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Research Note

Robust Stability Analysis of Singularly
Perturbed Systems Using the
Structured Singular Values Approach

H.R. Karimi! and M.J. Yazdanpanah*

In this paper, the robust stability analysis and stability bound improvement of perturbed param-
eter (¢) in singularly perturbed systems are considered, using linear fractional transformations
and structured singular values (i) approach. In this direction, by introducing the parametric and
dynamic uncertainty in the singularly perturbed systems, the mentioned system is rewritten as a
standard p-interconnection framework by using linear fractional transformations. Also, a set of
new stability conditions for the system is derived in the frequency domain. The exact solution of
e-bound is characterized. It is shown that the e-bound obtained through this approach is larger
compared to that of [1], in which only parametric uncertainty is considered. Simulation results

show the efficiency of the approach.

INTRODUCTION

The linear time-invariant singularly perturbed systems
under consideration have the following standard form:

Bo(t) = aums(t) + g2 (t) + bu(t), (1)
exf(t) = arsts(t) + aszp(t) + bru(t), (2)
y(t) = Csas(t) + Cray(t). (3)

where z, = [Ts1, %2, ,2sn]T € R, 25 = [xf1, %52,

xymll € R™, y(t) € R and u(t) € RF represent
the state vector of the slow-modes and fast-modes,
measured output and control input, respectively. The
perturbed parameter, e, is nonnegative and always
represents the response time of the fast modes. The
initial conditions of the slow and fast dynamics are
equal to zero.

Singularly perturbed systems often occur natu-
rally because of the presence of small parasitic pa-
rameters multiplying the time derivatives of some
of the system states. Singularly perturbed control
systems have been intensively studied for the past
three decades [2]. A popular approach adopted to
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handle these systems is based on the so-called reduced
technique [3]. The composite design, based on sep-
arate designs for slow and fast subsystems, has been
systematically reviewed in [3,4]. The techniques, such
as the method of singular perturbations and order
reduction based on system balancing, have the same
robustness accuracy evaluated with respect to the H,
norm of the reduced-order system. The authors in [5]
proposed how to perform order-reduction of a balanced
system using the theory of singular perturbations that
can produce very good accuracy at high frequencies,
particularly for systems that have lightly damped and
highly oscillatory modes. Recently, the robust stability
and disturbance attenuation for a class of uncertain
singularly perturbed systems has also been investi-
gated [6]. Also, new results on control synthesis for
robust stabilization and robust disturbance attenuation
of linear state-delayed singularly perturbed systems
with norm-bounded nonlinear uncertainties have been
considered [7].

The stability problem (e-bound problem) in sin-
gularly perturbed systems differs from what is usu-
ally posed in conventional linear systems. It can
be formulated as: Characterize an upper bound, <*,
of the positive perturbing scalar, &, such that the
stability of a reduced-order system would guarantee
the stability of the original full-order system for all ¢ €
(0,e*) [8]. 1t is known, by the lemma of Klimushchev
and Krasovskii [1,2], that if the reduced-order system
is asymptotically stable, then this upper bound, ¢*,
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always exists. Researchers have triq
find either the stability bound, €*, or
lower bound, as described in {1,2,8].

d various ways to
a less conservative
Although numer-

ous ways have been presented to compute bound e*,
unfortunately, only some of the conservative bounds of

¢ were achieved.
Recently, in [9,10], a new mode

ling approach was

developed for singularly perturbed systems under the
assumption of norm-boundedness of the fast dynamics.

In this approach, a portion of the

fast dynamics is

treated as norm-bounded dynamic uncertainty and the
remaining part is augmented to the slow dynamics. In

this view, Relations 1 to 3 are express
form:

ITLXTL
0 el
y(t) = Cx X (t) + Cyw(t),

ew(t) = Awx X (t) + Ayw(t) + Byu

A Ayw(t) + [AwX BW] Z(t),

As A :
A A;J, with A4
R(i—l)x(z%l)’ Asf € Rnx(i—l)’ Afs

ASIU .
Axw = [Afw]’ with A,, € R™

where Ax = [

. . B
(i—=1)x(m—1i+1) _ s
R and B, = [Bf]’ 1

By € RUTUXk and Cx = [C
R Cy € R™(=1) and Apx =
Ay € R(m—i-{—l)xn7 Awf c R(m_

T .
X = [XI XT]" € R+l is the
dynamics, in which X, = [z,,,z,,
and Xf = [mfl’xfm"' ’:L'f(z—l)]T ¢

T is the vector

[xfiv‘rf(er])v T v‘Tfm]

ed in the following

X(t)=Ax X (t)+ Axww(t)+Buu(t)

(4)
t)

(5)
. € R A €

€ RU-1xn and

x(m——i+l)’ Afw c

with B, € R™**,

Cf], with C, €
iAws Awf], Wlth
H1)x(-1) Also,
vector of certain
’...7xsn]T € R»
= R and w =

of fast dynamics,

which is to be treated as a norm-bounded uncertainty,

where ¢ is the index of the first state
dynamics. It is clear that the sm

of the “uncertain”
aller 7 is the size

of the nominal system, i.e., the dimension of X (¢) in

Relation 4 (see, e.g. [9,10]).
Also, the controlled output Z{
system is defined as:

Z(t) = [XT(t) «T(t)"

é Cle(t) + CQXf(t) —+ Cg’u,(

Assumption 1

The structured dynamic uncertainty
to be internally asymptotically stabl

t) for the nominal

~~
~—

(6)

Ay(s) is assumed
e whose H,, norm

is less than, or equal to, 1, i.e., |[|Aq(s)||, < 7. In

the frequency-domain one has:

Ag(s) = (esI — Ay) 7' [Aws  Aus

BJ. (7
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Tzw

Figure 1. General block diagram for analysis with small
gain theorem.

where A4(s) denotes the open-loop transfer function
from Z(t) to w(t) in Relation 5 (see Figure 1).

In [9,10], the structure of the H. controller is
determined for the nominal system (Relation 4), such
that the sufficient condition of small gain theorem (see
Appendix) is satisfied, i.e.:

1Tzwl oo [1Adll 6 < 1, (8)

where ||Tz.]|,, = sug %ﬁ and Tz, denotes the
we€Ls

closed-loop transfer function from w(t) to Z(t), as
shown in Figure 1.

Continuing in the same fashion as presented
in [1,9-11], this paper considers a new modeling ap-
proach for singularly perturbed systems and treats the
perturbed parameter, ¢, as a parametric uncertainty
and uses the structured singular value for robustness
analysis to characterize the stability bound. By using
linear fractional transformation and applying the small
1 theorem, a set of new stability conditions are derived,
for which the obtained e-bound is larger compared
to that obtained in [1], where only the parametric
uncertainty is considered.

Notation

R™ denotes the n-dimensional Euclidean space, R"*™
is the set of n x m real matrices, C™*™ is the set of
n X m complex matrices, I,,x, is the n x n identity
matrix, Lo is the space of square integrable functions on
[0,00] and ||.||, denotes the Ls-norm. An operator on
Lyisamap A : Ly — Lo; the operator gain is given by

the Ho norm [|All_, = sup l%%l and ||A||,, denotes
z€Lo

any He norm satisfying [|AB||, < ||A|lo-|Bll-
(M) denotes the largest singular value of M and
biar{M{jw)) is the largest positive real eigenvalue of
M(jw) if Ap = {A]A = 61,6 € RT} where Rt is the
positive real space.
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LFT REPRESENTATION OF A
SINGULARLY PERTURBED SYSTEM

Linear fractional transformations are currently used
in the areas of robust control theory and they rep-
resent a means of standardizing a wide variety of
feedback arrangements. Here, linear fractional trans-
formations are also used and Figures 2 and 3 are
referred to.

First, consider the open-loop case, then, the upper
feedback loop can be used to define the upper fractional
transformation:

Py Py _
L{T( [P21 Pw] ,A) = Py
+ Py A(I - P A) 7 Py,

whenever det(I — P;;A} # 0. LFT denotes the

transfer function from w(t) to y(¢) as shown in Fig-
ure 2.

Next, the lower feedback loop is used to define the
lower linear fractional transformations:

Py P o
LITT( [Pm Pzz] ’k> =i

+ Piok(I — Pyok) 1Py

»

Figure 3. Block diagram for lower LFT in terms of the
controller k.

whenever det(I — Pyok) # 0. L?T denotes the transfer

function from w(t) to Z(¢t) as shown in Figure 3.

The upper and lower LFTs provide a convenient
framework and a very general means of describing
(uncertain) systems (see [12,13]).

Taking the Laplace transform of Relations 4 and
5, an LFT representation of the nominal system can be
obtained (Relation 4), as shown in Figure 4:

A Ape B Ay,
Cy 0 C;
C; Co 0 C | (9)
Asf Asw Bs As

N =

By letting M,(s) = LITT(N,S_I) and M,(s} =
LFT(N,(es)™1), two alternative descriptions can also
be obtained, as shown in Figure 5:

M(s) =
Aptag, AputAg, Byt+Ag,
x(sI—Ag) LA, f x(sI—=A )"V A, x(s1=A.) " B
Ca4Cy Cr(sI-A )1 C3 +C)
x(sI— As)"1A,y X Agw x(s1 -~ A8,
Cj+Cs : Cw + Cy Culsl — a1t
[ (s = a5)" 1Ay x(sl — A" lAaw : X Ba ]
[M11(s) Mia(s) Mi3(s)]
= [ M (s) M>a(s) Mas(s) ], (10)
| M3i(s) | Ms2(s) | Mas(s)]
Ay(s)
—P (ss)—l
Tf

7

Figure 4. General block diagram for nominal system.
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Y
< Me(s) }
Ts
>
P Ag(s)
Em— (e)™!
Tf
Z w
Mg(s) u
<
Y
Figure 5. Block diagram representation for nominal
system in alternative descriptions.
and:
M(s) =
[Catest ~ ap)! C3 + Cy Ccy+Cy ]
XAfy X(esl — Ap)~1 x(esl — Ap)7 1
xBy XAgy
Cuw + Cy cplest — Ay~ 1 Cs +Cy
x(esl~ Ag)Tt X By X{(esI — Ag)™1
XAfw XAfs 11
Aaw + Ay Bs + A, As ¥ Agy ( )
X(esl — Ag)~1 X(esl — Ag)7! x{esl — Ag)T1
L XA fay x By fos B
My is defined from Relation 11, as follows:
M() = ME(8)|5:0
—ch;lA,“, Cc3—CoaTlny Cl—-CzA;lAIS
= C,,,,—CfA;lAjw ~Crari By Cs—CfA;lAfs
Ay — Asz‘;lAfw B — Asz;le Ay — ASfA;lAfS
_[Do Co
=5 ol (12)
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Now, the certain part of the main system Re-
lations 1 to 3, namely, the nominal system, can be
represented by:

P.(s) = LET(M(s), (¢5) ")
= L?T(Me(s),s‘l). (13)
With ¢ = 0, a reduced order system is then given by:

Py(s) = LFTi(Mo(s),s™)
= Do+ Co(sI — Ay)"! By. (14)

From Relations 10 and 13, it can be found that:

P.(s)
Mjz + Maj(es! — M11)~ 1 Moy + My
— XMia x(esl — My1)"1Myg
- |‘M32+Mal(ssl—Mn)_1 M3z + M3 J ’
XMya x(esl — M11)” Mgy (15)
and:
Py(s) =

Mas — My M3 Miy Moz — Moy My My
Mgy — M31M1_11M12 M3z — M31M1_11M13 ’ (16)

Let 6P(s) = P.(s) — Py(s). Then,

8P(s)= (I—(I—-sle_ll)_l> [Miz Mis]

Mg My (17)

Moy, Mﬁl}

As a result, a block diagram of P (s) = Py(s) + 6P(s)
can be found, which is shown in Figure 6. Moreover,
a particularly useful LFT representation of the main
system (Relations 1 to 3) is given in Figure 7.

Remark 1

If A = A, — Asz]TIAfs is a Hurwitz matrix, then
it can be verified by direct computation from Rela-
tions 14 and 16 that M[;', Py, M} [Mi2  Mis] and
[%21] M{;! are all Hurwitz.

As can be seen from Relations 11, 13 and 14, by
the continuity property, the necessary and sufficient
conditions for existence of ¢* > 0 without destabilizing
P.(s) are Ay and A; being Hurwitz. This result is
concluded through the following Lemma.

Lemma 1

Given the nominal system (Relation 4), if the matrices
Ap and A are Hurwitz, then there exists an ¢* > 0,
such that P.(s) (or equivalently 6 P(s)) is stable for all
g € [0,e%).



i 1
t |
t ]
: . :
! -1 t
e [ My Ml_ll + [M12 M13] |
| (e . :
' A |
t + 1
1 |
1 |
] 1
| |
' [_’. NMﬁl _} :
: |
1 1
| osp !
R S SRS
+
+ Py
G
u
K

Figure 6. Block diagram of P.(s).

>4,

Figure 7. Block diagram representation for the main
system.

ROBUST STABILITY ANALYSIS

The structured singular value has been proven to be
a powerful tool for the robustness analysis of linear
systems. Some concepts and results used in the sequel
are outlined in [12,13].

Definition 1

The uncertainty structures A that will be used in the
sequel are [12]:
A4(s) = {A|A = block diag [Ag,, Ady, -+, Ad,, ],

Adi S C”X”?E(Adl) S ’Ydyl' = 1327"' 7m}a
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called structured dynamic uncertainty and:
AP(S) = {A|A = block dla’g [Apl ’ Asz T vAP,,,]w
APi S RT:’X‘H’IAP‘L_’ S ’Yp7i e 1’27. - ,m},

called parametric uncertainty. In the case of hav-
ing simultaneously both types of uncertainties, i.e.,
parametric and dynamic uncertainty, another type will
be used, namely, mixed uncertainty, which may be
represented as follows:

s =3 2)

Definition 2

Alexﬁd¢32€zﬁp}.

For a given matrix M € C™*™, the structured singular
value of M with respect to A € A, is defined by [12]:

palM(jw)] =
( Inf {7(A)|det(I - M(jw)A) = 0)~*
AcA,

18

Now, two theorems on the robust stability are first
reviewed.

Theorem 1 (Small 4 Theorem)
Let P(s) be stable. Then LFT(P(s),A) is stable for

all A € A, if, and only if {12],

pa (P (jw)) < % 7(A) < v, (19)

ie., det(I — P;1(jw)A) £ 0 for all A € A, and all w.

Theorem 2

As indicated in Figure 8, the system M (s) is robustly

stable for the mixed uncertainty A,, if, and only if [12],

1. M(S,Ap) = LFT(M(s),Ap) is stable for all
|AP| < 7p.

2. pa,(M(jw,Ap)) < 71—0’ for all 7(A4) < v4 and all w.

Theorem 1, Theorem 2 and Lemma 1 are now
applied to characterize the stability bound.

Remark 2

A comparison between Figures 6 and 7 reveals that:

[ sMy! |sM' My sM' My
M(s)= | —Ma M P
—~May M
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': —Pp Ay(s)
E Ap(s)
M(s)

Figure 8. General block diagram for mixed uncertainty

descriptions.
and:
M(s, Ap) = P.(s).

Now, by utilization of Lemma 1 an
tioned theorems, one can determine {

d the above men-
he stability bound

of perturbed parameter in the following theorem.

Theorem 3

Consider the main system (Relat
suppose that Ag and Ay are Hurwit
the largest positive scalar €* that

ons 1 to 3) and
z matrices. Then,
may be obtained

{(without destabilizing the main system for ¢ < ¢*) is

given by:
" = {sup(prap, (JoMy' (jw)))}~

where Ap = ¢l

Proof
First, by using the proposed appr

, (20)

ach in [9,10], the

main system is modeled as the nominal system and
the controller for the nominal system (Relation 4) is

designed such that Condition 8 is
Condition &8, one can find that:

E(TzwAd) <1l
Also, from Relation 21 and Lemma

det(] — TowAg) # 0,

where T, = ]\N/l(s, Ap).

According to Definition 2, one

HA, (TZ'IU) S for E(Ad) < Yd>

1
Yd

satisfied. From

(21)
1, it is clear that:

(22)

has:

(23)
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which verifies Expression 2 of Theorem 2. Now, the
correctness of expression 1 in Theorem 2 (by using the
small p theorem) depends on the following inequality:

. 1. 1
N+AP(JWM111(]W)) < — for |Ap| <vp.
YpP (24)

Letting Ap = eI, it is concluded that |¢| < vp.

By Lemma 1, Theorem 2 and Inequality 24, it
is concluded that system M(s) is robustly stable in
the presence of mixed uncertainties. Then, the largest
positive scalar, without destabilizing the main system,
is given by:

e* £ 9p = {sup(ptan(GwMy' (jw))} (25)

Remark 3

Theorem 3 implies that if the relation pia,(jwM;!
(jw)) = 0 is satisfied for all w, then the stability bound
¢* will be infinite. As can be found from Relations 10
and 15, a necessary condition for the main system to
have the infinite stability bound is that A, must be a
Hurwitz matrix. Recall that:

M22(5) M23(5)

Msa(s) Mss(s) (26)

PE(5)|6=oo =

Remark 4

By utilizing [1], one may find that the result of
Theorem 3 is equivalent to evaluating whether or not:

det(I — jwM'(jw)e) #0, Ve € [0,e%),Vuw.

(27)

Now, it is shown that the stability bound of
perturbed parameter, as derived in this paper, is better,
i.e., larger than that of [1], in which only parametric
uncertainty is considered. Then, the e-bound of the
system is obtained by using the approach presented
in [1]. Comparing Relations 1 to 3 in the main system
with Relations 4 and 5, it is obtained that:

as = Asa Asf = [Asf Asw] s

_[Ar Asw Ags
@y = |:Awf Aw]’ A = |:Aws '

Lemma 2
Define Z{(s) as:
Z(s) =

Apg +Ap T = A" ag,

Ap+Ap (sT~-A" LAy
Ay + Aps(ad — A" AL,

Apg +Aws(sl — A7 lay

s le

Z12
2 [Zm } (29)

Zy9
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Then, the following relation can be concluded:
det(I — jweZ 7 (jw)) = det(Z7 1 (jw)) det(Z11 (jw))

x det(Zaz(jw)) det(I — jweZ3t (jw))

x det(I — jweZzy (jw)), (30)
where:
Zaa(8) & Zog — Zo1(Z1y — esI) ™) Zys. (31)
Proof

Using Schur formula, regarding determinant of a par-
titioned matrix, Relation 30 can be concluded.

Now, according to [1], the stability bound of the
perturbed parameter can be obtained by using the
structured singular values approach, such that:

e = {sup(eap (027 ()} (32

From Definition 2 and Relation 32, the following result
is obtained:

det(] — jweZ Y(jw)) #0, Ve €0,e}),Vw.

(33)

According to Relations 30 and 33, for robust
stability of the main system (Relations 1 to 3), the
following relations should be satisfied simultaneously.

det(I — jweZ'(jw)) #0, Vw,Ve € [0,€7)
det([] —jwe—Z—z_;(jw)) #0, VYw,Ve€[0,e}) .(34)

A comparison between Relations 34 and 27 shows
that e}-bound is equal to, or less than, ¢*-bound.
This is due to the fact that the €}-bound in restricted
Relation 34 satisfies two constraints but £*-bound is
limited only to Relation 27. Then, by introducing the
new modeling approach and analysis for the singularly
perturbed systems, an improvement on the stability
bound of the perturbed parameter may be obtained, in
the sense that it is less conservative.

EXAMPLE

As an example, the robust stability analysis of a
singularly perturbed system is considered consisting of
two fast states, coupled with a slow state such that
the open-loop system is unstable and the state-space
realization for this system reads as follows:

Es(t) 5 2 3 x5(t) 5
ez, (t) 4 1 —15| |zp(t) 1 (35)
zs(t)

y)y=[1 1 0] |zn (1)
$f2(t)
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O 1 I e
0.1 - e
02 e S ———
-0.3 ! H
0 0.5 1 1.5
Time (sec)
(z2(1))
0.2 T
—
0.05 L 1
0 0.5 1 1.5

Time (sec)

Figure 9. Response of uncertain dynamics under output

feedback.

Since the fast sub-system (Relation 35) is stable,
according to the approach proposed in {9,10] for sepa-
rating the system dynamics into certain and uncertain
dynamics, it is found that dynamics zy, (t) and x,(t)
can be modeled as a norm-bounded uncertainty, whose
time response is depicted in Figure 9. Also, the time
response of certain dynamic (x;(¢)) has been shown
in Figure 10 and the H. control signal is depicted in
Figure 11. In this example, it is found that M;;(s) is
equal to zero, then, according to Remark 3, stability
bound ¢* will be infinite.

CONCLUSIONS

In this paper, robust stability analysis and stability
bound improvement of the perturbed parameter in the
singularly perturbed systems are considered by using
the linear fractional transformations and structured
singular values (i) approach.

In this direction, by introducing the parametric
and dynamic uncertainty in the singularly perturbed
systems, the problem was formulated as a standard p-
interconnection framework by using linear fractional
transformations. A set of new stability conditions
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Figure 10. Response of certain dynamic under output

feedback.
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Figure 11. Hy controller.

for the system were derived based
domain representation, while the ex
bound was characterized. It was
obtained e-bound is larger compared

on the frequency
act solution of e-
shown that the
to that obtained

in [1], where only the parametric uncertainty is consid-

ered.
The extension of the results
time-scale systems is straightforwar

approach may provide a great deal

robust controller synthesis and the ro
analysis of output feedback singular
tems.
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APPENDIX

Small Gain Theorem

Consider a system with a stable loop transfer function
L(s). Then the closed-loop system is stable if [12]:

ILGwllee <1 Vo, (36)
where ||L}|,, denotes any matrix norm satisfying
IAB|5 < l|A]loo-11Bl] o

The small gain theorem can be extended to in-

clude more than one block in the loop, e.g., L = L L,.
In this case, the system is stable if ||Lq||.||L2}], <
1, Yw (a conservative result).





