Solution of Torsion Problem

the value of w for the two-dimensional state is:

1 1
w = '2—71_111(;),
r= “‘7“ - yll2a

and finally, the coefficient C(z), depending on the
location of z, might have the following values:
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where f is the angle between the tangents when the
boundary is broken.

As may be seen here, the left hand of Equation 2
is completely expressed on the boundary and the right
hand side on the whole domain. To solve the right hand
side, an equivalent integral term should be used. To do
so, various methods [1,2] are applied, however, taking
into account that A is harmonic and the Green theorem
is used, it is found that:

/Q(h w dv):A(h%_ %)dr, (4)

where £ is the fundamental solution of the Laplace
equation, i.e.,

V2§ =w, (3)

and the value of £ for the two-dimensional state is:

T 1
§_g{ln(;>+1]. (6)
Thus, Equation 2, when h is harmonic, becomes:
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Clau(o)+ [ [u(y) o <x,y>-w<x,y>g—g<y)} ar()

r

- [ (hg - ¢57) ). (7)

WAVELETS AND MULTI-RESOLUTION
ANALYSIS

The term “wavelet” was proposed by Morlet and
Grossman [3,4] for square integrable functions whose
translations and dilations form the bases of L%(R).
Thus, studying wavelets means studying the bases of
L?(R) in which all basis functions are similar and only
become different by translations and changes in scale.

Orthogonal wavelets, which are exclusively ap-
plied in signal analysis, are functions that are generated
as a result of their translation by integer coefficients
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of b with the condition that the dilations of these
functions must be the same. This section is a reminder
of the theoretical basis of wavelets which is called
“multi-resolution analysis”. Multi-resolution analysis
discusses the conditions under which a complete or-
thonormal basis for L?(R) may be obtained through
translations and dilations of a single function.

Multi-Resolution Analysis

First, it would be appropriate to define some of the
terms. A “wavelet” or a “mother wavelet” of the
function ¥ € L?(R) is in such a way that appropriate
translations and dilations of ¢ form an orthonormal
basis, L?(R) [4-10]. The wavelet, 1, is generally
supposed to be a complex valued function of a real
argument. However, in certain cases the focus of
this paper is restricted to real-valued wavelets. The
basic idea behind the analysis of wavelets is selecting
¥, 8,m > 0 scale and translation of b,,, in such a way
that all functions, such as f € L2(R), shall have a series
expansion as:

f@ = > Crontmal(z), (8)

m,n€z

where z indicates integers, and:

Ymn(2) = Crtp ((x - bmn)/Sm> )

Cpm (which depends only on the S,, scale and not
on the translation of b,,,) is selected in such a way
that makes ,,, become orthogonal under certain
appropriate conditions. Generally, C,, is equal to
Sml/? thus, [|Ymall = ||¥]], for every m and n. The
{Ymn} set is termed as the extracted family from the
wavelet 1. The focus of this paper is restricted to
the orthonormal wavelet families, i.e. wavelets that
apply to the following expression because they have
the widest application:

(wmrn wk[) = ‘/_ wmnwkfdz = é\mké“nb (9)

Whenever it is claimed that a family is an orthonormal
wavelet family, it should, naturally, be mentioned that
it is a basis for L?(R). If a decomposition form is
available, as in Equation 8, the {Cy,} coeflicients shall
be called the wavelet transform of the function, f.

In the analysis of wavelets, the translations of b,
are so adopted as to have a form such as b, = nSnb,
where b = by; > 0 and S, scales are usually selected
in such a way that m € z and S,, = 2™. Thus, ¥ is
changed to the following form:

Ymn(z) = 27729 (272 — nb), (10)
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then, if there is an orthogonal family of wavelets, the

wavelet transform of C,,, is:

Conn = (Ymn, f) =27™/2 / Y*(27™¢t — nb) f(¢)dt.

(11)

Sometimes, simple symbols, such as the ones below, are

used:

Y(z) = S7H2y(S 7 a),

Wsf)(z) = /_ " 0n(t - o) f ()t

(12)

Therefore, Expression 12 is a convolution-like integral

which means Wsf(z) = f*¢*(z) (where *

indicates

convolution and ¥ g(z) = ¥s(—z)) with the condition
that z and S are selected in such g way that can be

considered continuous parameters.

Expression 12 is called the wavelet

Most of the time,
transform of the

function f. This is a simple and standard term. To

avoid mistake and confusion, Wg f

in Expression 12

is considered as “a continuous wavelet transform with
continuous parameters” and in Expression 11 as “a con-
tinuous wavelet transform with discrete parameters”.

This terminology predicts the
wavelet transform should also exist
to as a discrete wavelet transform.

With the foregoing arguments

fact that a third
| which is referred

in mind, if one

wishes to make an orthogonal wavelet basis, b and ¥

should be selected with great care.

These are not free

for selection. It might be strange, but it is true, that
each set of ., is an orthogonal basis for the L%(R)
space. There is a theory that can help as a guide in
selecting % and b, which is called the multi-resolution

analysis and is discussed below.

The first objective of multi-resplution analysis is

expressing wavelet as ¢ € L%(R),
“generating function” .or a “scale fun
a wavelet 1 € L2(R) is extracted.

Suppose ¢ € L?(R) and b >
Then:

So = Span{¢(m —nb)|n € Z},

Vo = So,

Voo = {F"2)f € TR},
where Sy is a set of all linear ¢
translations, with integer coefficient

closure (with regard to the L? norm
all scaled version with 2™ factor), is

which is called a
ction”, from which

0 to be constant.

ombinations of ¢
5 of b,V is the Sy
and V,,, (a set of
an element of Vj.

Now, ¢mn(z) = 27™/2¢(2-™x — nb) shall be

written. It can, thus, be seen tha

t for all values of

N, Omn € Vi, Suppose ¢(z) has al compact support
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and this means that ¢ outside [—A, A] is zero. Thus,
#(2~™z) has the support [-2™A,2™A] as it changes
easily (multiplying x into 27™ stretches the curve ¢
with a 2™ factor) because ¢(2~™z — nb) = ¢(27"(x -
n2™b)) has the same graph as (27 ™), which has been
translated onto the right side by 2™nb. Finally, it can
be seen that ||@mn|] = ||¢|], for all integer values of m
and n, because:

oo

[ tom@a= [

GRS

27™|p(27 ™2 — nb)|*dx

where £ = 27™z — nb and, here, the inclusion of the
normalization factor of 2=™/2 in the definition of ¢mn
is justified, the factor 2=™/2 is included so that the
forms of all normalized scales and translated versions
of ¢ have norms similar to ¢, itself.

Thus, for every m, V,, is a closed subspace of L?
and, for every n under the translations of 2™nb, it is
a variant. If f(z) € V,, then f(z — 2™nb) is also an
element of V,,.

The above results can also show that V,, is a
closure of a set of all linear combinations of the transla-
tion of ¢mo = 2~™/2¢(2-™x) with integer coefficients
of 2mb. Now, suppose that Vj is a closure of span
{¢(z - nb)}, Vin, for every integer, m is obtained from

Vo by dilation in the state mentioned above and, in
addition, the conditions below are retained:

(a) Vin C Vg for all m € z,
(b) ﬂmEsz = {0},

(€) UpmezVim is dense in L2(R).

Also, there are constant values for A > 0 and B, which
apply in the following condition to all square sumable
and complex numbers (C,):

ASTICAP < || Cuson|l; < BY [Cuf®

necz ne€z neEz

If these conditions apply, {Vi.} is called a multi-
resolution analysis of L, and it is said that its ¢
produces the multi-resolution analysis.

In general, whenever the function ¢ is selected

and the set of ¢p, = {(,‘b(x - n)} is formed, orthogonal
bases are created. In case the original ¢ does not

generate orthogonal bases, ¢ may be obtained from
¢, which generates orthogonal bases and fulfils the
following condition. If ¢ is the Fourier transform of
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¢, one obtains:
48 ,
Vhe 18 + 26m)]°

When a set of orthogonal bases is obtained from
multi-resolution analysis, wavelet orthogonal bases can
be generated. Let one define W,, as V., ie., an
orthogonal complement. Then:

6(€) =

V-1 =VhoWnp&V, L Wm1

where the set of {W,,} subspaces are mutually orthog-
onal and ®me, W, = L%(R). It can be shown that
the set {0} = {¥(z —n)} is the orthogonal basis of
Wy. Hence, {¥mn}ne. is an orthogonal basis of W,,.
In fact, {¢m,} is the orthogonal basis of L?(R) and v
is formed as follows.

According to the definition of the function ¢ and
multi-resolution analysis, there are D,, values where:

¢(z) = > Dné(2z — n),

thus:

Y(@) =) (-1)"Di_n$(2x —n)

n

As can be seen, the coefficients C,, and v are obtained.
For the orthogonal basis ¢ to be normalized, one should
have:

/rz)da: = +1.

WAVELETS-BOUNDARY INTEGRAL
METHOD AND RESULTS

In this section, the boundary integral and wavelets
are combined and the result of this combination shall
be known as “Wavelet Boundary Integral Method”
(WBIM). The result indicates the accuracy of this
method in solving related problems. The problem
described in this article is finding the normal derivative
of the stress function for the torsion of a prismatic ele-
ment, where the cross-section curve is singly connected.
As seen from the results, this method can serve as an
appropriate substitution for precise solutions whenever
such solutions cannot be achieved.

Definition of the Problem

As mentioned before, the intention here is to solve
the Poission equation to obtain the normal directional
derivative of stress function for sections whose curves
are of a single criterion type. Like the usual solutions
using the boundary element method, neither constant
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linear elements nor any quadratic elements are used.
Rather, here, the boundary is considered as an element
and the stress function is regarded as a wavelet dilation
of a generating function or the ¢ scale so that:

N

’u(.’L‘) = Z (Cm)i¢(m7xi7z)'

1=1

Here, the generating function used is Battle-
Lemarie and the wavelet are of a compactly support
type. If the above expression is used in the boundary
integral equation (Equation 7), and this equation is
used for N points on the boundary, N number of
independent equations would be obtained, through
which the wavelet coefficients may be calculated.

N
C(CC) Z (Cm)lgb(m, z, \’Ei)

=1

“h

N 8¢
—w(z,y) Y (Crn)y5-(mryry:) | dL(y)

1=1

:/r(hg—i— %)dI‘(y).

N

@YY (Co)ib(m,y,y:)

=1

Then:

N
Z(Cmn{cuw(m,x,xi)

i=1

Jw

+/r[%($,y)¢(m,y,yi)

9¢
- ’lU(:L‘, y)gﬁ(m» Y, yz)] dr(y)}

13 oh
= = e 13

/P<h3n 53n)dr<y>, (13)
by defining matrixes H, B and C one has:

gﬂ(ar, y)o(m,y,yi)

H =C(z)¢(m,z,x;) +/F B

~ (e, 22 m, y,yn} ar(y)
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By solving this set of N linear e
coefficients may be obtained. Ng
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quations, the C,,
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y. Thus, through

Equation 7, the stress function may be calculated at

any point of the field.

Differential Equation of the Torsion of a
Prismatic Bar and Its Boundary Integral Form

The equations of the torsion of a pri
on the stress function, is:

v2u=F,
wu=0onT,

where F' = —2G 3 and is a constant
integral form of Equation 14 in view
as follows:

- _ o¢ _
1 == [ ) 3E im0

- 9%
B~Fﬁadﬂw

n

Results
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CONCLUSION
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Figure 2. Distribution of directional derivative of stress

function over elliptic cross-section boundary (Figure 1a)
by analytical method.
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Figure 3. Distribution of directional derivative of stress
function over elliptic cross-section boundary by WBIM.
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Figure 4. Distribution of directional derivative of stress
function over cross-section boundary (Figure 1b) by
WBIM.

and boundary element methods. Moreover, Wavelet
Boundary Integral Method (WBIM) has high accuracy
as well as obviating singularity of fundamental solution.
In addition, normal partial derivative of solution has
been found with Dirichlet constant boundary condition
and over cross-sections which their curves are expressed
with one criterion. For further research Nueman and
multi-boundary conditions must be included.
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Figure 5. Distribution of directional derivative of stress

function over cross-section boundary (Figure 1c) by
WBIM.
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Figure 6. Distribution of directional derivative of stress

function over cross-section boundary (Figure 1d) by
WBIM.
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Figure 7. Ratio of analytical solution to WBIM solution.

NOMENCLATURE

C(z) coefficient of point location
w Green function

i3 Green function

P wavelet function
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Ymn wavelet function with translation and
dilation

¢ scale or generating function

Pnn scale function with translation and
dilation

é fourier transform of scale function

Cin wavelet transform

(Cm): scale function coefficient for
approximation

Sm dilation

bmn translation

D, wavelet expansion coefficient

r distance between two points

shear modulus (Gpa)

®

angle of rotation per length
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