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3-D Adaptive Time Domain FEM Analysis of
Current Distribution in an Acid-Copper Bath
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In this paper, three-dimensional Finite Element Method in Time-Domain (FEMTD) has been
used to solve the current distribution in an acid-copper bath. The effects of geometric figures on
the electrode current distributions and deposited profiles have been studied. A powerful adaptive
mesh generator has been carefully designed to meet the requirements on three-dimensional
geometries. Almost all practical configurations, even discontinuities and very sharp features,
are permitted. A mesh-deformation algorithm is used to follow the change of profiles in the
time-domain. For this purpose, instead of becoming involved with complicated mathematical
formulations, the morphing techniques of computer graphics have been utilized. The results are
rendered to visualize the evolution of profiles, which has considerably simplified the interpretation
of the program’s output. Several examples have been analyzed numerically.

INTRODUCTION

Rapid growth in the application of electrochemical
methods demands accurate analysis of these processes.
Low cost and relatively thick metallic deposits could be
quickly obtained via electroplating. Electropolishing,
which could be considered as a reverse to electroplating,
is found to be an invaluable approach to surface
finishing.

The above methods can be applied with great
success when simple geometries or thin deposits are
concerned. For thick films, however, due to non-
uniformity in electric current distribution over elec-
trode surfaces, strong non-uniformities in deposits
result in as high as a 1:20 difference in thickness [1].
Nevertheless, some small and large scale processes
in micromachining and some other areas exist, in
which thick treatments (deposition or etching) are
involved and electrochemical methods still remain the
fundamental solution. Examples of such applications
are found in the growth of certain high aspect ratio
structures for micro-motors and thick electroforms.

Several analytical and numerical approaches have
already been proposed to estimate the current density
distribution over the electrodes [2]. Most of these
methods are restricted either to one or two dimensions.
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Even those few, which have three-dimensional analysis
capabilities, are limited to relatively simple geometries,
without the ability to predict the time evolution of
electrode profiles.

Mainly two competitive methods, the Finite Dif-
ference Method (FDM) [3] and Finite Element Method
(FEM) [4], have been considered for this case. Both
have been used in current distribution problems. The
finite difference method is much simpler to implement,
but is subjected to convergence problems for complex
situations. The finite element method handles complex
geometries well, if a powerful mesh generation be
available and, as will be discussed later, its convergence
is guaranteed in the problems considered here.

The finite element method has previously been
applied in two [5] and three [6,7] dimensions but, in
both cases, the interpretation of output data has been
difficult. Another important concern in the design
of a FEM package is the mesh generation method.
Best results usually rely on adaptive schemes, which
complicate the design of the mesh generator unit. The
FEM method is also incompatible with time-domain
problems, unless some effective mesh deformation is
made available.

In this paper, a time-domain FEM tool has been
developed. With the aid of new mesh deformation
and automatic adaptive mesh generation modules, it
can very efficiently analyze any desired geometrical
configuration of electrodes and, also, the evolution of
profiles in arbitrary time intervals. This CAD tool
is also equipped with computer graphic techniques (8]
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for rendering the results; this interesting approach has

simplified the visualization and und
process.
In the following section, the p

erstanding of the

hysical system is

formulated as a Neumann problem with elliptic Partial
Differential Equations (PDEs) and non-linear bound-

ary conditions. Next, the basis and i
the numerical method are considere

mplementation of
d. Then, several

examples are presented and, finally, & short conclusion

is given.

ANALYTICAL FORMULATIO

For an electrolytic system in the li
and thermodynamic equilibrium, d

N

quid steady-state
ue to the quasi-

neutrality of the electrolyte, the governing equation is

the elliptic Laplace equation:

v2® =0,

where @ is the electrostatic potential.

can be used in the quasi-steady sta

(1)

This equation
te approximation

of the electrolytic cell, in which the boundaries of

the system, i.e., electrode profiles

move gradually

during electroplating or electropolishing processes. In
the absence of transport, due to electrode kinetics or
external circuits, this result remains true until the
conditions of equilibrium or reversipility are broken.

When deviation from reversibility is
for low current densities, the Laplace

not so large, i.e.,
equation can still

be applied. This is due to the high collisionality in

the electrolyte (as a dense, cold li
that the energy distribution betwe

quid plasma,) so
en ion species is

nearly uniform and the quasi-neutrality condition is
not broken. This is the situation of very low frequency

phenomena, so that the displaceme
may be neglected. This situation i

nt current 6D/0t
s discussed in [9]

and a general proof for the applicability of the Laplace

equation is given in [10].

To complete the definition of the problem, a

boundary condition in the form of
values or its normal derivative is

known potential
required. When

electrode kinetics are present in the electrolyte system,
it may be shown, using theoretical studies [11,12],

that the so-called Butler-Volmer e

quation describes

the local current density over the electrode-electrolyte

interface:

J=1 {exp[—aaan/RT] —exp[(1—

where J is the current density, I
current density, a, is the anodic tran

v,)2Fn/RT] |,
(2)

is the exchange
sfer ratio, R is the

universal gas constant, T is the absaglute temperature,

F is the Faraday constant and 7 is t}

1e electrochemical

overpotential. The direction of the current density vec-

tor, J, is normal to the electrode-el¢

2ctrolyte interface
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and is related to the electric potential ®, according to:
J=—kVo, (3)

where & is the conductivity of the electrolyte.

Here, it is pointed out that the Butler-Volmer
equation for electrode kinetics could not be applied to
closed regions, simply because two electrodes with dif-
ferent potentials should not touch each other. However,
an elliptic problem, such as the Laplace equation con-
sidered here, usually models an interior problem [13],
i.e., problems with closed solution regions. In order
to satisfy this criterion, the homogeneous boundary
condition is applied over non-electrode boundaries,
that is:

vd.n=0. (4)

This condition guarantees that all of the anodic electric
current reaches the cathode and, therefore, no leakage
of electric current density lines exists, i.e., the con-
servation of mass and electric current is satisfied. In
the numerical implementation, a current conservation
of better than 2% is observed.

It is easily seen that the total mathematical
formulation consists of a non-linear boundary condition
of Neumann’s type on electrodes (Equation 2), i.e., on
the normal derivative of the unknown electric potential
function and an elliptic PDE (Equation 1) with the
homogenous boundary condition (Equation 4) on the
rest of the solution region periphery.

A thorough practical study [14] of the electrode
kinetics, with the aid of statistical models, shows
that for the acid-copper bath, the following similar
expression can be used instead of Equation 2, with the
standard deviation of about 11% for current densities
in the range of 1-400 A/mm?:

J= Io{exp[—aaan/RT] - exp[acan/RT]}. 5
)

Here, «. is the cathodic transfer ratio and I is
the exchange current density. The same study gives
approximate expressions to the conductivity, x, and
the exchange current density, Iy, of the solution:

x =0.011163 + 0.030798[CuSOy]
+ 0.423553[H2S04] — 0.045224[H,50,]?
- 0.135359[}12804][CUSO4]th/Cm

To = ig[Cu]” exp{—u[H2804]}, (6)

in which the brackets stand for the molar concentra-
tion. The values for the parameters in Equations 5
and 6 are shown in Table 1 [14].

The mathematical formulation of an acid-copper
electroplating bath is, thus, established in this way. In
the next section the numerical solution of the problem
is presented.
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Table 1. Values of the parameters in Equations 5 and 6.

Parameter Value
g 1.08
ac 0.39
¥ 0.67
P 0.37
ig 15.8 mA /cm?

NUMERICAL METHOD

The family of finite element methods falls into two main
categories: The variational or Rayleigh-Ritz method,
which is used in this work, and the Weighted-Residual
or Galerkin method. Here, the variational approach is
considered due to its simpler implementation. Further
discussion on this subject can be found in [4,13].

In the variational method, the main goal is
to minimize a functional, usually as an integral, in
terms of the coeflicients (node values) of interpolating
functions. The coefficients and interpolating functions
will approximate the value of the unknown function
at the nodes and entire solution domain, respectively
(the piece-wise linear functions are the simplest case).
When the solution region is in one or two dimensions,
each of the continuous linear pieces, namely finite
element, is in the form of lines or triangles, respec-
tively. In three dimensions, the problem becomes more
difficult, as the elements get the form of tetrahedrons.
The solution region should, therefore, be properly sub-
divided into a complete set of constituting elements.
This is the function of a mesh generation module, which
has been specially designed for this work.

It could easily be shown that the minimization of
the following functional is equivalent to the solution of
the current distribution problem [9]:

L J[[[woran
IORT?{% [ aaF(iAri{ @)]

-l
+ —exp

aF(@y — )
RT

Qe

]dl“. (7)

Here, ® and &, are electrolyte and metal phase
potentials, respectively. It is seen that the surface inte-
gral term represents the non-linear boundary condition,
while the volume integral term represents the elliptic
Laplace equation.

The unknown function is, then, approximated
by piece-wise linear functions in each element and by
applying the continuity condition at the vertices of
the neighboring elements, or the so-called nodes. The
non-linearity of the integrand in the surface integral
makes the application of the numerical scheme very
difficult, especially when three dimensions are involved
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and a great deal of computation is necessary (iterative
schemes are applied in these kinds of problem). A
reasonable solution to this problem is to linearize the
non-linear term by means of Taylor expansion, after
which the functional in Equation 7 becomes:

1(3) = // |v®|2dQ
_ %(aa +ac)fj€(q’M — @)l (8)

The above linearization is valid, as long as the current
density is far from the limiting current density, which
is typically of the order of 100 mA/mm? for most of
the practical baths. Since an exponential term is to
be approximated by this method, the accuracy may
be easily estimated to be better than 4% for electrode
overpotential of about 7 mV, which is equivalent to
about 50 mA/cm?. For samples having an area of
several cm?, therefore, the total bath current should
not exceed a few 100 mA. More discussion on the
validity of this approximation is presented in the next
section.

The above minimization process using linear in-
terpolations, leads to an algebraic, simultaneous, linear
system of equations, which can be solved by several
existing methods:

[K51[25] = [fil, (9)

where [®;] is a vector of unknown potentials {®;,j =
1,2,..,n} at the » nodes and [Kj;] and [fi] are
also the stiffness matrix and force column vector [4],
respectively. The stiffness matrix is always sparse and
symmetrical for variational methods. This feature has
been considered in the development of the code, so that
both the storage capacity and efficiency are improved
significantly. For the present problem, with thousands
of unknowns, this is an important advantage.

The conjugate-gradient algorithm [15] has been
chosen to solve the system of equations. The conver-
gence of this algorithm is guaranteed and is able to
find the exact solution (limited to round-off errors) in,
at most, n iterations for elliptic problems [16], where n
is the number of unknowns. In practice, convergence to
three decimal figures has been achieved within n/100
iterations.

The stiffness matrix and force vector are obtained
from the superimposing of elementary parts [K¢] and
[f¢] belonging to each element, with the e superscript
standing for the index of element:

2 1 1
Io(a, + a)F 121
l = ——— Ve 10
1
(aa +a )f(I’M 1 e
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where V¢ is the volume of the “¢”

hedronal element

and A€ is the area of the “e” triangular boundary

element on electrodes.

The corresponding value for

non-electrode boundary elements would be identically

Zero.
Justification for the sufficient

accuracy of the

linear formalism can be observed through several ar-

guments:
Butler-Volmer kinetics is limited to

First of all, the application range of the

the regions where

the overpotential, n, could be approximated by the
electrochemical overpotential, 1., which occurs at low
current densities [11]. For large current densities, the
system actually enters the diffusion or transport limited

regime, for which the results of t

kinetics are far from those in practice.

only slowly developing processes, wi
rates, in which transport effects ar
been of interest.
linear regimes (with high current d
a further division of the solution regi

he Butler-Volmer
Secondly,
th low deposition
e negligible, have

Thirdly, analysis of highly non-

ensities,) requires
on into electrolyte

and two electrode double-layers (because the effect

of this phenomenon would not be

negligible here),

which makes the problem extremely complex. In

such situations, the numerical metho

d usually becomes

ineffective, in addition to developing severe convergence

problems. Finally, the linearization

of boundary con-

ditions has been performed previously [6,7] and the
overall magnitude of errors has begn reported to be

no more than 10%.

The deformation of all meshes is the next essential

problem in the time stepping proces
and time-consuming approach is to
generation. However, an efficient
designed for this case. An optimiz
interpolation was developed over the
This interesting scheme enabled the
deposition (or etching) rate and prof]
a complete typical electroplating o
process. Some results of the program
in the next section.

Using an Object-Oriented app1
language, the numerical method wa
plied with reasonable computation t
workstation. An optimized memory

5. A very difficult
rework the mesh
method has been
ed 3-D Lagrange
> velocity vectors.
monitoring of the
le changes during
r electropolishing
are demonstrated

roach in the Ct+
s successfully ap-
me on a Pentium
organization sys-

tem managed 32 Megabytes of memory for more than

300,000 nodes in a single precision st

PROGRAM RESULTS

Typical installation of an electroplat
in Figure 1. The anode and cathg
above and below, respectively and {

orage.

ing bath is shown
de electrodes are
he space between

them is filled with a conducting liquid electrolyte. Cell
voltage is applied to the electrodes with a positive

polarity to the anode.
For an example of the adaptive

mesh generation,
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Y ~

Analysis

Anode —> region

Cathode

Electrolyte

Figure 1. Typical electrolytic bath installation.

refer to Figure 2, where it can be seen that the meshing
grids are finer near the regions with more concave or
convex features (electroplating of the same object is
represented in Figure 7).

To demonstrate the capabilities of the program,
three basic defect structures, in the forms of concave
edge, cylindrical and pin holes, have been simulated
with flat anodic profiles (Figure 3). The dimensions for
all figures are chosen as 10x10 cm? and the distance
between anode and cathode is, also, 10 cm. The cell
voltage is 10 Volts and the time step for this figure, as
well as for the others, is 10 minutes. The anodic profile
is removed in the rendering procedure, because it is of
no special interest.

It can be seen that the bottom of the holes are
exposed to much lower current densities and, therefore,
to a much lower growth speed. In the case of a pin hole,

Anode

Cathode

Figure 2. Adaptive mesh generation.
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Cathode 1

Cathode 2

Cathode 3

P Time evolution

Figure 3. Electroplating of concave features with
dimensions 10 x 10 x 10 cm?® and time step 10 minutes.

in fact, the current density becomes zero. This clearly
explains why such microscopic defects can cause large
scale problems in thick deposits.

The same configurations for peaking defects, i.e.,
convex edge, cylindrical peak, etc. are demonstrated in
Figure 4. In this case, it is expected that defects of the
convex type will result in thick standing columns. The
results could be compared with the prediction above.
These types of defect grow rapidly in electroplating
processes, leading to major problems.

To overcome these difficulties, the electropolishing
process may be proposed. Notice that this process
is not a thermodynamic reverse to electroplating, be-
cause electroplating is an irreversible process in non-
equilibrium, thermodynamic conditions. Therefore,
reversing cell polarity does not return us to the starting
profiles. This situation is illustrated in Figures 5 and 6.
Now, the situation is such that the cathode profile

Cathode 1

Cathode 2

Cathode 3

P Time evolution

Figure 4. Electroplating of convex features with
dimensions 10 x 10 x 10 cm® and time step 10 minutes.
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Cathode 1

Cathode 2

Cathode 3

o . .
p Time evolution

Figure 5. Electropolishing of concave features with
dimensions 10 x 10 x 10 cm® and time step 10 minutes.

Cathode 1

“ Cathode 2

Cathode 3

p Time evolution

Figure 6. Electropolishing of convex features with
dimensions 10 x 10 x 10 cm® and time step 10 minutes.

tends to become flatter and the initial configuration can
never be restored. This interesting concept forms the
basis for the so-called periodic-reversed electroplating
[17], which provides a much better uniformity in the de-
posit thickness compared to conventional methods. An
optimization of this method as an instability produc-
tion scheme demonstrates the possibility of obtaining
relatively defectless deposits, with more than 1200 mm
of thickness, including improved uniformity, adhesion,
residual stress and brightness [18].

The results of electroplating two complicated
geometries are presented in Figure 7 to illustrate the
capabilities of this package (the dimensions and cell
voltage are as before).

As a final remark, the total current and current
density, respectively, vary proportionally and inversely
proportionally to the cell dimensions, with the voltage
staying the same. However, if the voltage is changed
proportional to the cell dimensions, the current density
will remain the same, while the square root of the total
current would change proportionally.
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Anode

Cathode

Anode

> Time evolution

Cathode

P Time evolution

Figure 7. Electroplating of two complicated profiles with
an anode electrode on top of each profile and with

dimensions 10 x 10 x 10 cm® and time

CONCLUSIONS

A powerful software package for cy
problems in three dimensions has bee
the variational finite element metho
for the study of growing defects.
matic mesh generators in adaptive

step 10 minutes.

irrent distribution
n developed, using
d in time domain,
Two fully auto-
and non-adaptive

versions, have been designed and applied. The mesh

generators produce finer grids near t
which larger variations of electros

he electrodes, over
tatic potential is

expected. An efficient mesh deformation was designed

to permit tracking changes in elec
the time domain, without needing
meshes in the total solution domain
The output of the program is rend
graphic techniques which simplifieg

rode profiles over
to regenerate the
at each time step.
ered by computer
visualization and

interpretation of the results. Several examples of the

program capabilities for various for

ms of defect have

been demonstrated. It is possible to extend this work
to other plating baths with minor modifications.
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