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Incompressible Stokes Flow Calculation
Using a Finite Point Method

S. Kazemzadeh Hannani* and F. Parsinejad!

In this paper, a finite point/method is employed to solve the incompressible laminar Stokes flow.
A moving least-squares approximation, using linear and quadratic basis functions, in conjunction
with a point collocation method, has been utilized to discretize the governing equations. Two
examples, including the driven cavity and the fully developed channel flow, are solved showing
the accuracy and applicability of the method. In summary, the solutions for the linear basis case
exhibit a large sensitivity to the size of the domain of influence of the weighting function, in

contrast to the quadratic basis case.

INTRODUCTION

Standard numerical methods, such |as finite element
and finite volume techniques, have been widely used
during the last three decades for |solving complex
problems in computational mechanics and its subclass,
Computational Fluid Dynamics (CFD). Today, compu-
tational mechanics has become an efficient engineering
tool, both in industry for design purposes and in
research oriented works and one cannot preclude the
important role of numerical methods in the route to-
wards progress in science. Even turbulence simulation,
that in the past seemed intractable, is today handled
by efficient numerical schemes. However, it does not
seem that the end of the tunnel has|been reached and
numerical schemes still encounter serious shortcomings.
Research should be continued and innovations are
needed to solve, efficiently and accurately, fluid flow
problems.

Since the last two decades, advances in 3d mesh
generation, computer technology and numerical al-
gorithms have made possible the |use of computa-
tional mechanics to analyze complex configurations
with realistic and complex geometries. However, as
configurations of greater complexity| are analyzed, the
task of generating a suitable grid for the analysis
becomes increasingly difficult. Mare effort may be
required to generate the grid for a complex config-
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uration than the flow field solution. For industrial
applications, the bottleneck is the mesh generation
because it can absorb far more time and cost than
the solution itself. In addition, grid generation is
further complicated in some cases by the need to
adapt the grid as the solution progresses. This is
especially true for unsteady flow fields with moving
components.

In the finite element method and its subclass, the
finite volume technique, the computational domain is
divided into finite numbers of sub-domains on which a
volume integration is performed. The sub-domains are
constrained by some geometrical regularity conditions,
such as having positive volume (regular mapping) or
a limited aspect ratio between the element dimensions
(for accuracy and convergence consideration). In addi-
tion, efficient bookkeeping is needed to save the data
structure regarding element connectivities. Although
this poses no serious difficulties in two dimensions, the
lack of robust and efficient three dimensional mesh
generators makes the solution of 3D problems a more
difficult task. In addition, there is a serious need to re-
mesh economically for adaptive mesh refinement pro-
cedures and/or for problems with moving boundaries.
Therefore, a method is needed where the movement
of a node does not lead to numerical deficiencies and
easier adaptive refinements could be performed. From
a computational point, it would be desirable if only a
collection of nodes, regardless of their orientation and
connectivity, and a boundary were needed to discretize
the equations. This idea would be exploited even more
efficiently in adaptive methods, in which the user, in an
interactive manner, could simply add a large number
of points into the regions possessing a large gradient,
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circumventing the construction of a new finite element
or a new finite volume.

During recent years, considerable effort has been
devoted to the development of the so-called mesh-
free or “meshless” methods. Naylroles et al. [1] was
the first to propose a meshless Galerkin method for
the approximation of boundary value problems and
referred it to the Diffuse Element (DE) method. In
this method, the interpolants are polynomials, which
are fitted to the nodal values by a local least-squares
approximation, valid in the neighborhood of a point
“z” and based on a given number of surrounding
nodes. This kind of interpolation, although not noted
by Nayroles et al., has been studied before by Lancaster
and Salkauskas [2] and called Moving Least-Squares
(MLS) interpolants, as a means of interpreting irreg-
ularly distributed function-value data. However, in the
DE method of Nayroles et al. some kind of auxiliary
grid is needed for numerical integration of Galerkin
terms. Belytschko et al. [3] extended the idea of ‘diffuse
elements’ and enhanced its accuracy by introducing
three refinements: (a) Lagrange multipliers are added
to the energy functional to enforce essential boundary
conditions, (b) The derivatives of shape functions
are evaluated exactly and (¢) Spatial integration is
improved by introducing a regular cell structure.
' Batina [4] developed another class of meshless
methods and applied it to solve compressible Navier-
Stokes equations. In this method, the fluxes are
approximated using a least-squares fit, based on linear
polynomials. This idea is further extended and formal-
ized by Onate et al. [5] by applying a Weighted Least
Squares (WLS) interpolation. In the latter method,
the Galerkin (Weighted Residual Method) formulation
is approximated using a point collocation technique,
circumventing the numerical integration of Galerkin
terms and is referred to as the Finite Point Method.
The stabilization of convection dominated flows has
been also treated in this work and a residual based
stabilization procedure is developed. Other varieties
of Meshless methods have also been proposed in the
literature (see e.g., an overview in [6]) as General-
ized Finite Difference Method [7], Smoothed Particle
Hydrodynamic (8], Wavelet Galerkin Method [9], Hp-
clouds (10}, Reproducing Kernel Particle Methods [11]
and Partition of Unity Finite Element Method [12].

However, despite recent advances, the meshless
method is still in its infancy and its potentials and
advantages have not yet been deeply explored. In this
paper, the finite Point method proposed by Onate et
al. [5] has been applied to solve the incompressible
Stokes flow. A moving least-squares approximation, us-
ing linear and quadratic basis interpolation functions,
has been employed. The accuracy and behavior of this
method is elucidated by solving the driven cavity and
fully developed channel flow.
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BASIC CONCEPTS OF MESHLESS
METHODS

Moving Least-Squares Approximation

In the Moving Least-Square (MLS) interpolant, the
function u(z) is approximated by:

u(z) 2 Uz) = ) pi(a)ai(z) = PT(z)a(z), (1)
i=1

in which p;(z) are m monomials in the space coordinate
z, which are chosen so that the basis is complete. For
example, in one dimension,

m=2 PT =11,

m=3 PT =[1,2,27, (2)
and in two dimensions:

m=3 PT =[1,z,v

m=6 PT=[1,2,y,2% zy,?. (3)

The unknown coefficients o;(z) in Equation 1 are
obtained by minimizing a weighted discrete L, error
norm as follows:

J(z) = Zn:wj(w - :cj)(u? — PjTa(z))2, (4)

J=1

where n is the number of points in the neighborhood
of z, for which the weight function:

w;(z - z;) #0. (5)

The neighborhood of z is called the domain of influence
or the cloud of interpolation of z. u;-‘ is the nodal
value at z = z; (see Figure 1). It must be noted
that in this procedure, @(z;) # u}. The minimizing
procedure (Equation 4) leads to the following linear
relation between a(z) and ul:

A(z)a(z) = B(z)U", (6)

where A € R™*™ and B € R™*™ aremxm and mxn
matrices, respectively, defined by:

A(z) i: w;(z — z;)P(z;)PT (2;),

=
&
I

[wl(a: bt xl)P(.’Ifl),’U)g(.’E

—.'I:Q)P(.’lb),"- awn(x_zn)P(mn)]a (7)
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Figure 1. Moving least square procedure.
and: Remarks 2
uf If one puts n = m, the matrix A(z) will be square and
ub the Finite Element Method is reproduced. In this case,
Ut = : (8) the shape functions satisfy the following relation:
u.h

Substituting the solution of Equation 6 into global

approximation (Equation 1) results i
u(z) Zi(z) =Y gi(x)ul = &T(z
=1

where:
®(z) = PT(z)A "' (2)B(2),

n:

U, (9)

(10)

and is called the shape function. Relation 9 renders

a local interpolation of u(x) as it is

represented by a

combination of locally defined shape functions with the

following properties:

di(x)#£0 if z€

(11)

where Q; is the sub-domain of 2 (cloud of approxima-

tion) containing n points.

Remarks 1

It must be noted that according tq

character of the approximation, one

u(e;) = a(z;) # uf,

the least-square
has:

(12)

i.e., the local values of the approximating function do

not fit the nodal unknown values.

Indeed, @ is the

true approximation for which the satisfaction of the

differential equation and boundary

conditions will be

sought and u? are simply the unknown parameters

sought.

¢;(zi) =1, j=1

¢](xl):O .77&7'7 747]:1723)”‘ (13)

Remarks 3

Note also that in the MLS case the parameters, «, are
not constants and depend on the location z. Therefore,
the inversion of matrix A(z) is required at every point
where function @(z) needs to be evaluated. It can
be shown (see [13] for details) that a unique global
definition of shape functions can be obtained provided:

(i) The weighting function, wj, is continuous and
differentiable in Q; called the interpolation do-
main, or set of cloud of points approximating the
function u(z);

(ii) The weighting function w;, vanishes on the bound-
ary of £2;;

(iii) The number of points n within ; is equal to or
greater than the parameters m at all points in ;.

Derivatives of Shape Functions

Following Belytschko et al. [3], the first and second
derivatives of shape functions are computed as:

¢,=PTAT'B+PT(A"'B, - G:B), (14)



Incompressible Stokes Flow Calculation

and:
@i =(PTG; - P?;A_l)(A,jA_lB -B,)
+ (PTG, - PTA"')(A,A"'B - B,)

-P"(G;B-A"'B,;) + PL,A7B,
(15)

where:

Gi=ATA AT Gy =A"1A AT (16)
Nayroles et al. [1], suggest that approximations ignor-
ing the derivatives of a term may be used to define
the derivatives of shape functions, in order to reduce
the computational effort. The underlined terms in
Equations 14 and 15 may be sufficient to compute the
derivatives, using this approximation.

FINITE POINT FORMULATION

Following Onate et al. [5], consider a problem governed
by the following differential equation and boundary
conditions:

Alu)=b in
B(u)=t in I} (17)

u—up,=0 in T,

where Q is the domain of the problem, A and B are
appropriate differential operators, u is the problem
unknown, I, and I'; are Dirichlet and Neumann
boundary conditions, respectively and b and ¢ represent
external forces acting over the domain Q and along the
boundary I';, respectively. Finally, u, is the prescribed
value of u along the boundary T',,.

The above system of differential equations can be
solved numerically using the weighted residual method,
in which the unknown function, u, is approximated by
some trial approximation 4 and the above system of
equations is replaced by:

/Wl-[Aa — b)dQ+ / W,[Bt — t]dl +
Q r,

/Wi[a — up)dl’ = 0, (18)
T

where W;, W, and W, are weighting functions defined
in different ways depending on the numerical method.
Onate et al. [5] observed that in order to preserve
the mesh-free character of the method, the weighting
domain must be defined independently of any mesh.
However, approximation methods of an integral type,
such as variants of the Galerkin method, necessitate
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the introduction of complex procedures for integration
(e.g., Gauss quadrature rules used in finite element
integration formulas). Batina [4] developed a class of
meshless methods to solve compressible Navier-Stokes
equations. In this method, the fluxes are approximated
using a least-squares fit, based on linear polynomi-
als. This idea is further extended and formalized
by Onate et al. [5] by applying a Weighted Least
Squares (WLS) interpolation. The Galerkin (Weighted
Residual Method) formulation is approximated using a
point collocation technique, circumventing the numer-
ical integration of Galerkin terms and is referred to as
the finite point method.

Point Collocation

Point collocation implies putting W; = W, = W, =6,
in Equation 18 where §;, is dirac delta. This gives a set
of equations:

[A(fl,)]i —b;=0 inQ,

[B(ﬂ)]i —t; =0 in Ty,

@i —up=0 inT,. (19)
Using a moving least-squares interpolation of u (such

as Equation 9), Equations 19 can be converted to the
following system of algebraic equations:

KU" =f, (20)

where K;j = | A(®;)], + | B(®;)]:- Note that the sym-
metry of the coefficients in matrix K is not generally
achieved. f is a vector containing the contributions
from the force term b and ¢t and the prescribed values
Up.

Treatment of Boundary Conditions

Following Onate et al. [5] the satisfaction of Dirichlet
boundary conditions:

u—up, =0 in Ty, (21)
can be approximated for points x; on I';, by employing

a cloud, including only the point z; and using constant
interpolating basis functions. This procedure leads to:

u(z) =2 4(z) = l.ay, (22)
u(ws) = ;) = ul, (23)
ul = up(z;), x;onTl,. (24)

The Neumann boundary conditions on I';, may be
approximated as:

B[ﬂ(.’bl)] = t(xi),

Note that in this way the differential equation is
collocated only at internal points.

z; on ['y. (25)
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INCOMPRESSIBLE STOKES EQUATIONS

Accurate and stable solution of St

pkes equations is

one of the most challenging problemg in the domain of

numerical analysis. Consequently, it
that the Stokes problem has been
subjects of active research of the

is not surprising
one of the major
finite element or

finite volume community during the past 30 years.
The dependent variables in the Stokes flow are the

velocity and pressure.
element method, it is well known that

In the context of the finite

the finite element

spaces for approximating velocity and pressure can-

not be chosen independently using
formulations. Indeed, to obtain opt

classical Galerkin
mally convergent

velocity and pressure solutions, the finite element

spaces must satisfy a stability criter

ion known as the

Babuska-Brezzi condition [14,15]. For example, equal-
order interpolations for both dependent variables fail

to satisfy this condition. The pressu

re solution in this

case may exhibit unphysical oscillations due to the

presence of spurious pressure mode
finite difference and finite volume m

5 [16]. Standard
ethods also suffer

from this pathological behavior. In these methods,

stable pressure solutions can be obt
ing staggered grid systems for pres
variables (see [17]).
Brezzi condition, finite element res

ained by employ-
sure and velocity

To circumvent the Babuska-

earchers have in-

troduced modified variational formulations known as

stabilized methods.

In these methads, the standard

Galerkin formulation is modified by the addition of
mesh dependent terms which are weighted residuals

of the differential equations. Vari
these formulations have been propo
in the literature (see [18,19]).
are known today as GLS (Galerk
methods. These methods allow the i

bus extensions of
sed and analyzed

These formulations

n/Least-Squares)
mplementation of

equal order interpolations for pressure and velocity.

In this paper, a finite point m
moving least-squares approximation
the incompressible Stokes equation
and velocity variables are defined at
In addition, the domain of influen
functions w;(z — z;) used for inter

pthod based on a
is used to solve
5. The pressure
the same points.
ce of the weight
polating pressure

and velocity variables through Equations 1 to 10 are

identical. The pressure term is sta
the Poisson equation for pressure
equations. The incompressible Stol
given by:

—plu+yp=1~f QC R,
vu=0 QCR™

u=g T,

bilized by adding
to the continuity
kes equations are

(26)
(27)

(28)

where u is the velocity, p is the pressure, p is the

dynamic viscosity, A is Laplacian op¢

srator and f is the

S. Kazemzadeh Hannani and F. Parsinejad

body force per unit mass. {2 is a bounded domain and
nsq 15 the number of space dimensions. R is the field
of real numbers and T is the boundary of 2. For the
sake of simplicity, only Dirichlet boundry conditions
will be studied for velocity and a constant viscosity
will be considered. The pressure is determined up to
an additive constant.

Now, using the Finite Point Method, the incom-
pressible Stokes equation in the two-dimensional case
is written in the following discretized form:

~(8.2), PP + ul(900); + (S0 Jul =0,
_(¢’y)ipih + ”[((ﬁv”)i + (¢y‘yy)i] Vzh =0,

(60)u? + ()8 =0,

As stated previously, the pressure term is stabi-
lized by modifying the continuity equation using the
Poisson equation for pressure in the following form:

vVu+av.(-vp+plAu)=0. (30)

The equation in the collocated form is written as:

(29)

Gl 400t +ad (020, + @) 18! +
1[(B2zs); + (Doyy); | ur +1[(d,02y); +
(¢,yyy)i]’/1h} =0 (31)

A third order spline weighting function in the following
form is used in this investigation.

w(z — z;) = w;(d), (32)
where:
d = ||z — zil|, (33)
2/3 —4r? + 473 r<1/2
w(r) = { 4/3—4r+4r2-4/3r% 1/2<r <1,
0 r>1 (34)
and:
__lz-ml -
max ||z — z4|
or:
||z — i
= 12— Fdll 36
T (36)

DM, can be written as a function of the maximum
distance between two nodes (||z; — z;||) by:

DM; = DMAX||z; — =], (37)

where DM AX is a parameter that controls the domain
of influence of the weighting function. By simple
multiplication, Equation 34 can be extended to multi-
dimensions.
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Figure 2. Domain and boundary conditions for Poiseuille
flow.

NUMERICAL EXPERIMENTS
Plane Poiseuille Flow

A fully developed Poiseuille flow between two channel
walls is solved and the results are compared with ana-
lytical solutions. The domain and boundary conditions
are shown in Figure 2. No slip boundary conditions
are imposed at solid walls and parabolic Poiseuille flow
velocity profiles are assumed at inlet and outlet bound-
aries. Since only Stokes equation is considered in this
work, the assumption of uniform velocity distribution
at the inlet will not lead to a physically consistent
boundary layer development. Putting ¢ = 1, the
pressure drop, Ap, for a channel length of 4 units is
equal to 24. The domain consists of 15 x 8 points.
Calculations are performed employing linear (m = 3)
and quadratic (m = 6) basis functions. The sensitivity
of solution to the stabilization parameter, a, and to
the selection of the DM AX parameter has been also
investigated. DM AX controls the size of the domain
of influence of the weighting function.

Linear Basis Functions

In Figure 3, the pressure contours are shown for m =
3, = 1.0 and DMAX = 2. For this case, the
calculated pressure loss is equal to 25, which is in good
agreement with the analytical solution. In Table 1, the
variations of Ap with respect to DM AX are given.
Note that solutions depend largely on the parameter
DMAX. Smooth pressure contours are obtained for
DMAX from 2 to 4, using a stabilization parameter
a = 1.0, and they resemble the DMAX = 2 case
(hence, not shown). In order to study the sensitivity of
the solution to selection of the stabilization parameter,
calculations are conducted using o = 0.001,m = 3 and
DMAX = 2.0. The pressure contours for this case are
shown in Figure 4. One can note the slight oscillations
near the inlet and outlet boundary conditions.

Table 1. Pressure loss for Poiseuille flow in a channel
using linear basis functions.

DMAX 2 2.5 3 4 4.5 5 6

Pressure

25 | 255 | 31 | 25.5 | 26 | 32 | 26
Loss
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Figure 3. Pressure contours for Poiseuille flow using
linear basis functions (m = 3),a = 1.0, and DM AX = 2.0.
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Figure 4. Pressure contours for Poiseuille flow using
linear basis functions (m = 3}, = 0.001 and
DMAX =2.0.

Quadratic Basis Functions

In Figure 5, the pressure contours are shown for a =
0.001,m = 6 (quadratic basis function) and DMAX =
2. For DM AX values between 2 to 6, the pressure loss
is almost equal to 24 and is in very good agreement with
the analytical solution. Pressure contours for other
DM AX values are not shown due to the resemblance
to Figure 5. It may be concluded that the solutions
are not sensitive to the DM AX values. However, for
quadratic basis function, employing a stabilization pa-
rameter a = 1.0 renders a very smooth and inaccurate
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Figure 5. Pressure contours for Poiseuille flow using

quadratic basis functions (m = 6),a = 0.
DMAX =2.0.
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Figure 6. Pressure contours for Poiseuille flow using
quadratic basis functions (m = 6),« = 1|0, DM AX = 2.0.

pressure solution (see Figure 6). Cal
conducted by neglecting either the

ulations are also

diffusion term in

the stabilization part of formulation (Equation 30),
or by considering only the underlined terms for the

derivatives in Equations 14 and 15.
the solutions remained unchanged.

Cavity Flow

For both cases,

The domain and boundary conditions are presented

in Figure 7. p = 1.0 was assumed {
The domain consists of 19 x 19 regy
points. For this problem, the basis

or this problem.
larly distributed
of comparison is
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Figure 7. Domain and boundary conditions for driven
cavity flow.

the accuracy of the pressure solution at upper corners
of the cavity and the conservation of mass. Due to
the pressure singularities, higher values of the pressure
solution at the top corners indicate a more accurate
result. Hence, this is a more challenging problem
compared to the plane Poiseuille flow. Note that the
stabilization of the pressure term may lead to accuracy
degradation of mass conservation. To the best of the
authors knowledge, the optimum values of stabilization
parameter o are not yet known.

Linear Basis Functions

In Figures 8 to 11, pressure solutions are shown using
linear basis function (m = 3),« = 0.001 and different
DMAX values. As can be seen, good accuracy is
obtained for DM AX = 2 and 2.5. The pressure at

T \\ CD’ ‘\
‘)3 © ~ \{P
Y
1 Level P
s 1 15 275381
of 14 236041
W 13 19.6701
12 15.7361
11 11.802
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9  3.93402
8 0
7 -3.93401
o6  -7.86802
5  -11.802
8 4 -15.736
3 -19.6701
2 -23.6041
1 -27.5381
0 0.5 1
X

Figure 8. Pressure contours for cavity flow using linear
basis functions (m = 3),« = 0.001 and DM AX = 2.0.
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Figure 9. Pressure contours for cavity flow using linear
basis functions (m = 3),a = 0.001 and DMAX = 2.5.
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Figure 10. Pressure contours for cavity flow using linear
basis functions (m = 3), @ = 0.001 and DM AX = 3.0.

upper corners of the cavity are, respectively, + 30
for DMAX = 2. However, by increasing DMAX
to 3, accuracy is considerably decreased. Even slight
asymmetry in the solution is observed. Note that the
K matrix is not, in general, symmetric. This behavior
can be attributed to the points near boundaries which
do not see, symmetrically, all points of the domain.
For DMAX = 3, the pressure decreases to +£16.
Interestingly, increasing the DM AX to 4 renders a
more accurate and symmetric solution. The solution
for DM AX = 3 can be returned to the symmetric form
by altering the domain of influence of the boundary
nodes (see Figure 12). In Figure 13, the streamlines
and pressure contour, obtained using DM AX = 2 and
m = 3 for o = 0.01 and 0.0001, are shown. As can be
seen, by decreasing the « value, the continuity equation
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Figure 11. Pressure contours for cavity flow using linear
basis functions {m = 3),a = 0.001 and DM AX = 4.0.

is better satisfied. For « 0.0001, the pressure
solution is not very smooth but is more accurate.

Quadratic Basis Functions

In Figures 14 to 18, the pressure contours for a =
0.0001, m = 6 (quadratic basis functions) and different
DM AX values are shown. As can be seen, even using a
very low stabilization parameter, solutions are accurate
and symmetric for all DM AX values in the range of 2
to 6. For DM AX = 2.5, pressure in the upper corners
of the cavity is + 41 and for DM AX = 6 they are £ 30.
It should be noted that the solution is less sensitive to
the selection of the DM AX value than the m = 3 case.
Finally, calculations are also conducted by neglecting
either the diffusion term in the stabilization part of
Equation 30, or by considering only the underlined
terms for the derivatives in Equations 14 and 15. For
both cases, the solutions remained unchanged.

To put in evidence the mesh-free character of the
method, calculations are conducted using grid points
distributed in the form shown in Figure 19. In this
case, 100 nodes are added to a regular grid of 11 x 11
points. First, the 11 x 11 grid point is solved using
m =3 and DMAX = 2 and the solution is compared
by adding 100 points. The accuracy of the pressure
solution is enhanced in this way from £ 8 to & 11. Note
that the addition of points can be performed without
any difficulty regarding computer implementation.

In Figure 20, the pressure solution obtained,
using m = 3, DMAX 2 and o 0.001 on a
domain consisting of 19 x 19 points, is compared to the
Galerkin/least-squares FEM formulation [18], employ-
ing a mesh system of 20 x 20 Q1Q1 velocity-pressure
elements. For FEM and FPM the pressure at the upper
corners is, respectively, = 17 and + 31. Evidently, the
FPM results are superior, based on the pressure values
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Figure 12. Pressure contours for cavity flow using m = 3, = 0.001.
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Figure 14. Pressure contours for cavity flow using
quadratic basis functions (m = 6), a = 0.0001, and

DMAX =2.0.
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Figure 15. Pressure contours for cavity flow using
quadratic basis functions (m = 6), @ = 0.0001 and
DMAX =25.
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Figure 16. Pressure contours for cavity flow using
quadratic basis functions (m = 6), @ = 0.0001 and
DMAX =3.0.
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Figure 17. Pressure contours for cavity flow using
quadratic basis functions (m = 6), o = 0.0001 and
DMAX =4.0.
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Figure 18. Pressure contours for cavity flow using
quadratic basis functions (m = 6), o = 0.0001 and
DMAX =6.0.

at the upper corners. However, the FPM matrix system
is neither symmetric (even though the Stokes equation
is symmetric), nor banded. Therefore, this result
does not necessarily show the overall computational
superiority of FPM results. Obviously, more work
should be performed in this context. For example,
more efficient solvers adapted for FPM strategies have
to be worked out before drawing consistent conclusions
regarding the advantages and drawbacks of meshless
methods.

CONCLUSION

A finite point method, based on a moving least
square interpolation and a point collocation technique,
is employed to solve the incompressible Stokes flow.
Calculations are conducted using linear and quadratic
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basis functions. The pressure and velocity variables are
interpolated employing identical weighting functions
(same cloud points) and identical basis functions. The
formulation is stabilized by perturbing the continuity
equation by the Poisson equation for pressure. In
summary, one may conclude:

1.

Based on numerical experiments, solutions for the
linear case exhibit a large sensitivity to the size of
the domain of influence of weighting functions, in
contrast to the quadratic basis case.

. Stabilized methods can be extended to finite point

formulation in a straight-forward manner, leading to
stable solutions, circumventing staggered type grids
needed for velocity and pressure variables.

. The solution of a full Navier-Stokes equation will be

the subject of future work. The main goal of the
present work was to study, in detail, certain compu-
tational properties of the FPM method, especially
its extension to the Stokes equation and its behavior
when the pressure term is stabilized. If a complex
flow were solved with this new scheme, it would have
been very difficult to identify the origin of errors
or discrepancies, due to various numerical noises or
errors which are naturally present in any approx-
imate numerical scheme. The full capabilities of
the scheme, its mesh free character and advantages,
with respect to computational effort and execution
time, must be studied later.
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