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Research Note

A Note on Fuzzy Process Capability Indices

M.T. Moeti1, A. Parchami1 and M. Mashinchi�

The notion of fuzzy process capability indices is studied by Parchami et al. [1], where the
speci�cation limits are triangular fuzzy numbers. In this note, their results are revised for the
general case, where the speci�cation limits are L�R fuzzy intervals.

INTRODUCTION

Process Capability Indices (PCIs) are used to measure
the capability of a process to reproduce items within
the speci�ed tolerance preset by the product designers
or customers. There are several PCIs, such as Cp,
Cpk , Cpm and Cpmk, which are used to estimate the
capability of a manufacturing process, where, in most
cases, the normal distribution and a large sample
size are assumed for population of data [2-6]. These
indices essentially compare the speci�cation tolerance
range with the actual production tolerance one. In
some cases, Speci�cation Limits (SLs) are not precise
numbers and they are expressed in fuzzy terms, so that
the classical capability indices could not be applied.
For such cases, Yongting [7] introduced a process
capability index, Cp, as a real number, which was used
by Sadeghpour-Gildeh [8]. Lee investigated a process
capability index, Cpk , as a fuzzy set [9]. Parchami et
al. introduced fuzzy PCIs as fuzzy numbers, where
upper and lower SLs are triangular fuzzy numbers and
discussed the relations operating between them when
SLs are fuzzy rather than crisp [1,10]. Some researchers
also obtained fuzzy con�dence intervals for these new
process capability indices [11]. In this paper, the result
of [1] is revised for cases where SLs are L � R fuzzy
intervals, which gives more exibility to the product
designers.

The organization of this paper is as follows. In
the following section, some preliminaries are discussed.
Then, traditional process capability indices are re-
viewed, the fuzzy process is considered and the fuzzy
process capability indices introduced by Parchami et
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al. [1] are revised for the general case, where SLs are
L � R fuzzy. After that, the relation between fuzzy
process capabilities indices are studied. Finally, there
is the conclusion.

PRELIMINARIES

In this section, some preliminaries are given, which will
be needed throughout the paper. For more details,
see [1,12]. Let R be the set of real numbers. Let:

F (R)=fAjA :R! [0; 1]; A is a continuous functiong:

De�nition 1

Let A 2 F (R), then

a) A is called normal, if, and only if, there exists x 2
R, such that A(x) = 1;

b) A is called convex, if, and only if;

A(�x+(1��)y)�(A(x)^A(y)); 8x; y2R; 8�2 [0; 1];

where the symbol, ^, denotes the minimum operator.

De�nition 2

1. A fuzzy number is a normal and convex fuzzy set
of the real line, R, whose membership function is
piecewise continuous;

2. A fuzzy number, M , is called positive (negative),
denoted by M > 0(M < 0), if its membership
function satis�es M(x) = 0, 8x < 0(8x > 0).

De�nition 3

A fuzzy number is a fuzzy interval if its membership
function, M , satis�es the following conditions:

1. M is continuous mapping from R to the closed
interval [0; 1],



380 M.T. Moeti, A. Parchami and M. Mashinchi

Figure 1. Fuzzy interval.

2. M(x) = 0 for all x 2 (�1; c],

3. M is strictly increasing and continuous on [c; a],

4. M(x) = 1 for all x 2 [a; b],

5. M is strictly decreasing and continuous on [b; d],

6. M(x) = 0 for all x 2 (d;+1],

where a, b, c, d are real numbers and (a + b)=2 is the
mean value of M (see Figure 1).

De�nition 4

A fuzzy interval, M , is said to be an L � R fuzzy
interval, if

M(x) =

8>><
>>:
L
�
m1�x
�

�
x < m1 � > 0;

1 m1 � x � m2;

R
�
x�m2

�

�
x > m2 � > 0;

where � and � are left and right spreads, respectively,
and the function, L(:), is a left shape function satisfy-
ing:

1. L(x) = L(�x),

2. L(0) = 1,

3. L(x) is non-increasing on [0;1).

Naturally, a right shape function, R(:), is similarly
de�ned as L(:). m1+m2

2
is called the mean value of M .

Using its mean value, left and right spreads and
shape function, such an L � R fuzzy interval, M , is
written as:

M = (m1;m2; �; �)LR:

By an L�R fuzzy number, one means a fuzzy interval,
M = (m1;m2; �; �)LR, where m1 = m2. It is written
as: M = (m1; �; �)LR. Also, when � = � = 0 and
m1 = m2, then, M reduces to M = (m1;m1; 0; 0)LR,
which is the real number, m1.

De�nition 5

Let M = (m1;m2; �; �)LR and N = (n1; n2; ; �)RL be
fuzzy intervals. Then:

1. One calls M = (m1;m2; �; �)LR lower bounded,
if there exists xU = m1 � �L�1(0), such that
L
�
m1�xU

�

�
= 0 for all x � xU ;

Figure 2. Upper and lower bounded fuzzy intervals.

2. One calls N = (n1; n2; ; �)RL upper bounded,
if there exists xL = n2 + �L�1(0), such that
L
�
xL�n2

�

�
= 0 for all x � xL (see Figure 2);

3. Let:

F�
LR = fM = (m1;m2; �; �)LRj

M is a lower bounded fuzzy intervalg;

and:

F+

RL = fN = (n1; n2; ; �)RLj

N is an upper bounded fuzzy intervalg:

De�nition 6

For an L � R fuzzy interval, M = (m1;m2; �; �)LR 2
F�
LR, and an L � R fuzzy interval, N =

(n1; n2; ; �)RL 2 F+

RL, the following formulas for the
extended opposite and subtraction hold, respectively:

1. Opposite:

�M = (�m2;�m1; �; �)RL;

2. Subtraction:

M�N=(m1�n2;m2�n1; �+�; �+)LR: (1)

As a special case, observe that scalar multiplication
for an L�R fuzzy interval, M = (m1;m2; �; �)LR,
can be given by the following formula, depending
on the sign of �.

3. Scalar multiplication:

�
M =

(
(�m1; �m2; ��; ��)LR � � 0;

(�m2; �m1;���;���)RL � < 0: (2)

TRADITIONAL PROCESS CAPABILITY

INDICES

In this section, some notions of traditional PCIs will be
reviewed. A process capability index is a real number,
as a summary that compares the behavior of a product
or process characteristic to engineering speci�cations.
This measure is also called the performance index. Sev-
eral PCIs are introduced in the literature, such as Cp,
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Cpk , Cpm and so on [3-5]. For convenience, the upper
and lower speci�cation limits will be denoted by U and
L, respectively, rather than the more customary USL
and LSL notations. Where univariate measurements
are concerned, the corresponding random variate will
be denoted by X . The expected value and standard
deviation ofX will be denoted by � and �, respectively.
The situation will be limited to where � is in the
speci�cation interval, i.e. L � � � U and it will
be assumed that the measured characteristic should
have a normal distribution (at least, approximately),
although it is di�cult to see why a good industrial
process must result in a normal distribution for every
measured characteristic.

The commonly recognized PCIs are:

Cp =
U � L

6�
=

w

6�
; (3)

where w = U � L. This Cp is used when � = M and
where M = (U + L)=2.

Cpk =
w � 2 j��M j

6�
=

minfU � �; �� Lg

3�
; (4)

and:

Cpm =
w

6
p
�2 + (�� T )2

=
w

6
p
E[(X � T )2]

; (5)

where T is target value and E[:] denotes the expected
value.

There is also the hybrid index:

Cpmk =
w � 2 j��M j

6
p
�2 + (�� T )2

=
w � 2 j��M j

6
p
E[(X � T )2]

: (6)

Usually, T =M . If T 6=M , the situation is sometimes
described as \asymmetric tolerances" (see [13-15]).
Introduction of Cp is ascribed to Juran [16]; that of
Cpk to Kane [2]; that of Cpm, for the most part to
Hsiang and Taguchi [17], and Cpmk to Pearn et al. [5].

Clearly Cp � Cpk � Cpmk and Cp � Cpm �
Cpmk . Some more relations between PCIs could be
realized. From Equations 3 and 4, one has:

Cpk = Cp �
1

3

������M

�

���� ; (7)

and from Equations 3 and 5, one has:

Cpm =
Cpr

1 +
�
��T
�

�2 : (8)

From Equations 4 and 6, one has:

Cpmk =
Cpkr

1 +
�
��T
�

�2 : (9)

A further interesting relation is:

Cpmk =
CpmCpk
Cp

: (10)

An enlightening view of relations between the PCIs can
be obtained from studies of the \superstructure PCIs",
introduced by V�annman [18], as follows:

Cp(u; v) =
w � 2u j��M j

6
p
�2 + v(�� T )2

(u; v � 0): (11)

The four PCIs introduced in Equations 3 to 6 are
special cases of Cp(u; v). Indeed;

Cp = Cp(0; 0); Cpk = Cp(1; 0);

Cpm = Cp(0; 1); Cpmk = Cp(1; 1):

See more details concerning this section in Kotz [3].

FUZZY PROCESS CAPABILITY INDICES

In this section, the recent results on fuzzy process
capability indices obtained by Parchami et al. [1] will
be revised. The Cp index based on fuzzy SLs was
introduced as a real number by Yongting [7] and was
also used by other authors [8]. But, it would be
more realistic to have a Cp which is also fuzzy, since
a fuzzy process capability index would be much more
appropriate than a precise number, if SLs are fuzzy.

De�nition 7

A process with fuzzy speci�cation limits, called a fuzzy
process for short, is one which approximately satis�es
the normal distribution condition and its speci�cation
limits are fuzzy [1].

In the following De�nition 4.1, 4.2 of [1] is

revisited, which gives a
�
Cp as having more exibility

for the product designers by the shape of its SLs.

De�nition 8

Suppose one has a fuzzy process with �xed �, for
which the speci�cation limits are the fuzzy sets ULR =
(m1;m2; �; �)LR 2 F�

LR, LRL = (n1; n2; ; �)RL 2 F+

RL

and xU � xL, where xL = n2 + �L�1(0) and xU =
m1 � �L�1(0). Then:

a) The width between fuzzy process speci�cation lim-

its is a L � R fuzzy number,
�
wLR 2 F�

LR, de�ned
by;

�
wLR = ULR�LRL

= (m1;m2; �; �)LR�(n1; n2; ; �)RL

= (m1 � n2;m2 � n1; �+ �; � + )LR: (12)
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b) The fuzzy process capability index is a L�R fuzzy

number,
�
Cp 2 F (R), de�ned by;

�
Cp =

1

6�



�
wLR: (13)

By Equations 1 and 2, one can obtain
�
Cp, as follows:

�

Cp =

�
m1 � n2

6�
;
m2 � n1

6�
;
�+ �

6�
;
� + 

6�

�
LR

: (14)

Note that
�
Cp is useful when � = m, where:

m =
m1 +m2 + n1 + n2

4
:

In the following, an example is given to clear the idea

of
�
Cp.

Example 1

For a special product, suppose that the speci�cation
limits are considered to be ULR = (5; 5:5; 0:5; 0:5)LR 2
F�
LR and LRL = (2:5; 3; 0:5; 1)RL 2 F+

RL, respectively,

where L(x) = 1� x2 and R(x) = e�x
2

, as in Figure 3.
Assume that the process mean � is 6 and the estimated
process standard deviation is 1/2. By De�nition 8, one

can compute the width between process SLs as
�
wLR =

(2; 3; 1:5; 1)LR. Therefore,
�̂
Cp = (2=3; 1; 1=2; 1=3)LR is

the estimate of
�
Cp, which is depicted in Figure 4.

Example 2

In a manufacturing process, 75 samples extracted
from the vane-manufacturing process, which is under

Figure 3. The membership function of fuzzy process
speci�cation limits in Example 1.

Figure 4. The membership function of fuzzy process
capability index in Example 1.

statistical control, are shown in Table 1 (as on page
781 of [19]).

From the data, s = 2:15 is estimated. As-
sume ULR = (39:5; 40:5; 0:7; 0:5)LR and LRL =
(19:5; 20:5; 0:4; 0:9)RL are speci�cation limits, where
L(x) = R(x) = 1 � x2. Then, by Equation 14,
�̂
Cp = (1:47; 1:62; 0:12; 0:07)LR.

Remark 1

Let, in a fuzzy process, ULR = (5; 5:5; 0:5; 0:5)LR,
LRL = (2:5; 3; 2:5; 1)RL, L(x) = 1 � x2 and R(x) =

e�x
2

. For several values of standard deviation, the
pictorial representation of Ĉp is depicted in Figure 5

by Maple software. The bold curve is Ĉp for s = 1:4,
3.1 and 5.4, respectively. Note that, as s increases,
the Ĉp tends to be a sharper and smaller L� R fuzzy
interval.

Figure 5. Three-dimensional representation of fuzzy PCI
related to standard deviation.

Table 1. Data vane-manufacturing process for Example 2.

Observation 27 29 30 31 32 33 34 35 36 37 39

Frequency 2 1 7 8 8 16 10 13 4 4 2
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De�nition 9

Let ULR = (m1;m2; �; �)LR 2 F�
LR and LRL =

(n1; n2; ; �)RL 2 F+

RL be the engineering fuzzy spec-
i�cation limits and xU � xL, where xL = n2+ �L�1(0)
and xU = m1 � �L�1(0). The following revised fuzzy
PCIs are introduced:

�

Cpk =

 
m1 � n2 � 2j��mj

6�
;
m2 � n1 � 2j��mj

6�
;

�+ �

6�
;
� + 

6�

!
LR

;
(15)

�

Cpm=

 
m1 � n2

6
p
�2 + (�� T )2

;
m2 � n1

6
p
�2 + (�� T )2

;

�+ �

6
p
�2+(��T )2

;
� + 

6
p
�2+(��T )2

!
LR

;
(16)

�

Cpmk=

 
m1 � n2 � 2j��mj

6
p
�2 + (�� T )2

;
m2 � n1 � 2j��mj

6
p
�2 + (�� T )2

;

�+ �

6
p
�2+(��T )2

;
� + 

6
p
�2+(��T )2

!
LR

;
(17)

where m = m1+m2+n1+n2
4

and T is target value.
The revised \superstructure fuzzy PCI" is de�ned

as follows:

�
Cp(u; v)=

 
m1�n2�2uj��mj

6
p
�2 + v(�� T )2

;
m2�n1�2uj��mj

6
p
�2 + v(�� T )2

;

�+ �

6
p
�2+v(��T )2

;
� + 

6
p
�2+v(��T )2

!
LR

for u; v � 0: (18)

Remark 2

i) The process capability indices de�ned by Equa-
tions 3 to 6 could be expressed by the fuzzy process
capability indices as follows:

Cp =
�
Cp =

�
m1 � n1

6�
; 0; 0

�
LR

;

Cpk =
�
Cpk =

�
m1 � n1 � 2j��mj

6�
; 0; 0

�
LR

;

Cpm =
�

Cpm =

 
m1 � n1

6
p
�2 + (�� T )2

; 0; 0

!
LR

;

Cpmk=
�

Cpmk=

 
m1 � n1 � 2j��mj

6
p
�2 + (�� T )2

; 0; 0

!
LR

:

ii) When the process speci�cation limits,
ULR = (m1;m2; �; �)LR 2 F�

LR and
LRL = (n1; n2; ; �)RL 2 F+

RL, are precise
numbers, i.e., m1 = m2, n1 = n2 and
� = � =  = � = 0, then, all the introduced
revised fuzzy PCIs are precise numbers and
coincide with the traditional PCIs.

Remark 3

Fuzzy intervals M = (m1;m2; �; �)LR 2 F�
LR and N =

(n1; n2; ; �)RL 2 F+

RL are triangular fuzzy numbers if
m1 = m2, n1 = n2 and L(x) = R(x) = 1�x. Thus, as a
special case, SLs, as ULR = (bu; bu; bu�au; cu�bu)LR 2
F�
LR and LRL = (bl; bl; bl � al; cl � bl)RL 2 F+

RL, are
triangular fuzzy numbers, T (au; bu; cu) and T (al; bl; cl),
respectively, used by Parchami et al. [1], where:

T (a; b; c) =

8><
>:
(x� a)=(b� a) if a � x � b

(c� x)=(c� b) if b � x � c

0 if elsewhere

;

and L(x) = R(x) = 1� x.

RELATION BETWEEN FUZZY PROCESS

CAPABILITY INDICES

In this section, some relations governing the revised
fuzzy process capability indices are given, as introduced
in the previous section.

Theorem 1

In a fuzzy process, assume xU � xL, where xL = n2 +
�L�1(0) and xU = m1 � �L�1(0). Then;

�

Cpk(x) =
�

Cp

�
x+

j��mj

3�

�
;

where:

m =
m1 +m2 + n1 + n2

4
; (19)

�
Cpm(x) =

�
Cp

0
@x
s
1 +

�
�� T

�

�2

1
A ; (20)

�
Cpmk(x) =

�
Cpk

0
@x
s
1 +

�
�� T

�

�21A : (21)
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Proof

Let y = j��mj
3�

. Then, by some calculations one has:

�
Cp(x+ y)

=

8>>>><
>>>>:

L

�
m1�n2

6�
�x�y

�+�
6�

�
if x+ y < m1�n2

6�

1 if m1�n2
6�

�x+y� m2�n1
6�

R

�
x+y�

m2�n1
6�

�+
6�

�
if x+ y > m2�n1

6�

;

�

Cpk(x)

=

8>>>><
>>>>:

L

�
m1�n2

6�
�y�x

�+�
6�

�
if x < m1�n2

6�
� y

1 if m1�n2
6�

�y�x� m2�n1
6�

�y

R

�
x�

m2�n1
6�

+y
�+
6�

�
if x > m2�n1

6�
� y

:

Therefore, Equation 19 is proved. Similarly, Equa-
tions 20 and 21 can be proven. �

Theorem 2

The four revised fuzzy PCIs introduced in Equations 14

to 17 are special cases of
�

Cp(u; v). Indeed:

�
Cp =

�
Cp(0; 0);

�
Cpk =

�
Cp(1; 0);

�
Cpm =

�
Cp(0; 1);

�
Cpmk =

�
Cp(1; 1):

Proof

It is obvious by using Equations 14 to 18. �
Further interesting relations are stated in the

following theorem. First, an important de�nition is
given.

De�nition 10

For L � R fuzzy intervals, M = (m1;m2; �; �)LR and
N = (n1; n2; ; �)LR, the following approximate for-
mula for the extended multiplication holds, as follows:

1. Multiplication [20]:
If M > 0 and N > 0, then,

M 
N �= (m1n1;m2n2;m1 + n1�;m2� + n2�)LR:

2. For positive L � R fuzzy intervals, M;N;M 0 and
N 0, one can say M 
 N � M 0 
 N 0, if M 
 N �=
(m;n; �; �)LR and M 0 
 N 0 �= (m;n; �; �)LR, for
some fuzzy interval, (m;n; �; �)LR.

Theorem 3

Let in a fuzzy process, xU > xL, where xL = n2 +

�L�1(0) and xU = m1 � �L�1(0), and
�

Cp;
�

Cpmk;
�

Cpm

and
�

Cpk can be de�ned by Equations 14 to 17,

respectively. Then,
�

Cp 

�

Cpmk �
�

Cpm 

�

Cpk.

Proof

According to De�nitions 5 and 8 to 10, one has the
following:

�
Cp 


�
Cpmk

�=

 
(m1 � n2)(m1 � n2 � 2j��mj)

36�
p
�2 + (�� T )2

;

(m2 � n1)(m2 � n1 � 2 j��mj)

36�
p
�2 + (�� T )2

;

(�+ �)(2m1 � 2n2 � 2 j��mj)

36�
p
�2 + (�� T )2

;

(� + )(2m2 � 2n1 � 2 j��mj)

36�
p
�2 + (�� T )2

!
LR

;

�
Cpm 


�
Cpk

�=

 
(m1 � n2)(m1 � n2 � 2j��mj)

36�
p
�2 + (�� T )2

;

(m2 � n1)(m2 � n1 � 2 j��mj)

36�
p
�2 + (�� T )2

;

(�+ �)(2m1 � 2n2 � 2 j��mj)

36�
p
�2 + (�� T )2

;

(� + )(2m2 � 2n1 � 2 j��mj)

36�
p
�2 + (�� T )2

!
LR

::

Therefore, the theorem is proved when
�
Cp;

�
Cpmk;

�
Cpm

and
�
Cpk are L�R fuzzy intervals and xU > xL, where

xL = n1 + �L�1(0) and xU = m1 � �L�1(0). �

CONCLUSION

In this paper, the revised fuzzy process capability
indices have been introduced, when the engineering
speci�cation limits are L � R fuzzy intervals. Also,
several relations between them have been revealed.
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