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Research Note

On- and Off-Line Tuning Rules
for Unconstrained SISO DMC

M. Haeri!

The overall performance of a linear model predictive controller depends on proper adjustment of
several design parameters. Most of these parameters have interdependent effects, which make
their trial and error based tuning procedure very difficult. A systematic approach to overcome this
problem is to reduce the number of adjustable parameters. This reduction is usually performed
on the basis of sensitivity analysis, stability considerations or other objectives and constraints.
The most reliable parameter, which can be independently tuned for performance improvement,
is the control move suppression coefficient, A. In this paper, some tuning rules for adjusting
this parameter, on the basis of specific performance criteria, are introduced. These rules are
obtained from numerical analysis of the controller performance and are, therefore, applicable
regardless of the existence of an approximated first-order model. The capabilities of the rules are
demonstrated using simulations of regular and adaptive Dynamic Matrix Controllers (DMCs).

INTRODUCTION

In model predictive controllers, future control moves
are determined by minimizing a cost function that
is based on prediction error and control move. In
DMC design, future errors are predicted using a step
response model for the process. Design parameters in
this controller are sampling time 7', prediction horizon
P, control horizon M, model horizon N, control move
suppression weight A and the desired trajectory filter
coefficient . In the literature, there exist straightfor-
ward guidelines for the selection of these parameters.
The guidelines are recommended to satisfy different
aspects of the performance. The main considerations
are stability of the closed loop system [1-3], robustness
[4], control move size [5], computational load [6] and
conditioning of the process matrix [5]. These guidelines
may only be useful in an initial selection of control
parameters and, therefore, cannot be used directly
in an on-line (adaptive) design scheme. The explicit
relation between the resulting control performance and
the tuning parameters has been established in only
a few recent papers [7-9]. Based on the reasoning
found in classical works on the subject [6,10,11], all
parameters other than A have been kept fixed in
these studies and were chosen to minimize the control
performance sensitivity. In [7] an initial value for A
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is determined such that the control move is roughly
half the size of that for A = 0. This value may, then,
be adjusted manually during the operation to fine-tune
the performance. In [9], the selection of A is based on
the pole restriction criteria [12]. Although the second
approach, contrary to the first one, may be used in
adaptive schemes of the DMC, the performance has
been considered on the basis of second-order models
that are not adequate for higher-order processes in
general. In [8], the process is approximated as a
first-order plus time delay model. Based on this
approximation, a relation has been obtained between A
and the condition number of the gain matrix in DMC,
which has a direct effect on the control move and,
therefore, on performance. This relation can be readily
used in an adaptive scheme of a DMC. However, it is
only appropriate for processes that can be adequately
represented by a first-order model. In the next section,
a similar idea is extended to treat higher-order models.
Two new approaches are also introduced, in which
only the step response coefficients of the process are
required.

ADJUSTABLE PARAMETERS IN DMC

In an unconstrained DMC, the control move at each
control interval is determined by:

AU = (GTG + \I)'GTE, (1)
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where G is the P x M lower triangul

ar Toeplitz matrix

of the model, which is also called the dynamic matrix,

E is the P x 1 vector of predicted

errors, AU is the

M x 1 vector of future control moves and A is the
move suppression coefficient. E is cqmputed using the

following equations.
E=Y;-Y,,
Y, =Y, +D,
Y,.=GAU+ G AU + gyUp,

D = (y(t) ~ym() 1 1 1

1], (5)

where G is the P x N Hankle matrix of the model,
AU is the NV x 1 vector of past control moves, gy is
the Nth coefficient of the process step response and

Uy is the N x 1 vector of past inp
1 vector with components that rep

uts. Yy isa P x
resent the desired

output trajectory. Usually, a first-order filter is used to
construct Y4 from the reference input, r(¢).

Y = [ya(t + Dya(t +2) - - yalt +
yat+i) =ayat+i-1)+ (1 -«

i=1,2,--- ,P—1, with y4(¢

P)T, (6)
)r(t) (7)

= yP(t)a

Y, has the same size as Y4 and contains future outputs

of the process. Since these outputs

are not available,
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Sampling Time T

Variation of this parameter will affect performance,
both directly and through influence on horizon param-
eters. Since its selection cannot be independent from
the dynamics of the process, there will be little room for
its variation. The following value is usually used [15]:

1 1

T=— to—
50 © 10

(8)

of the equivalent time constant of the process,r..

Horizon Parameters M, P and N

Although these parameters have wide range effects
on the DMC performance, their values are mostly
determined by process dynamics. For guaranteed
stability, the following choices are recommended [3]:

P=N=(5X71,+ time delay,d)/T, (9)

M should be greater than the number of unstable
poles and constraints

Suppression Weight A and Desired Output
Filter Pole «

By proper scaling, parameter A can be selected in-
dependently from the process dynamics and has a
wide range effect on the control performance [16].
In the following section, three different strategies are
introduced to tune this parameter. Parameter « is
selected in range (0,1), however, it could be used
to improve performance of the controller whenever
mismatch exists between the process and its model.

ANALYTICAL AND NUMERICAL
EXPRESSIONS FOR X

In [8], the following analytical relation for A has been
introduced:

A= fk2, (10)
M M-1
37
B=P-d—sZ+2 (12)

where k, and d are the steady-state gain and delay
of the process, respectively. An explanation for this
expression is that increasing A causes a decrease in
the control move and, at the same time, decreases
the condition number of the gain matrix (GTG) in
DMC. Therefore, the correlation between the decrease
of the condition number C and the control move can be
exploited to relate to the control performance and the
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condition number of the gain matrix. Although the
above equations are simple, they are only applicable
for processes that are approximated by a first-order,
plus time delay, model. For a process that cannot
be represented by a first-order model, the approach
employed in (8] is not applicable. However, the existing
correlation between the condition number and the
control move can still be exploited by a numerical
approach to the problem. This expression may be
formulated using the following equations [16]:

A= fE2, (13)
(G G) = Cotmin (G G)

f= o : (14)

— 1

where i denotes the eigenvalue of a matrix.

In order to implement auto-tuning or adaptive
DMC, it is necessary to update most of the control
parameters in each control interval. However, in most
cases, adjusting the parameter « alone will compen-
sate for the performance deterioration. Otherwise a
similar idea as in [9] may also be useful to reduce
computational load. In a regular DMC design, since

computation of the G'G eigenvalues are performed
once, both of the above methods will require similar
amounts of computation. However, contrary to the
first approach, the second one can also be implemented
for higher-order processes. The main disadvantage
of both approaches is that there is not an explicit
relation between control performance criteria, such as
overshoot, settling time, maximum control input, etc.,
and the condition number of the gain matrix. The
proper condition number can only be chosen using
simulation results.

In the second approach presented in this paper,
different performance criteria are related to the pa-
rameter A, through curves and equations obtained by
numerical analysis. The curves (equations) for second-
and third-order processes are given here. For higher-
order processes, a similar procedure could be applied.
The following models have been used in the generation
of appropriate curves.

wikye=?*
Gyls) = m, (16)
2k e 9
Gy(s) = Py (17)

(s +p)(s2 + 28wns + w2)’

By proper scaling of the control parameters (T, M, P,
N), the behavior of the model will depend only on £ in
the second-order process and on £ and ¢ = p/w, in the
third-order process [16]. In Figures 1 to 3 the relations
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Figure 1. Curves f(£) for the second order process and
overshoot between 2% to 5% (X = fk2).
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Figure 2. Curves f(£) for the second order process and
different condition number (A = fk2).

between A and £ are shown for different performance
criteria. In all these three figures, it can easily be seen
that the trends of change for f (or A) are different
for the two variation ranges of £. For large values of
&, where the first-order model approximation can be
applied, f has an approximately constant value, which
is comparable to that obtained in [8]. For small £, the
calculated values for f are notably different from those
for large £. In other words, for processes that are not
represented by first-order models, the value of f given
in {8], is not adequate. For third-order processes, these
relations are represented by two-dimensional curves,
which are given in Figures 4 to 6. By implementing a
proper curve fitting technique, appropriate equations
may be obtained and used in auto-tuning or in adaptive
design of the DMC.
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Figure 3. Curves f() for the second order process and
different maximum control input (A = fkg).
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Figure 4. Curve f(¢, ¢) for the third g

overshoot between 2% to 5% (A = fk2).

In the third approach, contr
adjusted in such a way that certai
closed loop response are satisfied.
appropriate selections are given to

rder process and

| parameters are
n properties of a

In this paper,
obtain a desired

closed loop settling time. Based on given open and
closed loop settling times, the following tuning strategy

can be applied.
T = min(Tl,Tg)

where:

T 880 8SC
T1€< ssop T p) and Tg:z 1

100 * 50

e (18)

This choice for sampling time satisfies requirements
given in [15]. Then « is chosen, such that the desired

trajectory reaches 99% of its steady

state value in the
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Figure 5. Curve f(¢, ¢) for the third order process and
for Umax = 3U,, () = fk2).
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Figure 6. Curve f(¢, ¢) for the third order process and
for 3% overshoot and Upax € (3 to 5). U, () = flcf,).

proper number of sample times, i.e.,
1-a™=0.99 (19)

A proper value for n (which is equivalent to the
prediction horizon) is 15 [10]. Other parameters are
given as:

Tssop

N = T M =6, (20)
TSSC
A= fR, f= K, (21)

K € (0.01,0.05)

A faster closed loop response (smaller T, ), requires
a higher magnitude of control move and, therefore, a
small value of f. This correlation has been exploited in
the derivation of the relation given in Equation 21 [16].

The difference between the second and third
tuning strategies is that, in the former, the trans-
fer function of the model is required and relations
are given between properly scaled model parameters
and A. However, in the latter, these relations are
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Figure 7. Block diagram of an adaptive DMC.

given between system response characteristics and \.
Therefore, existence of a transfer function model is not
necessary.

ADAPTIVE DMC

The schematic diagram of an adaptive DMC is given in
Figure 7. At each control interval, the step response or
the transfer function model of the process is identified.
Based on the identified model and using tuning rules
presented in the previous sections, proper values are
chosen for T, M,P and N. Then, suitable curves
from given figures or their equivalent fitted equations
are used to determine appropriate A. For perfect
modeling, o can be set to a constant value (usually 0.5).
Otherwise, this parameter may be adjusted to improve
the robustness of the control system. The following
algorithm summarizes a typical implementation of an
adaptive DMC:

Step 1: Select an appropriate model structure;
Step 2: Choose an appropriate performance criteria;

Step 3: Construct relevant f (or A ) curve and fit it to
a proper equation;

Step 4: Estimate selected model parameters based on
input/output signals;

Step 5: Assign appropriate values for control parame-
ters T,M,P,N;

Step 6: Compute desired A and set a = 0.5;

Step 7: Implement DMC and compute the present
control move Au(t);

Step 8: Apply u(t) and check for contro! performance;

Step 9: If performance is good enough go to Step 7; if
acceptable but not adequate adjust a and go
to Step 7; if not acceptable go to Step 4.
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ILLUSTRATIVE EXAMPLES

In the first simulation, a DMC was designed to control
the following process:

6—0.55

Go(s)= —F
p(8) = T oss 11

(22)
Tuning the controller parameters was undertaken on
the basis of the condition number of the gain matrix
(Equations 13 to 15). Since this process has an
underdamped step response, it cannot be properly
represented by a first-order plus time delay model.
Therefore, the tuning strategy given in [8] will not be
adequate. Results given in Figure 8 were obtained for
C = 500 using curves in Figure 2.

In the second simulation, a time varying process
with the transfer function:

_0.1(0.1s + 1)e~0-5¢
Col8) = T s + 035

(23)

was controlled by an adaptive DMC that was tuned
using the second approach. The curves given in
Figure 3 have been used to choose a proper value for
A. It is assumed that £(¢) has the following variations:

£(t) = 1 4 0.3sin(0.15¢). (24)

Results of this simulation are given in Figure 9. The
relation given in Equation 24 was assumed to be
unknown to the controller. However, the minimum and
maximum values of the variation range were used in the
selection of horizon parameters.

In the third simulation, a DMC using the third
approach controlled the following second-order process:

1

- - 2
Gr(s) s2 + 105 + 1 (25)
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Figure 8. Step responses of a second order oscillatory
process controlled by a DMC tuned for
C=500(T=05° M=6, P=N =100, o =0.5).
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varying process controlled by an adaptive DMC tuned for

Umax = TUss (T=0-ls, M :6, P =1

The desired closed loop settling time

N =50, o =0.5).

> for the first 50° of

the simulation is 30° and it is changed to 10° after that.
The following parameters were used in the simulation,
which are in accordance with the proposed approach,
the results of which are given in Figure 10.

Tssot =950°, T =1°, M=6, | N =100,
for t < 50° T, =30°, P =30,
3.2
a=0858, f= 0.0l(g)
for t > 50° Tg. =10°, P =10,
Lo
a=0.631, f= 0.01(5)

In the last simulation, a secon

Setpoint and outpul

d-order model was

Figure 10. Simulation results for a second order process
controlled by a DMC tuned for desired closed loop settling

time.
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Figure 11. Simulation results for a third order process
modeled by a second order model.

used to represent the following third-order process:

1
(01s+1)(s2 +s+1)

Gp(s) - (26)

The parameter A was tuned based on the second tuning
strategy. To fine-tune for mismatch compensation,
parameter o was adjusted according to the following
rule:

o if 0.9r <ylt+t)<1lr

el if y(t+1t) > 1lr
S i y(t+h)<09r

(27)

=

where 7 is the reference input. It is known that
increasing o will slow down the system response and
decreasing o will speed up the response. This simple
idea has been exploited in the proposed rule. In
this simulation, the slowness of the system response
is determined by output magnitude at a specific time
and, therefore, will be sensitive to measurement noise.
To improve the performance in practical situations, it
would be better to choose other measures to evaluate
the slowness. Results obtained from simulation of an
adaptive DMC, using the rule given in Equation 27
and curves given in Figure 3, are shown in Figure 11.
The rules in Equation 27 were applied whenever a step
change appeared in the reference input.

CONCLUSIONS

In this paper, three different approaches were intro-
duced to find an appropriate relation for adjusting the
parameter A in an auto-tuning or adaptive scheme of
the DMC. This work is an extension of that found in [8],
in which a first-order model approximation is used in
the derivation of an analytical relation for A. Without
the approximations that were applied in [8], it is very
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difficult to find an analytical relation for A even for first-
order processes. In this paper, numerical analysis was
proposed and, therefore, no restriction on the model
order was assumed. Instead of an analytical relation,
numerous graphical representations are obtained, each
of which can be applied to achieve a specific property
of the control performance.
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