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A Neural Network Approach to Detect and
Correct Single Faults in Nonlinear Systems

A.

In this paper, a new fault

Moosavinia* and K. Mohammadi!

tolerant feed forward neural network architecture is first introduced,

using fault tolerant neural nodes in its output layer, which is the most critical layer in the
network. Then, the conventional Back error Propagation (BP) algorithm is modified to apply

to this architecture with {
neural network, jointed w

he least learning degradation for fault tolerant nodes. The presented
th a systematic real convolutional code, contributes in an Algorithm

Based Fault Tolerant (ABFT) scheme to protect a nonlinear data process block. The neural

network is trained to prod
convolutional code guaran
in notable nonzero values
correct single faults by ob

uce an all zero syndrome sequence in the absence of any faults. The
tees that faults, representing errors in the processed data, will result
in syndrome sequence. A majority logic decoder can easily detect and
serving the syndrome sequence. Simulation results for random s-a-0

faults, demonstrating errof detection and correction behavior, are also presented.

INTRODUCTION

Neural networks have been successfully used for fault

diagnosis in nonlinear systems [1-3
tractive features of neural networks
papers are their capability to model
and their ability to tolerate faults.

]. The most at-
described in these
nonlinear systems

However, recent

research [4,5], shows that these networks are not really

fault tolerant. Indeed, there are al
in a large neural network that do
neural network function, therefore, i
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fact, nodes can often be found in a n¢
are too important and their failure ¢
crash.
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tolerant techniques such as Triple
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In this paper, a fault tolerant neural network
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architecture will first be introduced, based on Multi-
layer Perceptron (MLP) and a new learning algorithm,
based on conventional Back error Propagation (BP)
algorithm. Then, this neural network is utilized in
an ABFT architecture, using convolutional codes to
correct single faults in a nonlinear system [§].

Two main approaches have been proposed to
improve fault tolerance in an artificial neural network:
1) Working on learning algorithms and 2) Working on
architecture. Most of the reported papers deal with
the learning phase or algorithm. In fact, it is believed
that the distributed architecture of neural networks
is not suitably utilized by current common learning
algorithms, such as BP, in order to achieve or enhance
fault tolerance in neural networks. In [9] this enhance-
ment is achieved by manipulating the gradient of a
sigmoid function during the learning phase. Murray
and Ito [10,11] have used the well-known method of
fault injection during the learning procedure and have
shown that the fault behavior of neural networks can
be greatly improved against stuck-at-0 and stuck-at-
1 faults. Neti [12] has introduced a network called
“maximally fault tolerant neural network”, in which its
weight coefficients are estimated through a nonlinear
optimization problem to get the maximum allowable
fault tolerance in neural network. There are few reports
considering neural network architecture for improving
fault tolerance. Zhang [13] has studied feedback neural
networks with hard limiting output. The results show
that the fault tolerance of such networks cannot be
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improved through adding more nodes. Chiu [14]
addressed some modifications of the architecture, such
as addition/deletion nodes, however, the paper is still
based on the learning procedure. Kwon [15] presented
a method to break critical nodes in a trained MLP, to
have a predefined level of fault tolerance. Considering
the assumption that the weights of all links are known
and stored in a memory, Tanprasert [4] modified a
two-layer feed forward neural network to detect faulty
links.

In the next sections of this paper, first, the ABFT
concept is introduced briefly. Then, the convolution
code used in this paper is described and, a multilayer
perceptron network with conventional BP algorithm, is
presented. Moreover, fault model and sources in a neu-
ral network and the modified architecture and learning
algorithm are introduced, respectively. Simulation
details and results are provided and, finally, the main
advantages of the proposed method are concluded.

ABFT SCHEME

ABFT has been suggested to design fault tolerant array
processors and systolic array systems. The scheme is
capable of detecting and, sometimes, correcting errors
caused by permanent or transient faults in the system.
It was first proposed as a checksum approach for
matrix operations [16,17]. Since then, the technique
has been extended to many digital signal processing
applications, such as Fast Fourier Transform [18,19],
linear and partial differential equation solving [20,21],
digital filters [22] and the protection of linear [23] and
general multiprocessor systems {24].

The basic architecture of an ABFT system is
shown in Figure 1. Existing techniques use various
coding schemes to provide information redundancy,
needed for error detection and correction. As a result,
this encoding/decoding must be considered as the
overhead introduced by ABFT.

The coding algorithm is closely related to the
running process and is often defined by real number
codes generally of the block type [25]. Systematic codes
are of most interest because the fault detection scheme
can be superimposed on the original process box, with
fewest changes in algorithm and architecture.
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Figure 1. ABFT general architecture.
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In most previous ABFT applications, the process
to be protected is often a linear system. In this paper,
a more common case is assumed consisting of linear
or nonlinear systems but still constrained to static
systems. This assumption is due to selecting a static
neural network in the main architecture.

Convolutional Codes

A convolutional encoder processes the data stream
sequentially and, for every k information symbol pre-
sented to it, there are n{n > k) output symbols. Hence,
n — k parity codes are generated. The coding scheme
depends on the history of a certain number of input
symbols. The total register length used in the decoder
is called the constraint length. This code has been
used as a suitable mechanism in data communication
for many years [26] and, although they are basically de-
signed to protect data streams on finite fields, research
on infinite fields is also reported [27]. Only systematic
forms of convolutional codes are considered because the
normal operation of the Process block is not altered and
there is no need for decoding in order to obtain true
output. In addition, systematic convolutional codes
are proved to be noncatastrophic.

The generator matrix of a systematic convolu-
tional code, G, is a semifinite matrix involving m finite
submatrixes as:

1P, 0P 0P, -+ 0P,
IF, 0P 0P,,-1 OF,
G: IPO 9

0Pm—2 OPm-—l

where I and 0 are identity and all zero k& x k matrixes,
respectively [28] and P; with j = 0tomisa kx (n—k)
matrix, whose entries are:

k+1 k+2
gi; 9y 9T
k+1 k+2 n
Pj= |72 R TR (2)
k+1 k+2 n
9ei 925 7 Gk

Unfilled areas in G matrix indicate zero values. The
parity check matrix associated with this code is given
by:

PII
P70 PII
H=\|pry pr_o PII : (3)
PTo ... PO ...

where, in this case, I and O are identity and all zero
(n — k) x (n — k) matrixes, respectively and T is the
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transpose sign. The syndrome equa
vector S, are given by:

S=rHT =eHT,

where 7 is the received sequence and
When r is a code word, S is zero
non-zero values.

There are three principal ways
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vtions, denoted by

(4)
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able [25], that is, a code in which J = dyi, — 1. By
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Amin = min{wv]y, : uo # 0},

where v is a code word and ug is the

(5)

first nonzero input

information sequence. Note that d,;, is calculated over

the first constraint length of the code.

Self-orthogonal codes are one ¢lass of codes that

are completely orthogonalizable. In

such a code, for

each information error bit, the set of all syndrome bits
that involve that bit form an orthogonal check set on

that bit, without adding syndrome
codes makes easier implementation
decoding.

bits. Using these
of majority-logic
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MLP AND BP ALGORITHM

MLP consists of several cascaded layers of neurons with
sigmoid activation functions [29]. The input vectors
feed into each of the first layer neurons, then the output
of this layer feeds into each of the second layer neurons
and so on, as shown in Figure 2.

Most often, the nodes are fully connected, that
is, every node in layer ! is connected to every node in
layer [ + 1. In this paper, the input vector is assumed
as the first layer in the neural network. MLP can
easily perform Boolean logic operations, pattern recog-
nition, classification and nonlinear function approxima-
tion [30]. Usually, output neurons use linear activation
functions rather than nonlinear sigmoid, since this
tends to make learning easier. MLP is a supervised
neural network that learns through examples and the
most common learning algorithm used for it is BP,
which is the steepest descend gradient based algorithm.
In this paper, it is assumed that the number of hidden
layers is one and the activation function of each neuron
in the hidden layer is a bipolar sigmoid signified by the
following equation:

_ 1 —exp(~u)
flu) = T+ exp(—u)’ (6)
U«i=zwi]‘ x z; — 0, (7)

where w;; is the connection weight between neuron j
in the preceding layer and neuron ¢. z, is neuron j's
output and 8; is a bias value for the neuron i. Back-
propagation algorithm changes w;;, in order to reduce
the error of output layer defined by:

E= %Z(tl - Oi)Q7 (8)

where t; is ith output target and o; is the ith estimated
output [31].

Inputs

Hidden layers

Output layer

T

Ty

Figure 2. Architecture of a typical MLP.
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Using the steepest-descent gradient rule, the
change of w;; is expressed as:

OE

Awg; = M ow
i

(9)

7 is a positive real number called “learning rate” that
determines step size in w;; changes. Selecting a suitable
n value plays an important role in network learning
convergence [32].

Back-propagation algorithm says that:

Awij = néipof, (10)

87 = (87 = of).f'(u)), (11)

67 = (Q_ wii68).f'(wa), (12)
k

where Equation 11 is for an output layer and Equa-
tion 12 is for neurons in the hidden layer. f'() is the
derivation of the bipolar sigmoid and is calculated by:

fl(@) =2f(x)(1 - f(=)). (13)

FAULT MODEL

There are usually three kinds of fault considered in a
neural network: 1) Connection, 2) Weights and 3) The
neuron body itself [11]. The first two faults are often
modeled as s-a-0 (stuck at 0) and most often occur
during a memory disappearance or a link disconnection
in VLSL. On the other hand, faults due to a neuron
cell, usually subject its output to one of the positive
or negative saturation voltages. This kind of fault is
modeled as s-a-(1) (stuck at one) or s-a-(-1). In this
paper, only s-a-0 faults are considered.

FTNN ARCHITECTURE

Exgeriments show that output neurons are the critical
nodes in an MLP network. Table 1 summarizes the
effect of s-a-0 faults in the links of an MLP trained
by a standard BP algorithm. The network consists of
4 inputs, 7 neurons in a hidden layer and one output
node and is trained to approximate a nonlinear function
by the following equation:

Out =025 x (z +y + z + w)*. (14)

Clearly, links in the first layer have tolerated
faults better than those in the output layer, which

Table 1. The effect of 10000 random s-a-0 faults in first
and second layer of a 4-7-1 MLP trained by BP algorithm.

irst | S d
Fault Location | No Faults Firs econ
Layer layer
Average
0.0001 0.0224 0.3359
utput error
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are sensitive and can cause remarkable errors. So,
replacing the conventional output nodes with non-
faulty nodes will improve the total fault behavior in
an MLP network.

To obtain such a robust node in the output
layer, the use of a linear activation function is first
suggested, which is a simple adder indeed, rather than
the nonlinear sigmoid one. Then, a wired connection
is presented as a link to eliminate memory usage by
the elimination of connection weights. Figures 3a
to 3d suggest how to obtain such nodes in two steps,
while preserving, as much as possible, the learnability
of the neural network in output nodes. The resultant
node is called FTN (Fault Tolerant Neuron). Utilizing
FTN nodes in the output layer of an MLP yields
an architecture which is called FTNN (Fault Tolerant
Neural Network). FTNN is shown in Figure 3d, in
which hidden layer nodes are conventional nonlinear
nodes but the output consists of FTN nodes.

Figure 3a shows a conventional node in an MLP
with a nonlinear activation function, f, and connection
weights of w; to w,. Usually, a BP algorithm yields to
non equal w; values. According to FTN architecture,
an algorithm will be introduced to produce weights
with close magnitudes, but which may have different
signs. This is done by moving the weights, gradually,
to a unique value and adapting the learning rate, . In
the next section, the whole algorithm will be described
in detail. Figure 3b shows such a trained node. W is
the magnitude value obtained through the algorithm.

-8
z1 \
. w1
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Ty —m— —»
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Figure 3a. A conventional nonlinear node .

xr
.] &‘
. 05

Figure 3b. A linear node with similar input weights.
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ng FTN nodes in

Then, the connection coefficients are shifted to the

adder part and factored by the ma,

gnitude term, W,

so that the remaining node has n wired connections as
links, an adder that performs subtraction as well and

a single weight of W.

UWLA LEARNING ALGORITHM

According to the architecture desc
vious section, a learning algorithm
the output layer, which is called

ribed in the pre-
is introduced for
UWLA (Uniform

Weight Learning Algorithm). For an output node, the
algorithm results in a unique weight coefficient called

W, and the goal is to have uniform w
in the MLP architecture. In fact,
algorithm described in the previous
guarantee a uniform usage of archite
goal is to have a minimum sum of
defined by Equation 8. Here, anothern
to the learning process, i.e., the var
weights of output node j. The aim is
as close as possible to zero. The vari

0y = (wi; —my)?,
P

where j and ¢ denote the neurons i

reight distribution
the standard BP
section does not
cture, because its
square errors, F,
criterion is added
iance of w;js, the
to make this term
ance is defined as:

(15)

n the output and

hidden layer, respectively and m; is the mean value of
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w,; for output neuron j and is calculated after each
training step. Equation 10 shows that Aw;; is related
to n, the learning rate parameter. 7, will be modified
to adopt a smaller value when Aw;; increases variance,
and a larger value when it is in the direction of variance
decrease. The following algorithm is suggested:

UWLA Algorithm:

Step 0:
Step 1:
Step 2:
Step 3:

initialize weights with small values;
while stopping condition is false, do steps 2-9;
for each input vector, do Steps 3-8;

each input unit receives input signal and
broadcasts it to hidden layer units;

Step 4: each hidden unit sums its weighted input signal
and applies its activation function according to

Equations 7 and 8;

Step 5: each output unit sums its weighted input signal

and produces its output, too.
Step 6:
Step 6a: for each output unit, compute its error infor-
mation term, using Equation 11;
Step 6b:
Step 6c¢:

calculate mean [w;;(old)];

choose n = nl. Calculate:

wij (new)=w;;(old) +Aw;;n using Equation 10;
if abs|w;;( new) — meanfw;;(old)]] is greater
than abs{w;;(old) — mean[w,;(old)]];

choose 7 = 12, where 12 < nl.

Step 7: for each hidden unit, compute its error infor-

mation term, using Equation 12;

Step 8: for each output and hidden unit, update

weights, according to:
w;;(new) = w;;(old) + Aw; ;.

Step 9: test stopping condition.

FTNN Behavior

To evaluate the fault tolerance of an MLP, a measure
of sensitivity is first presented as:

Definition 1

S{w,), the sensitivity of a neural network to weight w;,
is the effect on Mean Square Error (MSE) when w; is
forced to zero.

As an example, an MLP network with four inputs,
seven hidden nodes and one output node is trained
with UWLA to approximate the nonlinear function of
Equation 14.
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Training samples are non-correlated random num-
bers from T} {0,0.1,0.2,...,0.9,1.0}. For the
comparison proposed, the standard BP and the MFTA
(Multiple Fault Training Algorithm) algorithm intro-
duced by [13] are also considered. MFTA is based
on the well-known method of fault injection during
the learning process. In this example, a s-a-0 fault
is injected in the hidden layer nodes for every 500
iteration. For all simulations, the training process
lasts after 100000 iterations with a learning rate of
7 0.005. UWLA uses the second learning rate
72 = 0.0025.

The resultant weights for UWLA are listed in Ta-
ble 2. The single weight W = 0.786674 has been chosen
as the average of all the weights in the second layer.
All trained networks are then subjected to s-a-0 faults
in their second layer. In the testing phase, inputs are
selected from the set T = {0,0.01,0.02,...,0.99,1.00}.
Table 3 shows that the network trained with the UWLA
has the largest average error, that is 0.0074, for the
testing set, when there is no fault injected in its
second layer. BP and MFTA have a better response
in this case and their average error is less than 0.0001.
However, as s-a-0 faults in the hidden node outputs are
introduced, UWLA will show its benefits. The calcu-
lated sensitivity measure for all nodes in the hidden
layer are also shown in Table 3. my is the average
sensitivity for each network. Clearly, the network
trained with UWLA has the least sensitivity with a
value of 0.0831. The sensitivity of the network trained
with MFTA is 0.2332, while the network trained with
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conventional BP has the largest sensitivity, as high as
0.3354.

In hardware implementation, the FTNN architec-
ture will show its extra benefits for using fault tolerant
nodes in its output layer, although the described
simulation does not consider hardware features.

FAULT CORRECTION USING FTNN

Convolutional codes are usually used over the trans-
mission channels, through which both information and
parity bits are sent. To achieve fault detection and
obtain the correction properties of this code in a non-
linear process, with minimum overhead computations,
the block diagram in Figure 4 is proposed.

The main architecture is similar to a normal
ABFT scheme, except for the FTNN and the delays
in the information pass, which replace the parity gen-
erator part of a systematic convolutional encoder. The
upper way is the normal process data flow, which passes
through the nonlinear process block and is then fed to
the convolutional encoder to make parity sequence 3"
On the other hand, FTNN is trained to have a direct
parity, ¥’, equal to %", in the absence of any noise and
faults in the system, using UWLA. So, the syndrome
sequence is a stream of zero, or near zero, values in a
normal operation.

The faults in a nonlinear process block have been
modeled with module noise A, while the encoder and
neural network noises are modeled with modules B
and C. Since these last two noises contribute to the

Table 2. Weights of a 4-7-1 MLP trained by WLA.
Hidden Hidden | Hidden | Hidden | Hidden | Hidden | Hidden | Hidden

Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6 | Node 7
Input node 1 -0.2845 0.1730 0.6452 0.3863 -0.2459 0.3882 0.0832
Input node 2 -.02498 0.3436 0.3511 0.2596 0.0087 0.2352 0.3051
Input node 3 0.4929 0.2290 -0.2649 0.2361 0.6337 -0.1338 -0.0616
Input node 4 0.2406 0.0346 -0.3288 0.4759 0.2460 0.6359 -0.1767
Hidden node bias 0.3455 -0.5955 0.1151 -1.1039 0.4664 -0.8699 0.8099
Output node 0.7863 0.7869 0.7864 0.7872 0.7868 0.7870 0.7860
Output node bias 0.6858

Table 3. Sensitivity measures of networks trained with different algorithms to s-a-0 faults in hidden nodes.

Hidden Node No. Average
Algorithm | No Fault 1 2 3 4 5 6 7 my
BP 0.0001 0.5835 | 1.0617 | 0.0960 | 0.0839 | 0.0457 | 0.0576 | 0.4195 0.3354
MFTA 0.0001 0.5911 | 0.6128 | 0.0711 | 0.0473 | 0.0317 | 0.0397 | 0.2384 0.2332
UWLA 0.0072 0.0697 | 0.0306 | 0.0595 | 0.0852 | 0.0311 | 0.0604 | 0.2449 0.0831
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Figure 4. Block diagram of the neural based ABFT.
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without any degradation.
Example and Simulations

A (3,2,2) systematic convolutional
tors of:

g§3) =1+D,

95" =14 D?,

may be deleted

rode with genera-

(16)

(17)

is used to evaluate the error detectability and cor-

rectability of the proposed method.
inputs, 10 nodes in the hidden laye
is selected. The single output no
an FTN trained by UWLA and al
conventional nodes with a nonlinear

An FTNN with 4
r and one output
de of this NN is
other nodes are
sigmoid function.

A block processing SINE function with two inputs is
chosen as the nonlinear process to be protected. The

generator matrix of the code, for i
length, is as:

1 010

1 10

1

= o O O

— - O

— O O oo
— O O O OO0

ot ik () ek ek (T

ts first constraint

; (18)

and, according to Equation 3, the parity check matrix

for the first constraint length is:

H=

S~ =
=
oo
=
O =
O =
—

[

: (19)
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There are two parity triangles for each generator, as:

(1 (2)

S0 1 €9 1 €p
81| = 1 1 egl) + 0 1 6(12) .
2] o1 || 1o 1] o] o

Clearly, the code is self orthogonal and a set of
two orthogonal check sums can be formed on the
information error bit, hence, tp;; = 1 and the code
can correct single faults in each constraint length of
code which, here, is three. Figure 5a shows the main
process, that is a two-input SINE block. The outputs
y1 and y,, are subjected to uncorrelated single s-a-0
faults, modeled with noise modules A1 and A2. The
faulty outputs now shown with b; and by, are then fed
to the convolutional encoder as in Figure 5b. The code
stream generated here, 3", is compared with FTNN
output 3’ to produce the syndrome sequence as shown
in Figure 5c. Considering the syndrome sequence, the
majority logic produces two error signals that are fed
back to delayed output streams in Figure 5a to correct
outputs.

Y; and Y, are corrected outputs, in which their
validity is governed by a majority logic decoding rule.

The FTNN training samples are selected ran-
domly from [-1 1]. The network is then trained with
UWLA in the absence of any noise, so that its output
approximates the SINE block function followed by the
(3,2,2) convolution encoder. Resulted weights for the
hidden and output layer are shown in Tables 4 and 5,
respectively. Weights in output layer are almost equal,

Noise Al Error 1
Y1 b1 ¥y
- O
SINE
Y2 b2 Y2
- ®
Noise A2 Error 2
Figure 5a. SINE block input-output.
bl bl
D
by e by

ﬂﬂ@

Figure 5b. Systematic (3,2,2) convolutional encoder
(D denotes delay).
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Table 4. Hidden layer weights and bias for 4-10-1 MLP trained by UWLA.

Hidden | Hidden | Hidden | Hidden | Hidden | Hidden | Hidden | Hidden | Hidden | Hidden
Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6 | Node 7 | Node 8 | Node 9 | Node 10
Input node 1 0.0676 0.2662 1.6716 0.0628 -0.0888 0.3062 0.4812 -0.1105 0.6760 0.2276
Input node 2 | 1.0455 0.2788 0.0263 0.3283 0.5236 0.3935 0.0328 -0.0520 0.3364 0.7317
Input node 3 | -0.1638 0.3458 0.0139 0.8808 0.6307 0.4505 0.1511 0.4301 0.3161 0.6321
Input node 4 0.5372 0.4723 0.1778 0.6328 0.0921 0.1249 0.4114 0.9277 -0.0108 0.2473
Bias -0.1987 0.0709 0.0842 0.4660 -1.0564 -0.3935 -0.7360 -0.5897 -0.2929 0.4197
" 0.015 T T T T
- -
Y
é_ E 0 E 0.01f ]
|
Syndrome M Error 1 ‘
0 I
0.005F h
M Error 2 5 '
—> >
L o ol !
Figure 5¢. Majority logic decoder used in this paper.
ML is the majority logic gate.
-0.005H \ 1
Table 5. Output layer weights and bias for 4-10-1 MLP 0.01
trained by UWLA. T 20 40 60 80 100
Output Node .
Time
0.5656 Figure 6a. Syndrome sequence for no fault condition.
0.5638
0.5630 0.8 : . ; .
0.5639
Weights 0.5637
0.5641
0.5634
0.5624 9
2
0.5639 &
0.5648
Bias 0.5649
however, their average value, 0.5639, is chosen after a
training process.
Figure 6 shows the simulation results after 50000 . : : :

UWLA training iterations. In Figure 6a, the syndrome
sequence in the absence of any faults is shown and
nonzero values are due to neural network limited
accuracy. The syndrome in most cases is less than
0.005. However, there are also a few errors as great
as 0.01. Therefore, a threshold value of 0.05 is selected
for error detection purposes.

The whole system is then subjected to s-a-0 faults
every 10 steps at SINE block outputs (module noise
Al or A2 in Figure 5a ) and FTNN or encoder output
(module noise C or B in Figure 4). Figure 6b shows
the syndrome sequence for faults in the first output of
SINE block, y;. Clearly, there are two equal nonzero
values after each fault occurrence. In Figure 6¢c, the

Time
Figure 6b. Syndrome sequence introduced by noise
source Al.

same sequence is shown for faults in the second output
of SINE block, y;. Again, there are two nonzero
values for each fault but the recent values are separated
by a single space gap. Figure 6d shows, on the
other hand, the syndrome for faults in the encoder
and neural net blocks. It is clear that the syndrome
contains just single nonzero values for injected faults.
Therefore, there are three distinct patterns for each
fault source, that is the benefit of using convolutional
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Table 6. Output average error in SINE block with and
without coding after 1000 injection random s-a-0 faults.

Condition Average Error
Without coding 0.4750
With coding 0.0369

codes. If there is only a single fault in every constraint
length, the majority logic decoding can correct the
Table 6 shows that using FTNN and ABFT
architecture has reduced the average output error from

fault.

0.479 to 0.0369.

CONCLUSIONS

In this paper, an FTNN (Fault Tolerant Neural Net-
work) architecture was first developed by implementing
fault tolerant nodes, only in the output layer, which
are the critical nodes in MLP networks. Then, UWLA
was introduced, which is a learning algorithm that can

A. Moosavinia and K. Mohammadi

extend back-error propagation to this new architec-
ture. It is demonstrated that the resultant network
shows a superior performance over the standard BP
and commonly used fault injection training algorithms
such as MFTA. Coupling FTNN and a convolutional
encoder in an ABFT scheme demonstrate the feasibility
and expandability obtained for fault detection and
correction in nonlinear block processes. As the FTNN
can itself tolerate single faults and because the majority
logic gates used are very simple, unlike the other ABFT
techniques, there is no need to apply extra hardware
or software to protect the modules added to the main
process. In addition, neural network learnability per-
mits changing the process block functionality without
severe considerations, which cannot easily be obtained
through conventional ABFT techniques.
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