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A Simple Method for Exact Evaluation of
Element Integrals in Axisymmetric FEM

S

In this paper, an efficient 3
which occur in the variati
elements. This method pen
integration schemes. The
these integrals through sol

INTRODUCTION

The Finite Element Method (FEM) [1] is capable

of directly handling axisymmetric

3D or the equivalent dimensionally

many reported works, the axisym

. Khorasani! and B. Rashidian*

nalytical method is described for evaluation of the element integrals,
onal axisymmetric finite element method with first order triangular
mits exact evaluation of such integrals without any need for numerical
key feature of this technique is that it permits finding the value of
ution of a simple linear algebraic system of equations.

is derived. As shown below, it is suflicient to solve a
simple algebraic equation using a few floating point op-
erations, instead of a complicated and time consuming

Systems in_ either numerical evaluation of these integrals.

reduced 2D. In
metric FEM has

been used to analyze various problems including fluid

flow (2], Poisson Equation [3], streg
and rotational molding [5]. However
arise in the corresponding 2D formul
problem in converting 3D problems
the occurrence of some double elem
involve the radial coordinate r. The
been, usually, either simplified with {
constant integrand over the element g
in a sacrifice of accuracy, or evalu
which is complicated and relatively
discussion on these axisymmetric vo
integrals can be found in [6]. It is
expand the integrand in terms of

s distribution [4]
, some difficulties
ation. The major
to 2D ones lies in
ent integrals that
ese integrals have
he assumption of
rea, which results
ated numerically,
inefficient. Some
lume and surface
also possible to
radial and axial

coordinates and then perform the integration, however,
this method is too complicated far most practical

purposes. In fact, it has been previ
for axisymmetric FEM within the li

busly proved that
mit of very small

elements, the solution does not converge to the accurate

one, if exact integration is carried ou
In this paper, a simple and
approach for evaluation of the abov

t 7).
exact analytical
e integrals, based

on linear interpolation functions (firgt order elements)

1. Department of Electrical Engineering, Sharif University

of Technology, Tehran, I.R. Iran.
*. Corresponding Author, Department

of Electrical Engi-

neering, Sharif University of Technaology, Tehran, I.R.

Iran.

DEFINITION OF INTEGRALS

Potential problems of the mixed Neumann and Dirich-
let type may be described by the following standard
mathematical model:

v(K.v®)=F.&+h inV, (1a)
voé.n =g+ ‘g1.%2 over S (boundary of V),

(1b)
$d = &y, in a subdomain of V, (1c¢)

where & = ®(r,z) is an array of unknown functions.

>

K, f and ‘g’; are given linear tensors and h, gy and
®, are linear vector, all being explicit functions only of
the coordinate variables (n stands for the normal vector
to the boundary S). With the aid of Green theorem,
the corresponding functional to the variational integral
formulation [8] of Equations 1 may be shown as:

I(®) :/// %vqx‘f{.v@ + %@.‘?@ +h.®dv
v

—f/(%@.?l +?0>,‘ﬁ.¢qu. (2)
S

Imposing the axisymmetry condition (9/98 = 0)
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simplifies Equation 2 into:
I(®) =

1 — 1 —
//(—-Z-VQ. K.ve+50. 7.0+ hﬁb)rdrdz
Q

- f(%cbfg*l + go) K .ordl. (3)

s
Here,  and T are the surface and contour equivalents
to V and S, respectively and a trivial 27 coefficient has
been dropped. Notice that it is allowed to close the
line integral over I', even for domains containing the
symmetry axis. This fact is due to the disappearance
of the integrand at r = 0, i.e., the z-axis.

Following the standard procedure for minimizing
Equation 3 by linear elements, in its most general form,
a system of equations results as:

EE://(N” Q°N* + X°)rds® d°

e=1 ge

B
+3 / M"Y MPrdi °

b':lLb

E
=3 //(N*ZTNez'v’Jr PN )rds®
e=1 e

B
+3 / MY Thrar, (4)

b:lLb

in which Q¢,X¢,Y? Z¢ P¢ and T? are constant ma-
trices which depend on the geometry of elements and

edges and on the form of prescribed functions ?, ?,
g1, h, g0 and & in Equations 1. The first summation
is carried over all elements with a total number of E
and of area S¢ and the second one over all boundary
edges of elements with a total number of B and of
length L°. @€ and ®° are arrays of the values of ® over
the nodes (triangle vertices) of element e and edge b,
respectively. Also, N° and M? are the shape function
arrays given by:

1 7re zf
Ne=[1 r 2] |1 7§ 25
1 7 2

= [1 r 2] D¢ = [Nf‘ N; NE], (53,)

M= |5 L] (5b)

in which (r¢, z¢) are the coordinates of the nth node

belonging to the element e, L? is the length of the edge b
and [ is the length of the path element on the boundary.
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The system of Equation 4 is seen to be composed
of the following integrals:

R = // rNLNZ ds®, (6a)
S(:
Re = // rNeds®, (6b)
Se
Ue = //rdse, (6¢)
Se

W= / rMpdi®, (6d)
LY

Vi = / rMPMEdIE. (6e)
Lb

In the next section, methods for the exact evalu-
ation of the above integrals are discussed.
EVALUATION OF INTEGRALS
Calculation of Double Integral (Equation 6a)

From Equation 5a it can be observed that N¢ = D¢+
D%,r+ Dy 2, where Dy stands for the elements of D¢
matrix in Equation 5a. Therefore:

/ N& NEdse = Dg, / NENE ds®
Se Se

+ D, / / rNENE ds®
Se

+ D5, // ZNENE,ds®, (7a)
SE
/ NENE ds = D, / / NENE ds®
Se

Se
+ D5, / / rNENE ds
Se

+ D5, / / ZNENE ds®, (7b)
S’e

in which N¢ and Ny, in the integrands of the left-hand-
sides of Equations 7a and 7b, respectively, have been
expanded according to Equation 5a. With the aid of
the following well-known identity [9]:

2a'b!c!

.eav ?b e€ €: e 8
//N’ Ny Ni ds (a+b+c+2)!5’ )
Se
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in which a, b and ¢ are integers, Equations 7 transforms

into either:

Djy, D;m][Rmn} [1/30 — Din/12] .
= Se, ifm#n
ym m Zmn 1 - Dlm 12 ’ >
[D] Dy /30 / (9)
or:
Djm Dim][Rnn] [1/30 = Dim/6] .. .
[Dj,, ka][znn]—[uso N R 7?971’)’)

Here, the e superscript is dropped
indices for the vertices of element e;
last integrals in Equations 7. Also,
R,, and Z,, in Equation 9b, m and
so that they are not equal to n, e.
either m =iand p=k,orm =k

and (m,n,p) are
Z,s represents the
for evaluation of
p must be chosen
c. if n = j then
and p = j. (The

choice is immaterial as shown below.) Thus, R,; and
Z.s can be exactly computed by solving the system of
linear equations given in Equations 9 as:

Rmn _ Se
Zmn —_GO(Djnka_Dijkn)
Z(ka—Dkn)+5(Dikan—Dinka)
2(Djn—Djm)+5(DinD im "‘Diijn)
if m#mn, (10a)
or:
2w
Znn —30(Dijkp_Djpka)
% ka—ka+5(Dipka_“ Dikap)
Djm—Dip+5(DimDjp—DiyDjm) |’
ifm,p#n. (10b)

In Equation 10b it can be wv¢
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that:
// N, N,ds = Dim/ N, ds
Se Se

+Djm // rNpds+ Dy, // zN,ds,
Se Se (113,)
[/Mmmw:Dw//NMS
Se Se
+Djp / / rNods+Dyy / / Nods.
Se (11b)

Se
Therefore:
Djy Dim] [Ra] _ 1/6 — D;n /3 ge
Djp ka Zn|l — 1/6—D-;p/3 ’
m,p#n, (12)
which can be similarly solved for R, and Z, as:
[Rn] _ S
Zn _G(Dijkp“Djpka)
x DkP_ka+2(Dipka—Dikap)
Djm-“D]’p‘l‘z(Diijp"'Diijm)
m,p#n. (13)

Calculation of Double Integral (Equation 6c¢)
The identity:

Jf@=rsas =0,
5e

where r¢ stands for the position vector of the centroid
of an element, results in:

(14)

pe =TT TR ge

3 (15)

Calculation of Line Integrals (Equations 6d
and 6e)

Explicit expansions of Equations 6d and 6e result in:

Wp = 2”6+ Tlpp 14k, (16a)
VE —yb = 3k +T‘1Lb
v =Tk 1“; Trh 14k (16b)

Here, (I, k) represents the indices of two end nodes of
the boundary edge b.
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NUMERICAL EXAMPLE

To check the performance of the above integration
formula, the following axisymmetric test problem is
considered:

9V 19V 0%V
T or?2 o 9r 922
where f is the source function, considered here as

1042(1 — r?). Equation 17a is subject to the following
boundary conditions:

ViV = f(r, 2), (17a)

V(r,0)=0, V(r,1) =1, Q/— =0.
or

r=0,z=2—7r

(17b)

As shown in Figure 1, around the equivalent 2D
solution region, the original 3D solution region is a
conical volume, obtained by revolving the equivalent
shaded solution region about the z-axis . The contour
plot of the solution is plotted in Figure 2.

In Figure 3, the superior performance of the
above proposed scheme (solid line) can be observed,
compared with the similar 3D code (dashed line) and
2D axisymmetric code via numerical integration, by a
simple interpolation method (dot dashed line). The
horizontal axis is the number of divisions n (therefore,
the total number of nodes would be about n? and n3
for 2D and 3D schemes, respectively). The 2D codes
need less computation time for the number of divisions
above 100. However, for less number of divisions, the
3D code is more effective compared with the 2D version
with numerical integration (please note that in 3D no
numerical integration is needed). As a final notice, this
approach has been successfully used to simulate the
time domain gas discharges in axisymmetric Nitrogen
two-electrode and triggerable spark gaps [10], where
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Figure 1. Equivalent 2D solution region (hatched area)
of the conical axisymmetric volume and the boundary
conditions.
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Contour plot of V(r,2)

Figure 2. Contour plot of the potential function; the
solution is mirrored in the » < 0 region.

Performance comparison

1010
o]
w - e =+
g iD=
.g T
-
. el
S 10 P -
7] . Ld
=l . ”’ . ”
. -
.g ’
o
b0 ’
c
£ 108t )/ ) )
g ) Axisymmetric 2D FEM
= (--) 3D FEM
(-.) Axisymmetric 2D FEM via
numerical integration
104 N L a
0 20 40 60 80 100

# Divisions

Figure 3. Performance comparison between FEM codes.

the Poisson equation in the equivalent axisymmetric
2D area has been solved numerically by FEM.

CONCLUSIONS

The integrals appearing in axisymmetric variational
formulation of the finite element method for clas-
sical potential problems by first-order elements are
introduced. Simple analytical methods are presented
for evaluation of these integrals. The evaluation is
done through solution of algebraic equations, which
requires few floating point operations, instead of
the time-consuming numerical integration methods.
This permits solving such 3D axisymmetric® prob-
lems in 2D with much better efficiency and accu-
racy.
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