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Research Note

Free Vibration Analysis of Gantry

Type Coordinate Measuring Machines

M.T. Ahmadian�, G.R. Vossoughi1 and S. Ramezani1

Coordinate Measuring Machines (CMMs) are designed for precision inspection of complex
industrial products. Even though CMMs have high accuracy in electrical systems, mechanical
structures prevent very high accuracy in these machines. Mechanical accuracy of CMMs depends
on both static and dynamic sources of error. In automated CMMs, one of the dynamic error
sources is the vibration of probes, due to inertia forces resulting from parts deceleration. Modeling
of a gantry type CMM, based on the Timoshenko beam theory, is developed and the natural
frequencies of the CMM system, at di�erent positions of the probe, are calculated. Findings from
the analytical and �nite elements method indicate high accuracy and good agreement between
the results.

INTRODUCTION

Coordinate measuring machines are, nowadays, widely
used for a large range of measuring tasks. These tasks
are expected to be carried out with ever increasing
accuracy, speed, 
exibility and the ability to operate
under shop 
oor conditions. Research is necessary to
meet these demands. CMMs are prone to many error
sources. Based on functional components of a CMM,
an overview has been given by Weekers [1] of the most
important error sources a�ecting the accuracy of a
CMM:

� Geometric errors: Limited accuracy in manufactur-
ing, assembling and adjustment of components, like
guide ways and measurement systems;

� Drive system: For CNC operated CMMs, the axes
are equipped with drives, transmission and a servo-
control unit causing errors such as mechanical load
and structural vibration;

� Measurement system: The actual coordinates of
measuring points are derived from the values indi-
cated by the linear scales of the CMM. The min.
errors introduced by the scales are: Inaccuracy of
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scale pitch, misalignment and adjustment of reading
device and interpolation errors;

� Errors due to mechanical loads: These are errors
related to static or slowly varying forces on CMM
components in combination with the compliance of
components and are mainly caused by the weight of
moving parts;

� Thermally induced errors: The di�erence between
the temperature of the measuring scales of CMM
and work piece and the temperature gradient in the
machine components is a source of error;

� Dynamic errors: These are errors mainly caused by
deceleration of moving parts before stopping. These
errors depend on the CMMs structural properties,
like mass distribution, component sti�ness and
damping characteristics, as well as on the control
system and disturbing forces.

In this paper, the authors are interested in the dy-
namic errors of CMMs caused by the deceleration of
moving parts. Some studies on the error analysis of
CMMs have been done. Weekers and Schellekenes
[2] proposed a method for compensation of the dy-
namic errors of CMMs using inductive position sen-
sors for online measurement of the major dynamic
errors. Barakat et al. [3] presented a kinemati-
cal and geometrical error compensation for CMMs
based on experiment. Nijs et al. [4] presented a
very simple model of CMM for obtaining natural
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frequencies of a CMM. Vermeulen [5] generated high-
accuracy 3-D coordinate machines using a new con�g-
uration with fewer dynamic errors. Several researchers
have applied software compensation successfully on
CMMs [6,7].

Most of these researchers have considered a very
simple model for their analysis while most of the studies
are based on experiment. In the present study, a
full CMM modeling is analyzed. All columns and
guide ways are modeled as a Timoshenko beam [8,9]
with 
exibility in all directions. All bearings are
modeled as torsional springs and torsional deformation
of the column and guide ways is considered. Dynamic
equations of motion are derived using Hamilton's prin-
ciple [10]. The derived equations are treated using
a state space variables method. Natural frequencies
of the CMM system are calculated at di�erent po-
sitions of the probe in the system. Dynamic error
analysis of CMM and optimization using a Genetic
Algorithm, based on maximization of a �tness function
containing the e�ect of natural frequency, dynamic
error and weight of the CMM structure, is presented
by Ramezani [11].

MODELING OF CMM STRUCTURE

Structural components of a gantry type CMM are
shown in Figure 1. Because of the very small de-
formation of each component, the x-, y- and z-axes
are assumed to remain in the same direction as in
the undeformed state. The origin of the coordinate
system is along the axis of the left column and at a
height which is equal to the axis of the x-guideway.
The most important problem in this modeling is that
the motions of the y-guide way, x-guide way and z-

Figure 1. Schematic view of a gantry type CMM.

pinole are relative motions. They are the absolute
deformation of each beam, but, they are not the
absolute motion of each beam. So, the strain energy
of each beam is only a function of its deformations,
however, the kinetic energy of each component is
in
uenced by the motion of other components. The
system is assumed to be �xed at each position of the
probe. The modeling of each component is presented
in the following sections.

MODELING OF THE RIGHT COLUMN

For the right column, bending, torsional and longitu-
dinal vibration is considered. The kinetic and strain
energy of the column can be written as:
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where:

- A(�; t): Bending of column in xz-plane,

- �(�; t): Rotation of column around y-axis,

- B(�; t): Bending of column in yz-plane,

- �(�; t): Rotation of column around x-axis,

- �1(�; t): Torsion of column around z-axis,

- C(�; t): Longitudinal vibration in z-direction,

- A1, I1x, I1y , I1z , E1, G1, �1, h and k: Cross sectional
area, actual and equivalent (for thin walled column)
moments of inertia, Young modulus, shear modulus,
density, length of column and Timoshenko shear
modi�cation constant, respectively.

Note that the symbols (:) and (0) denote deriva-
tion with respect to time and coordinates, respectively.
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MODELING OF THE RIGHT Y -GUIDE

WAY

For the right y-guide way, kinetic and strain energy
have been considered to be as follows:
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where:

- ys: Location of y-carriage on the y-guide way,

- D(y; t): Bending in xy-plane for 0 < y < ys,

- D1(y; t): Bending in xy-plane for ys < y < Ly,

- 
1(y; t): Rotation around z-axis 0 < y < ys,

- 
11(y; t): Rotation around z-axis ys < y < Ly,

- E(y; t): Bending in yz-plane 0 < y < ys,

- E1(y; t): Bending in yz-plane ys < y < Ly,

- 
2(y; t): Rotation around x-axis 0 < y < ys,

- 
22(y; t): Rotation around x-axis ys < y < Ly,

- �3(y; t): Torsion around y-axis 0 < y < ys,

- �33(y; t): Torsion around y-axis ys < y < Ly,

- A2, I2x, I2z , I2y , E2, G2, �2 and Ly: cross sectional
area, actual and equivalent moments of inertia,
Young modulus, shear modulus and density, length
of y-guide way, respectively.

MODELING OF THE Y -CARRIAGE AND

BEARING

For the drive system e�ect, only the rotation of a y-
carriage bearing around the y-axis is considered. The
kinetic and strain energy in this member can be written
as:
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where:

- �2(t): Torsion around y-axis

- Kbc3, Mbc3, Jbc3y and Jbc3z: Torsional sti�ness of
bearing and drive system, mass and mass moments
of inertia of y-carriage and its bearing, respectively.

MODELING OF THE X-GUIDE WAY

For the x-guide way, bending and torsion kinetic and
strain energy can be written as:
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where:

- xs: Location of y-carriage on the y-guide way,

- W (x; t): Bending in xz-plane for 0 < x < xs,

- W1(x; t): Bending in xz-plane for xs < x < Lx,

-  (x; t): Rotation around y-axis 0 < x < xs,

-  1(x; t): Rotation around y-axis xs < x < Lx,

- V (y; t): Bending in xy-plane 0 < x < xs,

- V1(y; t): Bending in xy-plane xs < x < Lx,

- '(x; t): Rotation around z-axis 0 < x < xs,

- '1(x; t): Rotation around z-axis xs < x < Lx,

- �(x; t): Torsion around x-axis 0 < x < xs,

- �x(x; t): Torsion around x-axis xs < x < Lx,

- A3, I3x, I3y , I3z, E3, G3, �3 and Lx are area, actual
and equivalent moments of inertia, Young modulus,
shear modulus, density and length of x-guide way,
respectively.

MODELING OF THE BEARINGS AT

Z-PINOLE

The kinetic and strain energy resulting from the motion
of the z-pinole and the torsion of bearings is as follows:
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where:

- �4(t): Torsion of x-carriage bearing around x-axis,

- �5(t): Torsion of z-axis bearing around x-axis,

- �6(t): Torsion of z-axis bearing around y-axis,

- Kbc4, Kbc5, Kbc6, Mbcz, Jbc4x, Jbc5x and Jbc6y:
Torsional sti�ness of bearings and drive system, mass
and mass moments of inertia of z-pinole assembly,
respectively.

MODELING OF THE Z-PINOLE

Bending of the z-pinole in the xz- and yz-planes is
considered. Kinetic and strain energy can be written
as follows:
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where:

- R(z; t): Bending in yz-plane,

- �1(z; t): Rotation around x-axis,

- S(z; t): Bending in xz-plane,

- �2(z; t): Rotation around y-axis

- A4, I4x, I4y , I4z , E4, G4, �4 and Lz: Cross sectional
area, moments of inertia, Young modulus, shear
modulus, density and length of z-axis, respectively.

MODELING OF LEFT COLUMN AND

Y -GUIDE WAY

For the left-side support column and y-guide way, the
same motions C(�; t), E(y; t) and 
2(y; t) have been
considered in a similar fashion to the right side column
and y-guide way. The kinetic and strain energy can be
written as follows:
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where A5, A6, I6x, E5, E6, G5, G6, �5 and �6 are cross
sectional area, moments of inertia, Young modulus,
shear modulus and density of left column and left y-
guide way, respectively.

Note that because of the e�ect of the drive system,
some motions, such as the rotation of the x-carriage
around the z-axis and the longitudinal vibration of
the z-axis, the horizontal and vertical motion of the
y-carriage have been neglected. Furthermore, the
gravitational strain energy is neglected.

EQUATIONS OF MOTION

Using Hamilton's principle, equations of motion can be
found.

t2Z
t1

(�T � �U + �W )dt = 0; (15)

where � denotes the variation operator and:

T = Tc + Tx + Ty + Tz + Tbcz + TL; (16)

U = Uc + Ux + Uy + Uz + Ubcz + UL: (17)

In the case of a �xed system, neglecting gravitational
e�ects, it can be written that:

W = 0: (18)

It is interesting to �nd natural frequencies using a state
space variables approach. State variables are de�ned as
follows:

A = x1; A0 = x2; � = x3; �0 = x4;

B = x5; B0 = x6; � = x7; �0 = x8;

C = x9; C 0 = x10; �1 = x11; �01 = x12;

D = x13; D0 = x14; 
1 = x15; 
01 = x16;

E = x17; E0 = x18 
2 = x19; 
02 = x20;

�3 = x21; �03 = x22; D1 = x23; D0

1 = x24;


11 = x25; 
01 = x26; E1 = x27; E0
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22 = x29; 
022 = x30; �33 = x31; �033 = x32;

W = x33; W 0 = x34;  = x35;  0 = x36;

V = x37; V 0 = x38; ' = x39; '0 = x40;

� = x41; �0 = x42; W1 = x43; W 0

1 = x44;

 1 = x45;  01 = x46; V = x47; V 0 = x48;

'1 = x49; '01 = x50; �x = x51; �0x = x52;

R = x53; R0 = x54; �1 = x55; �01 = x56;

S = x57; S0 = x58; �2 = x59; �02 = x60: (19)

Note that for free vibration, each state variable can be
separated into time and spatial coordinates, so:

xi(coordinates, time) = Xi(coordinates):e
i!t: (20)

Now, the equations and boundary conditions of the
system are written. Note that the attractiveness of
the energy method is that it gives both equations of
motion and corresponding boundary conditions.

EQUATIONS OF THE RIGHT COLUMN

X 0

1(�) = X2(�); (21a)

X 0

2(�) = X4(�)� (�1!
2=kG1)X1(�); (21b)
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X 0

3(�) = X4(�); (21c)
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2=kG1)X5(�); (22b)

X 0

7(�) = X8(�); (22c)

X 0

8(�) = �(�1!
2=E1)X7(�) + (kG1A1=E1I1x)

� [X3(�)�X2(�)]; (22d)

X 0

9(�) = X10(�); (23a)

X 0

10(�) = !2(�1A1 + �5A5)[E1A1 +E5A5]
�1

�X9(�); (23b)

X 0

11(�) = X12(�); (24a)

X 0

12(�) = !2�1=G1X9(�); (24b)

EQUATIONS OF RIGHT Y -GUIDE WAY
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13(y) = X14(y); (25a)

X 0

14(y) = X16(y)� !2�2A2[k(G6A6 +G2A2)]
�1

� [X13(y) + yX11(h) +X5(h)]; (25b)

X 0

15(y) = X16(y); (25c)

X 0

16(y) = [E6I6z + E2I2z ]
�1f�!2�2I2zX15(y)

+ k(G6A6 +G2A2)[X15(y)�X14(y)g; (25d)

X 0

17(y) = X18(y); (26a)

X 0

18(y)=X20(y)�!
2[k(G6A6+G2A2)]

�1�f(�2A2

+ �6A6)[X17(y)�X9(h)] + �2A2yX3(h)g;
(26b)

X 0

19(y) = X20(y); (26c)

X 0

20(y) = [E6I6x +E2I2x]
�1f�!2[�2I2x + �6I6x]

�X19(y)+k(G6A6+G2A2)[X19(y)�X18(y)]g;
(26d)

X 0
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EQUATION CORRESPONDING TO

ROTATION �2
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EQUATIONS OF X-GUIDE WAY
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EQUATIONS CORRESPONDING TO THE

ROTATIONS �4, �5 AND �6
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2X27(xs)

+ LzlysX3(h) + lxsX21(ys) + LzlX17(ys)

+ LzlX9(h)g; (32)

A4�4xs[(Lz+z0)
2�z20 ]=2]!

2�2�fJbc5x+A4�4(Lzl
2

+ [(Lz + z0)
3 � z30 ]=3)]g!

2(�4 + �5) +Kbc5�5

=!2fJbc5x+A4�4(Lzl
2+[(Lz + z0)

3�z30]=3)]g

+!2A4�4�f[(Lz+z0)
2�z20]=2][X1(h)+X27(xs)]

+Lzl
2(ysX3(h)+xsX21(h)�X9(h)+X23(xs)]g;

(33)

f!2(Jbc6y +A4�4[(Lz + z0)
2z20 ]=2]�Kbc6yg�6

= �!2A4�4[(Lz + z0)
2 � z20 ]=2][ysX11(h)

+X13(ys) +X5(h)]: (34)

EQUATIONS IN Z-PINOLE

X 0

53(z) = X54(z); (35a)

X 0

54(z) = X56(z)� !2�4=kG4fX53(z) + (z + z0)

� [X41(xs) + �4 + �5]� xs�2 +X1(h)

+X37(h)]g; (35b)

X 0

55(z) = X56(z); (35c)

X 0

56(z) = 1=E4I4xf�!
2�4I4xX55(z) + kG4A4

� [X55(z)�X54(z)]g; (35d)

X 0

57(z) = X58(z); (36a)

X 0

58(z) = X60(z)!
2�4=kG4[X57(z) + (z + z0)�6

+ ysX11(h) +X5(h) +X13(ys)]; (36b)

X 0

59(z) = X60(z); (36c)

X 0

60(z) = 1=E4I4yf�!
2�4I4yX59(z) + kG4A4

� [X59(z)�X58(z)]g: (36d)

Now, the corresponding boundary conditions for each
member are written.

BOUNDARY CONDITIONS FOR LEFT

COLUMN

The left column is considered to be clamped at � = 0.
At � = h, the boundary conditions are determined from
Hamilton's principle as follows:

X1(0) = X3(0) = X5(0) = X7(0) = X9(0) = X11(0)

= 0;

�[2A2Ly�2 +M ]X1(h)+A3L
2
x�3=2�2�kG1A1[X3(h)

�X2(h)]�A4�4[(Lz + z0)
2 � z20 ]=2X31(xs)

= 0;

�[2A2Ly�2+M ]X1(h)+A3L
2
x�3=2�2 � kG1A1[X3(h)

�X2(h)]�A4�4[(Lz + z0)
2 � z20 ]=2X31(xs)

= 0;

[�2A2L
3
y=3 + y2sM ]X3(h)�E1I1xX4(h)[�2A2L

2
y=2

+ ysM ]X9(h)+ ysMX17(h)+ys[xsMbcz+A3�3L
2
x=2

+A4Lz�4xs]X21(ys) + ys[Mbcz +A4Lz�4]X23(xs)

+ys[xsMbcz+A3�3L
2
x=2+A4Lz�4xs]X31(xs)

= 0;

[�2A2L
2
y=2 + y2sM ]!2X5(h) + kG1A1[X7(h)

�X6(h)]� [M �Mbc3]!
2X13(ys) + [�2A2L

2
y=2

+ ys(M �Mbc3)]� !2X11(h)

= 0;

!2[�2I2yLy+Jbc3y]X7(h)+E1I1yX7(h)+Jbc3yX21(ys)

= 0;

!2[2�2A2Ly+�6A6Ly+M ]X9�(E1A1+E5A5)X10(h)

� !2M [ysX3(h) +X17(ys)]

�!2(Mbcz+A4Lz�4)[X23(xs)+xsX21(ys)]

� !2lA4Lz�4lX1(xs) = 0;

�[3�2A2L
2
y=2 + ysM ]X5(h) +G1I1zX12(h)

� [2�2A2L
3
y=3 + y2sM ]X11(h)�ysMX11(h) = 0;

(37)
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where M = (Mbc3 +Mbcz +A3Lx�3 +A4Lz�4).

BOUNDARY CONDITIONS OF Y -GUIDE

WAY

Because the motions of the y-guide way are relative to
the left column, it can be assumed that it is clamped
at y = h and free at y = Ly. Continuity conditions
must be satis�ed at y = ys.

X13(0) = X15(0) = X26(Ly) = X17(0) = 0;

X19(0) = X30(Ly) = X21(0) = X32(Ly) = 0;

X13(ys)�X23(ys) = X24(Ly)�X25(Ly) = 0;

X15(ys)�X25(ys) = X16(ys)�X26(ys) = 0;

X17(ys)�X27(ys) = X28(Ly)�X29(Ly) = 0;

X5(h)+ysX11(h)+X13(ys)=X21(ys)�X31(ys)=0;

M [ysX3(h)�X9(h)]+[Mbcz+A3�3L
2
x=2+A4Lz�4]

�X21(ys) + (Mbcz +A4Lz�4)X33(xs)

+ lA4Lz�4X31(xs) = 0;

X19(ys)�X29(ys) = X20(ys)�X30(ys) = 0;

A4Lz�4lxsX31(xs) + xs[Mbcz +A4Lz�4]� [X23(xs)

+X9(h) + xsX17(ys) + ysX3(h)] = 0: (38)

BOUNDARY CONDITIONS OF THE

X-GUIDE WAY

The x-guide way is assumed to be a simply supported
beam in the xz-plane and to be clamped-free in the
xy-plane. It's torsion along the x-axis is assumed to be
clamped at both ends. Continuity conditions must be
satis�ed at x = xs.

X33(0)=X43(Lx)=X35(0)=X36(Lx)=X37(0)=0;

X39(0) = X50(Lx) = X41(0) = X51(Lx) = 0;

X33(xs)�X43(xs) = X35(xs)�X45(xs) = 0;

X36(xs)�X46(xs) = X37(xs)�X47(xs) = 0;

lA4Lz�4X41(xs) + [Mbcz +A4Lz�4][X17(ys)

+X33(xs) + ys �X3(h)�X9(h)] = 0;

X49(Lx)�X48(Lx) = X39(xs)�X49(xs) = 0;

X40(xs)�X60(xs) = X41(xs)�X51(xs) = 0;

[Jbc4x+Jbc5x+A4�4(Lzl
2+[(Lz+z0)

3�z30 ]=3)]

�X31(xs)+A4�4[(Lz+z0)
2�z20 ]=2][X1(h)

+X37(xs)] +A4�4Lzl[�X9(h) +X33(xs)

+ ysX3(h)] = 0: (39)

BOUNDARY CONDITIONS OF THE

Z-PINOLE

The motion of the z-pinole in the zx- and zy-planes is
assumed to be clamped-free.

X53(0) = X55(0) = X56(Lz) = X57(0) = X59(0)

= X60(Lz) = 0;

X54(Lz)�X55(Lz) = X58(Lz)�X59(Lz) = 0: (40)

METHOD OF SOLUTION

In order to obtain the natural frequencies of the system,
initially, the rotations �2, �4, �5 and �6 will be found
from Equations 27 and 32 to 34 and substituted in
the model equations. Note that the derived equation
can be listed into two categories. The �rst category
contains equations corresponding to the motions of the
left column and may be written in the following form:

fX 0(�)g = [D]fX(�)g; (41)

where fXg = fXi; Xj ; : : : ; Xng
t represents the vector

of corresponding state variables. The sign (0) denotes
derivation, with respect to �. Furthermore, the matrix,
[D] is in the form:

[D] = [K]� !2[M ]; (42)

where [K] and [M ] can be found readily by arranging
the equations in terms of !2. The solution of Equa-
tion 41 can be written as:

fX 0g = [U ]t[�][U ]fCg; (43)

where [U ] is the matrix of the eigenvectors of [D] and
fCg is a column vector of constants. The diagonal
matrix, [�], is in the form:
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[�] =

2
664
. . . 0

e�i�

0
. . .

3
775 ; (44)

where �i's are eigenvalues of the dynamic matrix [D]
depending on !2. Taking � = h, the value of Xi(h) in
terms of Ci's can be found and will be used in other
formulas.

The second category of equations contains equa-
tions corresponding to the motion of members in the y-
guide way, x-guide way and z-pinole. These equations
are in the form:

fX 0g = [D]fXg+ [F ]; (45)

where, in the above equation, the vector, fXg, may be
a function of x, y or z. In order to solve the equation,
initially, the matrix of the eigenvectors of [D], i.e. [U ],
should be found. Using the following transformation:

fY g = [U ]fXg; (46)

it can be obtained:

fY 0g = [U ]t[D][U ]fY g+ [U ]t[F ]; (47)

or:

fY 0g = [�]fY g+ [U ]t[F ]: (48)

Because the matrix, [�], is diagonal, an ordinary
di�erential equation for each Yi is obtained and can
be solved readily. Note that for each Yi, there is a
constant of integration, Ci. Next, using Equation 46,
each Xi can be found. Taking y = ys and x = xs, the
values of Xi(xs) or Xi(ys) can be found in terms of Ci's
and implemented in other formulas.

So far, Xi's are obtained in terms of Ci's and
�i's. Now, substituting Xi's into boundary conditions
and rearranging in terms of Ci's, the following equation
may be obtained:

[B]fCg = f0g: (49)

In order to have a nontrivial solution, the determinant
of coe�cient matrix [B] must be zero, i.e.:

Det[B] = 0: (50)

This yields an equation in terms of !2. Because
the presented model is based on continuous beam
modeling, the obtained equation is transcendental and
has an in�nite number of solutions. For each value of
xs and ys, it can solve for !2.

In order to illustrate an example of modeling, a
CMM with the following speci�cations is modeled.

�i = 7850 kg/m
3
; Ei = 200 Gpa;

Gi = 70 Gpa; h = 0:825 m;

Ly = 0:6 m; Lx = 1:2 m;

Lz = 0:75 m; l = 0:16 m;

z0 = 0:125 m; Kbearings = 5e7 N.m/rad;

A1 = 7:6e� 3 m2; A2 = 4:6e� 3 m2;

A3 = 7:6e� 3 m2; A4 = 1:0e� 3 m2;

A5 = 4:6e� 3 m2; A6 = 4:6e� 3 m2;

I1x = 7:86e� 5 m4; I1y = 1:3e� 5 m4;

I1z = 3:58e� 5 m4; I2x = 1:35e� 5 m4;

I2y = 1:38e� 6 m4; I2z = 2:04e� 5 m4;

I3x = 5:94e� 5 m4; I3y = 2:82e� 5 m4;

I3z = 6:35e� 5 m4; I4x = 4:21e� 7 m4;

I4y = 4:21e� 7 m4; I5x = 1:35e� 5 m4;

I6x = 1:35e� 5 m4; I6y = 2:04e� 5 m4;

I6z = 6:95e� 5 m4; Jbc3z = 0:18 kgm4;

Jbc3z = 0:3 kgm4; Jbc4x = 2:7 kgm4;

Jbc5x = 0:05 kgm4; Jbc6y = 0:05 kgm4;

Mbc3 = 10 kg; Mbcz = 35 kg:

The natural frequencies of the system depend on the
location of the probe. The variation of the 1st and
2nd natural frequencies versus the fXY g position of
the probe is illustrated in the 3-D plots of Figures 2
and 3, when the tip of the probe is at its maximum
distance from the x-guideway (z = Lz). It is clear that
increasing the values of xs and ys reduces the natural
frequencies of the system. Note that the driving
systems of the x- and y-motions are located at the right
side of the CMM, consequently, the x-guide way slides
on the left y-guide way, and the minimum value of the
natural frequency occurs when the probe is located at
the end of the x-guide way. The variation of the 1st to
4th natural frequencies of the system at di�erent fXY g
positions of the probe (z = Lz), obtained from the

Figure 2. First natural frequency (z = Lz).
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Figure 3. Second natural frequency (z = Lz).

analytical and �nite elements method, are presented
in Figures 4 to 7. Findings from the analytical and
�nite elements method indicate high accuracy and good
agreement between the results.

CONCLUSION

The modeling of a gantry type CMM, based on Tim-
oshenko beam theory using Hamilton's principle, was
developed and the natural frequencies of the system
were calculated at various positions of the probe in
the system. The parameters of motion are de�ned so
that the kinetic energy of each element is in
uenced
by the motion of adjacent connected elements, while
the strain energy is independent of the position and
velocity of these elements. Results indicate that in
the �rst four natural frequencies, for any y-position of
the probe, the system has the lowest natural frequency
when the probe moves toward the end of the x-guide
way. Moreover, the values of natural frequencies again
decrease when the system moves toward the end of the
y-guide way. However, when the system is at the end
of both x- and y-guide ways, the minimum value of the

Figure 4. Natural frequencies in Y = 0 for X = 0 to
X = 120 cm.

Figure 5. Natural frequencies in Y = 20 for X = 0 to
X = 120 cm.

Figure 6. Natural frequencies in Y = 40 for X = 0 to
X = 120 cm.

Figure 7. Natural frequencies in Y = 50 for X = 0 to
X = 120 cm (Z = Lz).
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natural frequencies occurs. This is due to the minimum
sti�ness of the system in that position.

These frequencies help us to present any resonant
when the system is under operation. Any interference
between the systems natural frequencies and the fre-
quencies of the driving system should be prevented.

A good agreement and high accuracy in compari-
son with the results found by the �nite element analysis
can be observed.

REFERENCES

1. Weekers, W.G. \Compensation for dynamic errors of
coordinate measuring machines", PhD Thesis, Eind-
hoven University of Technology (1996).

2. Weekers, W.G. and Schellekens, P.H.J. \Compensation
for dynamic errors of coordinate measuring machines",
Measurement, 20, pp 197-209 (1997).

3. Barakat, N.A., Elbestawi, M.A. and Spence, A.D.
\Kinematic and geometric error compensation of a
coordinate measuring machine", Machine Tools &
Manufacture, 40, pp 833-850 (2000).

4. De Nijs, J.F.C., Schellekens, M.G.M. and Van der
Wolf, A.C.H. \Modeling of a coordinate measuring
machine for analysis of its dynamic behavior", Annals
of the CIRP, 37, pp 507-510 (1988).

5. Vermeulen, M. \High precision 3D-coordinate measur-
ing machine, design and prototype development", PhD
Thesis, Eindhoven University of Technology (1995).

6. Teewwsen, J.W.M., Soons, J.A. and Schelekens, P.H.
\A general method for error description of CMMs using
polynomial �tting procedure", Annals of the CIRP,
38, pp 505-510 (1989).

7. Zhang, G. \Error compensation of coordinate measur-
ing machines", Annals of the CIRP, 34, pp 445-448
(1985).

8. Lee, H.P. \Transverse vibration of a Timoshenko beam
acted on by an accelerating mass", Applied Acoustics,
47, pp 319-330 (1996).

9. Esmailzadeh, E. and Ghorashi, M. \Vibration analysis
of a Timoshenko beam subjected to a traveling mass",
Journal of Sound and Vibration, 199, pp 615-628
(1997).

10. Reddy, J.N. \Energy and variational methods in ap-
plied mechanics", John Wiley & Sons (1984).

11. Ramezani, S. \Vibration analysis of gantry type
CMMs and optimization using genetic algorithm",
M.Sc. Thesis, Sharif University of Technology, Tehran,
Iran (2003).


