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The Effect of Code Distribution and Parameters
on the LPD Feature of Phase-Code Radar Signals

M. Modarres-Hashemi! and M.M. Nayebi*

In this paper, a phase-code radar signal is considered in its most general form, in which the used
code has an arbitrary distribution. The suboptimal Electronic Support Measure (ESM) detector,
for which the code is not known, is found for this kind of signal and the performance of the
detector is evaluated. The deflection measure of this detector shows that the Low Probability of
Detection (LPD) feature of the signal is effectively related to a defined quantity called certainty
parameter. This new parameter depends on the first and the second order statistic of the code.
Using this parameter, it is shown that a zero mean code is the best code to make LPD waveform.
Then, the zero mean codes are considered and the code distribution effect is investigated. |t
is proven that distributions which have smaller Kurtosis show better LPD features in practical
cases. It is, therefore, concluded that zero mean binary code is the best code.

INTRODUCTION

Assume that there is a radar site and a target which
carries an ESM receiver. This receiver tries to detect
the presence of any radar signal in the environment
and find the location of its source. Therefore, a radar
must be designed in such a way that it brings down the
detection probability of an ESM receiver as much as
possible. In other words, a radar should have the LPD
property. A proper measure for evaluation of the LPD
feature is the ratio of ESM range (Rg) to radar range
(Rr). The smaller the value of Rg/REg, the better the
LPD feature of a radar signal [1].

Using the system parameters, the following equa-
tion is obtained [1]:
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where:

6" = ratio of the power required at the ESM receiver
(Sg) to detect a signal to the power required by
the radar receiver (Sgr) to detect a signal,
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o = radar cross section of the target,

Grg = gain of transmit antenna in the direction of
the ESM receiver,

Ggr =gain of ESM antenna in the direction of the
transmitter,

Gt = gain of radar transmit antenna towards the
target,

Gr = gain of radar receiver antenna towards the
target,

Ly, Lg = losses in the radar and ESM receivers.

Among the above parameters, §' is the one which is
related to signal design and so this is what has been
concentrated upon in this paper.

It is known that for a system having F' as the
noise figure, and B as the noise bandwidth, the relation
between signal power (S) and signal to noise ratio
(SNR) is given by:

S = (SNR)(KTFB), (2)

where K is the Bultzman constant and T is the
temperature (usually assumed 290°K). By a logical
assumption that Tg = Tg and Fr = Fg, it will be
obtained that:

5 = SNRg Bg

= == (3)
SNRp Bg

To decrease Rg/Rpg, 6' should be increased and, for

this purpose, either Bg/Br and/or § = g—%%% could
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be increased. In this paper, § is considered a proper
measure for the LPD feature of signals.

One of the familiar methods for increasing the
value of &4, is the phase-coded pulse compression
method {2,3]. In this method, a long pulse of duration
T is divided into N subpulses, each of width 7. The
phase of each subpulse is chosen to be either 0 or «
radians. In other words, the pulse i3 multiplied by a
code string which takes +1 values.

Recently, it has been suggested that for increasing
the LPD degree of the signal against the rate-line
detectors, an M-level code (instead of a binary code)
could be used [4]. On the other hand| some references
discuss the use of a code with analog values, which
has a special distribution [5]. Although these kinds
of signals are implicitly discussed in |some papers [6],
this work has two main differences. |The first is that
the used code is considered in a more general form, in
which it can have any arbitrary distribution, and the
second is that the suboptimal detectors are obtained
for the signals. The latter yields more reliable results,
as if a non-optimal ESM detector i considered (like
rate-line detector [6]) and a judgment is made about
the LPD degree of a signal, it is possible to discover
another ESM detector which has a better performance
level than that of the considered one. However, if
the optimal (or at least suboptimal) ESM detector
for a signal is obtained and é is computed using its
performance, one can be certain that |this § will be the
lower bound of é and, so, more reliable for the designers
to judge [7,8].

Based on the above explanation, the radar and
ESM receivers are studied using the detection-theoretic
approach. In the next section, therefore, the detector
for an authorized receiver (radar receiver) is found
and it is proven that its performance depends only on
the SNR and is not related to the |code parameters
and distribution. Then, in the third section, the
suboptimal ESM detector is found and it is shown that
its performance is close to the optimal detector. In the
next two main sections, the effect of| code parameters
and distribution is shown on the LPD feature. In the
last section a summary along with some conclusions
and remarks is presented.

TARGET DETECTION BY RADAR
RECEIVER

Detection theory is used for signal detection against
interference. The input of the detector consists of
interference and it may also include a signal from a
target.

The well-known Neyman-Pearson test is usually
applied in the optimum detection procedure. If y,n
and s are the received signal, interference signal,
and desired (target) signal vectors, |respectively, the
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problem of detection can be stated in the following
hypothesis:

Hoig=n (4)
Hy:y=s+n '’

where H; and Hj represent the hypothesis of presence
or absence of the target signal, respectively. Using
Neyman-Pearson test, it is obtained that [9]:

_ L)
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where L(y) is the likelihood ratio (LR) function, fy(yl.)
is the conditional probability density function (paf) of
y and 7 is a threshold which depends on the desired
false alarm probability (Py,).

For optimum detection of a signal vector which
contains random parameters, the conditional LR
should be averaged over these parameters. This
detector is called ALR (Average Likelihood Ratio)
detector [10].

In this problem, it is assumed that the radar
sends one pulse to the target and receives its reflection.
Since each pulse consists of N chips, the samples of the
desired signal have the following form:

7, (5)

skzvkejé’cck, k=0,1,---,N —1, (6)
where v, and ¢, are the amplitude and phase of the
kth sample, respectively, and ¢, is the real code value
in this chip. So, it can be defined as:

s=[so s -+ sn-1], (7)
n=non - nya]”, (8)
c=lco c1 -+ enaal”, (9)
y=[yoy - yn-1l’, (10)

where n is the noise vector and y is the received signal
vector so that:

y=s+n (11)

Meanwhile, it is assumed that noise is a white and
complex Gaussian interference, with the following pdf:

N-~1
f&(ﬂ) = fnk(nk)a (12)
k=0
1 _ 2 2
fnk(nk) —_ Ez_e [ni|* /o , (13)

Notice that this assumption is not realistic, because
the main interference in a radar problem is clutter,
which cannot usually be assumed either white and/or
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Gaussian. However, it is shown that the code distribu-
tion and parameters have no effect on the performance
of the radar receiver, as it knows the used code.
Therefore, AWGN has been used as an example of
interference and the final result can be generalized for
any other interferences.

So, if the signal vector, s, is completely known,
the likelihood ratio will be {11]:

L(yls) = exp{————_H.§ + %Re(gH.g)}. (14)

A practical case is considered where ¢ in Equa-
tion 6 is the same for all chips (i.e., chip coherent) and
is modeled as a uniformly distributed random variable
in [0,27). Also, because of the slow variations of the
target in a pulse duration width, it can be assumed
that:

v=v, k=01,--- ,N—-1, (15)

where v is usually assumed to have Raylelgh distribu-
tion [12] with parameter a (i.e., f,(v) = Ze™ */2a) By
these assumptions, it is obtained that:

S _5_: Qchv (16)

Re(y.s) = vRe(e?®y" ). (17)

By definition of A = QH .¢, Equation 17 becomes:

Re(y™ .5) = v|Al. cos(¢ + £ A) (18)

and therefore:

L(y|s)=L(y|v, ¢) —exp{——+ IAICOS(¢+4A)}
(19)

N-1
where u = 3 ¢%. Now, there should be an average of
k=0
Equation 19 over v and ¢. Averaging over ¢ will result
in:
1 2w _vzu/az 2v
Llylv)=5= | L(ylv,¢)dp=e Io(—lAl)-

Also, by averaging Equation 20 over v, it will be seen
that:

_ = ~v2u/o? 2v V w2724
L(y)—/o e Io(;|A|).Ee /22 gy,

(21)

This integral is a special kind of the general form of the
Watson integral {12]; Consequently,

1
L(g) — 62a|A|2/02(1+2‘1u)_ (22)
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Since exp(.) and square functions are strictly increas-

ing functions, the following test statistic can be used:

gl
|A[ < m, (23)
Hyp
or:

N-—

E YkCk

k=0

1

< n (24)

Hop

L1 QCZ

The above detector is the well-known matched filter,
which is used in practical receivers [12].

For evaluating the performance of the derived
detector, an effort will be made to find the relation
between Py, (Probability of false alarm) and Py (Prob-
ability of detection). Note that in the Hy case, there
is:

Yk = Nk = Tk + J 2k (25)

Considering the distribution of ny, similar normal
distribution for the following quantities can be proven:

Zn’;ck] = cha:k, (26)
k k

Fay
a = Re

B&Im [Z ank} =- chzk~ (27)
% %

Since, under the Hy hypothesis, L; is equal to
va? + 82, L; has Rayleigh distribution [13] with
parameter uo?/2 and:

Py, = / fra(Li|Ho)dLy = e /ue” (28)
n

On the other hand, under the A; hypothesis, it can be
seen that:

(ver cos o+ xx) + 5 (ver sin g + zi).
(29)

ykzvckej¢+nk =

Consequently, the distribution of Ly, given v and ¢,
will be:

le(LllHlvv7¢) = le(LllHlvv)

_ 2L1 —(L +u2v2)/ug I [2L11}:| (30)
o2

u02

and the following is obtained:

Pd:/ fu(Li|Hy)dy,
n

- /°° /0o fo(LlHi, ) fo (0)dvdLy
n 0

2
= e ulol42Zau) FeroyL . (31)
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The combination of Equations 28 an

1
Py =Pl

By definition of the SNR for the
Equation 32 can be rewritten as:

1
_ pIF(SNRRp)-N
P, = Pfa ,
where:

o )2 ek

1 31 yields:

(32)

received signal,

(33)

2au

A (§
SNRp = Flnf ) Z

k

(Inkl2

T No?’

(34)

Equation 33 shows that the RQC (Receiver Op-
erating Characteristics) of the detector only depends
on SNRpg, and if one wishes to compute SNRp for
fixed P; and Py,, the code distribution and parameters

would have no effect on performance.
be generalized for any other interferences.

This can also
As a

result, to investigate the effect of code distribution and
parameters on 8, it is sufficient to evaluate its effect on

SNRg which is studied in the next s

ection.

RADAR DETECTION BY ESM RECEIVER

ESM receiver, which is assumed to be

assembled on the

target, receives the pulse which is sent, by the radar (not
its echo). Therefore, the ESM receiyed signal can be

modelled as:
y=s+n,
where:

Sp = 've]¢ck,

and the definition of n is like befor

(35)

(36)

e. However, ¢i’s

are not known for ESM and this is the main difference
between the ESM and radar receivers. In addition, v

and ¢ are not known and should be
for an ESM receiver. It is reasonab

 is a uniformly distributed random 1
However, v is assumed to be a rand
fo(v) as its pdf. It will be seen that

affect the results.

Based on the above assumption,

obtained:

2 §_— 2§ Ck7

Re(gH.g) = Z cklyk| cos(¢ — Ly
%
v? 9
Lylev.¢) = expy = D ek
k

2v
+ > ;Ckk’lkl cos(¢ —

properly modeled
e to assume that
variable in [0, 27).
om variable with
this pdf will not

s, the following is

(37)
k), (38)
Kyk)} (39)
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Note that ci’s are assumed to be randomly chosen,
based on a pdf like f.(c). Also, it is defined that:

m1 £ E(ck), (40)
aféE{(ck—ml)z}, (41)
my £ E(c}) = o7 +mj, (42)

and it is assumed that m; and m, are known for the
ESM receiver. Before averaging Equation 39 over the
unknown parameters, note that for sufficiently large
values of N,3", ¢ is approximately an observation-
independent constant, because:

N-1
1 2
TS SERND o PICOSNNT
k=0 k
Therefore, Equation 39 can be expressed as:
L(y|c,v,¢) ~ e—v2Nm2/z7 ea_ Z crlyr) cos(@—4Lyr)
— (44)

Firstly, Equation 44 is averaged over ¢, which follows
that:

2 . 3—‘2’- crlyn| cos(d—<yi)

1
L(ygvv):% /e_vamZ/” e k dé
0

_v2Nm 2 2v «
i[5  ]
k

Then, the above equation should be averaged over v.
However, before doing this, it should be noted that the
argument of the Bessel function in Equation 45 will
be very small for low SNR’s. Therefore, the following
approximation can be used:

(45)

2

Io(x):1+% for ¢ << 1, (46)

and then:
25 2 ’U2 2
L(yle,v) ~e v Nm2/o” |1 4 —4‘ E yick‘ :
= o
k (47)

If Equation 47 is averaged over v, regardless of v

distribution, it will be obtained that:

L(yle) =~ Ay + Az} Zchklz, (48)
k

where A; and As are constant values and do not depend
on y or ¢. Therefore:
b (49)

L(y) ~ A1 + A2E, {‘Zykpk
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As a result, it is sufficient to simplify the term

E£{| S vickl? }, which clearly follows that:
2
Eg{‘ Zy;‘:«fk\ } =
k
Eg{Re2 [Z y,";ck] +1Im? [Z y,’;ck} } (50)
k k

The first term is equal to:

VEQ{Rez [Z chk] } = Eg{ZciRe2(yk)
k k
+ 2ZchCzRe(yk)R6(yz)}
k {

i<k

= my Z Re?(yi)
&

+2mi D > Re(ys)Re()- (51)
k i
i<k

In a similar manner, the second term of Equation 50
can be written as:

Eg{lm2 [Zy;ck] } = ma ZIm2(yZ)
k k

+ 2m% E E Im(y) Im(y]). (52)
P
1<k

Notice that in the derivation of Equations 51 and 52,
the independence of ¢;’s has been used.

Using Equations 49 to 52 and removing the
constant values, the following test statistic has been
derived [7]:

Ly&my Y |yl +2mi Y Y Re(yiy).  (53)
k k i
1<k

Therefore, if the ESM receiver does not have any
knowledge about the signal, except the mean and
variance of the used code, the suboptimum detector
will be:

Hy

Hy
Note that the performance of the above detector will
be close to the optimal one, provided that the following
reasonable conditions are established:

e N is sufficiently large for the validity of Condition 43

e SNRg is sufficiently small so that the employed
approximation in Equation 47 is assured. ‘
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THE EFFECT OF CODE PARAMETERS

Because of the complexity of the detector (Equa-
tion 53), analytic calculation of its ROC is very compli-
cated. However, the deflection measure can be found,
which is a proper measure in most cases. This approach
assists in investigating the effect of code parameters on
the SNRg and, therefore, on the LPD feature.

The deflection of a detector with a given test
statistic, say Lo, is defined as [11]:

42 E(L2|Hy) — E(Lz|Hp)
var(La|Hg)/2

(55)

The greater the value of deflection, the better will be
the performance of the detector. Therefore, as far
as possible, in this problem, the radar signal designer
would like to decrease the value of d for an unauthorized
receiver.

Under the Hy hypothesis, it follows that:

Yk = Nk, (56)

and ny’s are independent complex Gaussian random
variables which have the following properties [13]:

E(nk) =0
E(Ing]?) = o? (57)
E(|nk|*) = 20%.

Using these properties, it is obtained that:

E(Ly|Hy) = E{m22|nk|2
k

+ 2m3 Z Z Re(nZnZ)}
kol

1<k
= my 3 Enel?)
k
+2m? Z Z Re{E(nZ)E(nl)}
b l<llc
= m2N02, (58)
and also:
VaT(LQIH())

:E{

- miN%g?

2
m22|nk|2+2mfZZRe(an)} }
% [
1<k
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+4m%m2E{

e ool

1

(b

kod

l
<

o~

- miN?s*.
It can easily be shown that [7]:
var(Ly|Hg) = miNo* + m‘;N(N -
Similarly, E(L,|H;) can be com
the expected value should be applied
also ¢x’s. Doing this, it will follow th
E(Ly|Hy) =m3NE(v?) + maNo?
+miN(N — 1)E(®?).

Substituting Equations 58, 60 and 6
yields:

i miN(N - 1)E(v?) + miNE(v

]
d
3}
—~
3
E
s
[
——

1)t (60)

puted. Note that

over v, ng’'s and
at:

(61)

1 in Equation 55

2

~—

vVm3ZNot + miIN(N - 1)o*

By some manipulations, the above
expressed as [7]:

(62)

equation can be

d=MN.\/1+h:(N —1), (63)
where:
_ _ E(s".s)
A= SNRg = Ea"n)
_ E(”2)§E(Ci) _ E()Nmy | E(v®)m,
2y T o2 T a2
Zk:E(lnk| ) N (64)
h= — (65)

From Equation 63, it is concluded that for constant
values of N and A, increasing the value of h causes

improvement in the performance of t

and consequently decreases 9.
2 _

he ESM detector

Since 02 = ms — m?, increasing the value of h

is equivalent to decreasing o2, which

is a measure of

uncertainty for the enemy (ESM detédctor). Therefore,

h is known as the certainty parame

ter. The greater

the value of h, the more certainty there will be for the

enemy and the smaller will be the §.
Although the exact ROC has
and the results are based on the de

not been found
flection measure,

the simulation-derived ROC’s confirm those results.
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N =20,SNR = —10dB
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Figure 1. The ROC of the detector for binary code and

some h values.

N =20,SNR=-10dB
1 T T TrTYT Y T T T T
G o [N
G e [ B IS S R TR
AR G o
] 1 [ I N B 1 v [N 1 t i
08F - ~d-d-Frrlar- -~ gt~ = — 34— #fn
Voo R [ M
I ) [ I B B N} 1 1 [ S A | ] I [RERN}
ot RN [y W
Yo D o RN o L
06k ~ - 4 - A bl H - = ok k4 A dae — ~ 4= o SRR
I [ LR = I Vg
3 I c 1 h=0.49 [ h=0 4y N EREY
A, AT ; N 1 RN
Vo Y i h =025, [
04F - - a4 b g e — N o . = e et
[ R S IR | LN (/AN
i ] L2 B I O B I ) LI B A 1 [N
1 + LA S ] i i ' 1 1 [ B
1 [ R P I I A 1 ' H
0.2F - -2 - 2w biiuo oo o A A R
I ' LI S A ! I [ b v I
I ) 1 R
: RREE :
R ; IR I ' [ |
0 Adl " Ad L ld VT
1073 102 10-1 100
P
fa

Figure 2. The ROC of the detector for Gaussian code
and some h values.

Figure 1 illustrates the ROC for binary code in a
typical case N = 20 and A = —-10 dB for some
h values. Also, Figure 2 shows similar curves for a
Gaussian code. Both figures confirm that the most
effective parameter is the certainty parameter and the
probability of detection is increased as this parameter
is increased. However, it is clear that 0 < & < 1 and,
then, for a zero mean code (h = 0), there is the smallest
P;. In other words, if a code is used whose mean is
zero, the other code parameters have no notable effect.
Therefore, the most important conclusion derived from
this section is that, as far as possible, the designer of
LPD radars must use a zero mean code to increase the
uncertainty for the ESM detectors.

THE EFFECT OF CODE DISTRIBUTION

As seen in the previous section, there is no difference
between code distributions, provided that the A param-
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eter is the same. However, this result is based on the
deflection measure and not on the exact ROC. Even
the simulation results, which have been presented in
the previous section, only compare the ROC of signals
with similar code distributions (in each figure, the code
distribution is similar for the three curves). Thus, the
reader could be expected to ask about the effects of
code distribution on the LPD measure. In other words,
is there any difference between binary code, Gaussian
code and etc. from the point of view LPD feature?

To answer this important question, the exact
ROC’s of the different zero mean codes are compared.
Clearly, since it has been concluded that the zero mean
is the best case for each code distribution, it is sufficient
to compare these zero mean codes.

Considering Equation 53, it can easily be found
that for m, = 0, the test statistic will become:

N-1
Ly =Y |yl®. (66)
k=0

It is, therefore, decided to derive the analytic ROC
of the above detector and its relation to the code
distribution.

By assumption that N is sufficiently large, the
pdf’s of Lz under Hy and H; hypothesis can be
properly approximated by Normal distribution. So,
it is sufficient to compute their means and variances.
Also, for simplicity, note that the P, can be found.
In other words, it is assumed that v is known and
that the probability of detection is found, given by v.
Since the final results are valid for each value of v, it
can be concluded that the results will be valid for the
unconditional P;.

Using Equations 58, 60, and 61, setting m; = 0
and removing some constants, it can be proven that [7]:

E(Ls|Hy) = No?, (67)
VaT(L3|H0) = N0'4, (68)
E(L3|H1,’U) = v2m2N + NO’z. (69)

The only additional quantity which should be com-
puted is the Var(L3|Hy, v, ¢):

Var(L3|Hy,v,¢) = Var(L3|H;,v)

=Y Var(lyl*|H1]
k

=2

k

E{|vckejczs + nk|4}

- E? {|vckej¢ + ng)? }]
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= Z [(U4m4 +20* + 40 my0?)
k
— (v*m} +o* + 2v2m202)]
= N(v4m4 - v4m§ + ot + 2U2m202)a (70)

where mq £ E(c{). Therefore, Equations 67 to 70
could identify the distributions of Lz under Hy and H;.
Thus, Pf, and Py can be computed and the following
is obtained [7]:

-1 _
Pd|v = Q Q (Pfﬂ-) /\\/J—V— ) (71)
MK +2X2+20+1
where
Qz) 2 / e (72)
z 2 ’

and K is the Kurtosis of the code distribution, i.e.,
K & ™4 _ 3 Therefore, the ROC depends on a

parametezr which is related to the code distribution.
For Q=(Ps,) — M/N > 0, the larger value of K causes
the larger value for Pu,. Note that for the typical
values of Ps,, A and N, the mentioned condition is
established. Figure 3 illustrates Py, versus K for a
typical case where N = 20, A = -3 dB and Py, =

0.01 (Q_I(Pfa) —M/N ~ 0.09). Since this result can

be obtained for each value of v, it will be valid for
the unconditional P; and, therefore, will be entirely
correct.

It is worth noting that the K parameter has
little effect on the P, values, because K is multiplied
by A2, which has, typically, a very small value. In
other words, the effect of code distribution is very
small. For example, Figure 4 shows the ROC of the
ESM detector in the case where N = 5, A = -3 dB

N =20,SNR = -3dB, P, = 0.1
0.49 v . , '

0.485

Py

.5 [} 5 10 15 20
Kurtosis

Figure 3. Py, versus K for a typical case.
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Figure 4. The comparison of three code distributions

Binary, Gaussian and Uniform.

and Py, < 0.1 (Q—I(Pfa) — AN >
distributions: Binary, Gaussian and

Kpin = -2, Kynr =—-1.2, Kgus =0,

the observed differences in Figure 4

0) for three code
Uniform. Since:

(73)

are expected.

As a matter of fact, based on Schwartz inequality,

it can be seen that:
mg>mi = K > -2

Therefore, the binary code, whos

(74)

e K is equal to

—2, has the best LPD feature amongst all the code
distributions. This result shows that whatever has been
previously suggested about using an M-level code (or

a code with any other distribution)
the binary code is the best code fro|
of view.

CONCLUSIONS

s wrong and that
m the LPD point

The phase-code modulated radar signals have been con-

sidered in its most general form, in w

hich the used code

has an arbitrary distribution. For this signal, it was
proven that the performance of an authorized (radar)

detector does not depend on the cod
parameters, but only on the SNRpg 3

Then, the suboptimal ESM dete
and it was shown that the first and
statistics of the code distribution h
in the detector structure and perf
on the deflection of the derived det

parameter (h = 'm”—z) was defined 3
that the best code, leading to the lg
for the enemy, is a code which has z¢

e distribution and
and N.

ctor was obtained
the second order
ave the main role
ormance. Based
ector, a certainty

ind it was shown

west performance
}r0 mearn.

M. Modarres-Hashemi and M. M. Nayebi

Subsequently, the effect of code distribution on
the LPD feature was investigated. @~ The ROC of
the ESM detector was derived for any arbitrary zero
mean code distribution. It was shown that the LPD
feature is inversely proportional to the Kurtosis of
code distribution. Although this parameter has little
effect, the binary code is slightly better than other
distributions. Therefore, the zero mean binary code
is the best code in practical cases. In other words, it is
recommended that the designers use binary code, also
considering that the probability of occurrence +1 and
-1 is equal, as a result of which the mean of the code
distribution is zero.
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