an ultraviolet flash, initiating the discharge;
7v: and 7,, are the secondary and photo-ionization coef-
ficients, representing the number of electrons released
per incident, ion and photon, respectively; B(r',t) is

the rate of excitation per electron and g(r.r’) is the’

average number of photon incidents on the cathode at
r, released per excited atom at (r') in random direction.
Note that in Relation 7 the effect of field emission for
the three-electrode gap has been neglected due to the
lack of sharp corners in the trigger electrode. Details
regarding these functions are presented below.

Numerical values for the photoelectric current
density Jy(r,t), the secondary electron emission co-
efficient +;, and the total ionization coefficient v =
% + Ypr have been considered using the data given
in [8,17,20], respectively. The function g(r,r') may be
simply shown to be [8]:

, (8)

27
o(r,t) = |z — 2| / exp (—|r —r'|/\)df
4r |r — 1|3
0
where A is the mean decay constant of photo-ionization
radiation in nitrogen, being about 2.5 ¢cm [17]. The
coefficient 3(r',t) is roughly approximated as:

Bty =n Y 2CIE(,1),p], (9)

where n is the number density of gas molecules and
the summation is done for all excitable states o; N2C
is the excitation rate of the state ¢. The values of
the excitation rates of the Nitrogen molecule are given
in [21,22).

The system of Equations 1 and 4 through 7 needs
to be solved simultaneously with the circuit equations.
The external-circuit diagram of the three-electrode
spark gap is shown in Figure 2 and values for the circuit
elements are given in [23]. (The different circuits used
in nitrogen laser drives are discussed in [24].) The
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Figure 2. Circuit diagram for the three-electrode spark
gap. The equivalent circuit of the two-electrode spark gap
is obtained by removing the trigger branch consisting of
resistance R; and capacitance C;.

state equations [25] for the circuit of the three-electrode
spark gap are:

vy 0 C'g_1 0 0] [y,
d |ig| {-L-' —RL-' L' ol |
dt|ve| ~ | © -c-' 0 of |ve
ve, 0 0 0 0| |ve,
~C;(;Ia(t)
+ 0 , (10)
CiLi(t)

where the parameters are illustrated in Figure 2. (The
series inductance L consists of the line and channel
inductances.) The above system can be used for two-
electrode spark gaps if I;(t) is set identically equal to
zero. The electrode currents I,(t) and I;(t) can be
found from integrating the current densities over the
electrode surfaces:

L(t) :ald/e(Je +3.).dS, (11a)
L(t) = //(Je +17,).dS. (11b)
trigger

The anode potential V,(¢) is the first component of
the state vector and the trigger voltage V;(t) should
be calculated according to:

‘/t(t) =Vrc, + RtIt(t) (12)

Equations 1 and 10 are subject to the initial conditions:

pe(rao) = _pi(rao) = pO(r)a (13&)
Vg Vo
ir 0
vo = ‘/0 ) (13b)
ve, Vio

t=0
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where pg(r) is the initial charge density produced by
an ultraviolet flash which is centralized about the gap
axis; Vo and V4, are the initial gap and trigger voltages,
respectively.

NUMERICAL METHOD

The most important part of the numerical scheme is to
calculate the potential distribution in the presence of
space charges by solving Poisson Equation 4a subject
to the boundary Conditions 5. Because the conditions
of continuity and differentiability of the solution are
both met by the finite-element method, this method is
chosen; in addition, FEM is able to match arbitrary
geometries. FEM approaches fall into two categories:
Ritz-Galerkin and variational. Here, the variational
FEM with first-order elements is employed because it
is simple and easy to code. For more discussion on this
subject the reader is referred to [15,16].

In the variational FEM, the solution of the dif-
ferential equation is found by minimizing a functional,
namely:

o= [[[ 51968 -2 Eoa
|4

= // <%| v é? - pe—_*_p’q&) 2nr dr dz,
r ’ (14)

where the integration volume V is obtained by re-
volving the surface I' around the symmetry axis. To
perform the minimization procedure, it is necessary to
discretize the solution functipn by subdividing the in-
tegration region I' into triangular finite elements. Over
the boundary and inside each element, the variation
of the potential is supposed to be both continuous
and linear. The functional (Equation 14) is minimized
through setting the partial derivatives with respect
to the potential values at the nodes (vertices of the
elements) equal to zero. Thus, a simultaneous set of
linear equations in terms of the potential values at the
nodes is obtained from which the potential distribution
is found.

After computing the electric field by taking the
potential gradient, the new electron and ion densities
at each node are calculated according to Equations 1,
6 and 7. The important issue at this stage is the
calculation of the divergence terms, which involves
differentiation of the current density vectors J. and
J;. To prevent related numerical in stabilities, Green
theorem is applied to find the divergences as follows:

/ V- Je:dSe = .74 (dI® x Jei)o, (15)

xSe XLe
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in which £5¢ and L L¢, respectively, denote the area
and boundary of integration, corresponding to the
neighboring elements, i.e., elements involving the cor-
responding node at which the divergence is to be
calculated. Here, only the § component of Equation 15
is considered, because the cross product of the path
differential and the current density vectors lie in 6
direction. Also, the closed line integral encircles the
node in a counter-clockwise direction. Assuming that
the divergence is nearly equal in each of the neighboring
elements, transforms Equation 15 into the more easily
computed form:

E%E(Le X Joa)e. (16)
Here, the denominator is equal to the total area of
integration on the left hand side of Equation 15 and
the summation in the numerator is over the external
borders L¢ of the neighboring elements. Knowing the
divergence of the current-density vectors, it is possible
to calculate the new electron and ion densities via
integrating Equations 1 and 6. However, the calcu-
lation of electron density over the cathode electrode
due to secondary and photo-ionizations (Equation 7)
involves a triple integral, one of which results from
Equation 8. This integral is non-elementary and is
numerically calculated.

After computation of the charge densities, the
electrode currents are calculated with the aid of Re-
lation 10. Finally, the circuit equations are solved
by integrating the time rate of change of the state
vector in Equation 11 and the new voltage for the
anode (and trigger) electrode is found. Then, the above
calculations are repeated until the simulation of the
discharge is completed.

V-Je,i -

SIMULATION RESULTS

The simulation results for the two-electrode spark gap
are demonstrated in Figure 3. As expected from
the small gap separation (2 mm) and high overvolt-
age (5.40%), the discharge develops in a short time
(about 20 ns) and the current grows into the ampere
range. From this moment on, according to the next
figures, the discharge speed becomes dependent on the
external circuitry. Therefore, the effective discharge
closing time would be about 20 ns. Martin empir-
ical fit for two-electrode spark gaps in [11] predicts
a closing time of 11.5 ns. Martin fit is correct
within a factor of 2, and the presented simulation
is consistent with this. From this moment on, the
gap behaves as a nearly constant resistive/inductive
element, and the RLC approximation to the discharge
circuit would be valid. (A complete circuit analysis
of the discharge is found in [23,24].) Near 30 ns
the current goes up to about 1 kA and the storage
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Figure 3. Simulation result for the two-electrode spark
gap with V =10 kV, p = 760 torr, R=0.3 Q,C = 50 nF
and L = 10 nH. A current in the ampere range is
established after 20 ns.

capacitor becomes fully discharged; the voltage across
the gap drops to zero and the discharge is termi-
nated.

A series of oscillations is observed which are
connected with the transit time of electron wavefronts
to cross the gap distance. The impact of each electron
wavefront on the anode surface produces an oscillation
in the total current. Each moving wavefront ionizes the
gas molecules and also excites them while broadening
the ionized discharge channel. The photons subse-
quently emitted are transported to the cathode surface
and release a new wavefront of electrons, which hits
the anode surface after one transit delay time. From
Figure 3 the oscillation period may be estimated to
be about 4.2 ns, which is close to the theoretically
estimated drift time of electrons, about 4.07 ns, derived
according to the following formula:

d
T = v B ) (17)
where T is the time delay, d is the gap separation and
E’ is the corrected electric field which includes the
effect of field non-uniformity.

In Figure 4, the current growth for different values
of the series resistance between 0.1 © to 0.9 Q is
illustrated. When the gap current is under one ampere,
the series resistance has no observable effect; indeed,
it only limits the peak current and has no influence
on the overall discharge speed. This is expected from
the small voltage drop across the resistance in the
breakdown stages and only a slight difference could
be noticed after 25 ns. However, the effect of series
inductance is observed as a reduction in the rate of
current rise from 22 ns, as illustrated in Figure 5 for
inductance values of 0 nH to 40 nH. It is evident
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Figure 4. Variation of discharge current as a function of

gap resistance, for R = 0.1,0.3,0.5,0.7 and 0.9 ,
respectively, from top to bottom.
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Figure 5. Variation of discharge current as a function of
inductance, for L = 0, 10, 20, 30 and 40 nH. A difference as
high as one order of magnitude in current may be noticed.

that the current is about one order of magnitude
higher than when the series inductance is zero. The
pressure and voltage effects are rather noticeable as in
Figures 6 and 7, because they are directly related to
the primary ionization factor a(E,p). This factor is
mainly a function of the ratio E/p and drops for field
to pressure ratios above a certain value. Here, it is
seen that for pressures below 700 torr and gap voltages
above 10 kV, the discharge growth speed is lower and
approximately the same, respectively. Therefore, the
optimal E/p would be about 65 V/cm.torr. Also,
for high pressures (> 1000 torr) or low voltages
(< 5 kV) no breakdown results, while for voltages
higher than 12 kV the growth rate does not change
significantly. This is due to the fact that excitation
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Figure 6. Variation of discharge current as a function of
pressure, for p = 560,760, 960 and 1160 torr. There is no
breakdown for p = 1160 torr.
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Figure 7. Variation of discharge current as a function of
applied voltage, for V =5, 7.5, 10 and 12.5 kV. There is
no breakdown for V. =5 kV.

and ionization rates have decreased at such pressures
or voltages.

A simulation of the discharge current in the three-
electrode spark gap is illustrated in Figure 8 with an
applied trigger voltage of 5 kV. Because of the larger
gap distance (10 mm) and smaller overvoltage (~0.1%),
breakdown is much slower and current in the ampere
range is established in about 1 us. The effects of gap
voltage, pressure, series resistance and inductance on
the current buildup stage are similar to those for the
two-electrode gap, and thus are not discussed. Instead,
the effect of gap-distance variations is demonstrated
in Figure 9. Keeping the other conditions constant,
for gap-distances larger than 10 mm breakdown does
not occurs and the current decays to zero. The most
interesting difference could be observed for different
trigger voltages as shown in Figure 10. The higher
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Figure 8. Simulation result for the three-electrode spark
gap with V =30 kV, p = 760 torr, R = 0.3 Q, C' = 50 nF,
L=10nH and V; =5 kV, C; =5 nF, R =0.03 2. A
current in the ampere range is established in about 1us.
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Figure 9. Variation of discharge current as a function of

gap separation, for d = 10, 15,20 and 25 mm. There is no

breakdown for gap separation larger than 10 mm with
V =30 kV, p =760 torr and V; = 5 kV.

the trigger voltage, the higher the speed of current
buildup. At the trigger voltage of 10 kV, a strong
discharge is observed; after 250 ns, the current value
grows up to eight orders of magnitude higher than
when no trigger voltage had been applied (ie., if a
two-electrode gap with the same parameters had been
used.)

CONCLUSIONS

In this paper, a mathematical model for the simulation
of discharges in previously reported two- and three-
electrode nitrogen spark gap switches has been de-
scribed. The effects of primary ionization, secondary
electron emission by ions and photons and recombi-
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Figure 10. Variation of discharge current as a function of
trigger voltage, for V, = 0,2.5,5,7.5 and 10 kV. For a
trigger voltage of 10 kV, the current establishes values up
to eight orders of magnitude higher than the equivalent
two-electrode spark gap with no trigger voltage.

nation have been included. Proper absorbing bound-
ary conditions have been defined to prevent artificial
charge accumulation near electrodes and subsequent
numerical instabilities. The potential distribution is
calculated with the aid of the axisymmetric variational
finite element method. The current growth is cal-
culated and a series of oscillations has been noticed.
These oscillations have been related to the transit
time of electrons across the gap and a good agreement
with theoretical estimates, based on this assumption,
has been found. The rise times to currents in the
ampere range for the reported two- and three-electrode
gaps have been estimated. The dependence of current
growth on pressure, gap voltage, series inductance and
resistance and gap separation has been demonstrated
and discussed. It has been noticed that the series
inductance could severely limit the current buildup
rate.
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