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The problem considered in this paper is that of compressible viscous ow over an open rectangular
cavity, including the e�ects of shear layer thickness and triple deck structure on interaction with
the trailing edge. This analysis uni�es analytical cavity studies and provides a wave-number
correction for the method of Tam and Block [1], which studies the case of a compressible inviscid
ow with a constant shear layer thickness spanning an open cavity. Here, basic equations for a
two-dimensional compressible viscous ow are derived. The e�ect of non-parallelism of the mean
ow is introduced. This weakly non-parallel mean ow is perturbed to obtain the governing
equations for the shear layer. The inverse of the Reynolds number, here related to the weak
e�ect of non-parallelism of the mean ow, serves as a perturbation parameter. The shear
layer is divided into a region of inviscid ow away from the trailing edge and a region where
viscous e�ects are important, near the trailing edge, as a typical boundary layer problem. The
viscous region is analyzed by proper scaling of the independent variables. Distinguished limits
are obtained by balancing the terms in the set of the governing equations. A multiple deck
structure, containing three distinct regions, occurs, each region with a di�erent scaling. Normal
modes for the ow properties are introduced to predict an eigenvalue problem, which governs
the wave-number/frequency relationship in each deck, as well as the inviscid region. These
eigenvalue problems are derived using the Fredholm Alternative and are solved numerically by
use of a fourth-order Runge-Kutta method. The method of asymptotic expansions is used to
match these wave numbers to those among the multiple deck structure, as well as to the one
for the inviscid region. This wave-number, uniformly valid throughout the region, is used as
a correction to the one derived by Tam and Block. This study proves that by considering the
e�ect of non-parallelism of the mean ow, a lower wave-number/frequency is produced at any
spanwise location for a given excitation frequency. Predicted discrete tone frequencies, based on
this corrected value of wave-number, produce a closer agreement with the experimental results.

INTRODUCTION

The problem considered herein is that of a two-
dimensional compressible viscous ow over an open
cavity. The problem is considered from a rigorous
mathematical viewpoint. This is to include the e�ect of
shear layer thickness variations along the span of the
cavity and the enforcing of the boundary conditions
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at the trailing edge. In terms of the modeling of
Tam and Block [1], a feedback mechanism occurs,
due to the deection of the shear layer into a cavity.
Reected waves excite the shear layer (see Figure 1).
In developing this feedback model, Tam and Block as-
sumed that the rectangular cavity was two-dimensional
and that the mean ow inside the cavity could be
ignored. They, as evidenced by ow visualization,
proposed that the shear layer oscillates up and down
near the trailing edge of the cavity. During the
upward motion of the cycle, the uid of the shear
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Figure 1. Shear layer modeling.

layer shields the trailing edge of the cavity from the
external ow. Under this circumstance, the external
uid ows smoothly over the trailing edge and no
pressure waves of any signi�cance are generated. When
the shear layer is deecting downward, there is an
inow of external uid into the cavity. A high-pressure
region forms momentarily near the trailing edge of the
cavity. The transient nature of the ow causes the
emission of a compression wave. This compression
wave propagates in all directions and results in the
setting up of a feedback mechanism. The problem
of a compressible ow over an open cavity is one of
great practical importance. Examples of such ows
are those over aircraft wheel wells and weapons bays.
Bartel and McAvoy [2] experimentally measured sound
pressure levels as high as 170 dB in a weapons bay
environment. Levels this high can lead to structural
failure and will cause extreme personal discomfort.
Thus, methods of reducing sound pressure levels are
of the utmost importance. The �rst step in this
reduction is to obtain a useful analytical model of the
compressible ow over an open cavity. Besides, the
authors motivation is to unify an analytical theory of
open cavity ows.

Open cavity ows have been investigated analyt-
ically and experimentally. However, many analytical
models have severe limitations on their range of appli-
cation or do not match experimental data. Some of the
best analytical models are, in fact, semi-empirical. Kr-
ishnamurty [3] performed one of the �rst experimental
investigations in a simulated weapons bay. He showed
that an intense, high-frequency acoustic radiation is
an essential feature of the problem. The character of
the acoustic �eld was found to depend upon the type of
boundary layer, the gap dimensions and the free-stream
velocity or Mach number. These results have been

veri�ed by other people, including Gibson [4], Spee [5],
East [6] and Smith and Shaw [7], among others. The
�rst signi�cant analytical study of open cavity ows
was that of Plumblee, Gibson and Lassiter [8]. They
developed a theory for the resonant frequencies and
pressure ampli�cations of a rectangular cavity of arbi-
trary dimensions in a ow �eld and derived radiation
impedance at all Mach numbers, using the concepts
of retarded potential theory, assuming this radiation
impedance to be that of a rectangular piston set in a
at wall, which was very large in respect to the dimen-
sions of the piston. Rossiter [9] concluded that it would
appear that acoustic resonance does play an important
part in determining the frequency and magnitude of
the pressure uctuations, but, the forcing function is a
property of the ow over the cavity rather than of the
boundary layer approaching it. Smith and Shaw [10]
and Bartel and McAvoy [2] have developed semi-
empirical models of open cavity ows based upon their
experimental observations. These models do reect the
data obtained by the respective investigators, but, are
limited to very low Mach numbers. Covert [11] studied
cavity behavior by a simultaneous solution of the ow
process for the external and internal ows. He assumed
the uid to be inviscid and perfect and argued that
the normal velocity and the pressure are continuous
across the interface but the tangential velocity may
be discontinuous across the cavity interface, hence, a
vortex sheet model seemed to be reasonable. Bilanin
and Covert [12] developed an analytical model of a
shallow cavity using an acoustic monopole to model
the trailing edge behavior. Their model is based upon
a feedback mechanism �rst proposed by Rossiter [9],
where the pressure �eld of the monopole drives the
shear layer. Block [13] extended the work of Bilanin
and Covert to include e�ects of length-to-depth ratio.
To meet the boundary conditions on the internal cavity
walls, image sources were used. The appropriate
trailing edge behavior has created some controversy.
Heller and Bliss [14] studied a water table simulation,
which revealed that unsteady motion of the shear layer
led to periodic mass addition and removal of the cavity
trailing edge. Tam and Block [1], in a study directed
toward open wheel well noise, analyzed the open cavity
problem using a feedback model, mentioned previously,
signi�cantly di�erent from that of Bilanin and Covert.
The work of Tam and Block is important because it
was the only analytical cavity study to include shear
layer thickness e�ects prior to the study of Kelly [15].
Tam and Block derived an eigenvalue problem for
pressure amplitude from which the value of wave-
number frequency was produced. The only other
analytical studies of the shear layer spanning an open
cavity, which includes thickness e�ects, are those by
Kelly and Kelly and LaRose [15,16]. These works
were based upon Tam's analysis. What is lacking in
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these studies is consideration of the viscosity of the
uid ow. All the other works in this subject are
numerical (e.g. [17-23]) or use computer codes (e.g. [24-
26]).

In the present work, the main goal is to provide
a correction, in terms of the wave-number/frequency,
to the technique of Tam and Block, to account for
varying shear layer thickness e�ects and consideration
of viscosity in the vicinity of the trailing edge. The
problem formulation is started with derivation of the
basic �eld equations for a two-dimensional compressible
viscous ow. The e�ect of non-parallelism of the
mean ow is introduced in [27]. This weakly non-
parallel mean ow is perturbed to obtain the governing
equations for the shear layer. In free shear ows, the
viscosity e�ects can be neglected, as long as no walls
are present. Therefore, the ow spanning the cavity
away from the trailing edge can be considered inviscid.
The e�ect of viscosity is most important in the vicinity
of the trailing edge of the cavity where the shear layer
is impinging. Thus, the shear layer can be divided into
a region of inviscid ow away from the trailing edge and
a region where viscous e�ects are important, near the
trailing edge, as in a typical boundary layer problem.
The inverse of the Reynolds number of shear layer
ow serves as a perturbation parameter. The weak
e�ect of non-parallelism of the mean ow is related
to this parameter. The governing equations for the
inviscid region are obtained by neglecting the e�ect
of viscosity. In the vicinity of the trailing edge, the
viscous terms are retained. To analyze the viscous
region, the independent variables are scaled properly
into a set of independent variables magnifying this
region. Distinguished limits are obtained by balancing
each term with the rest of the terms in the set of
the governing equations. Three regions of importance
stand out, each identi�ed by a di�erent set of governing
equations. This is the multiple deck situation, which
can be, and is, used when inviscid and viscous regions
in uid dynamics problems interact [28]. The multiple
decks mentioned above are named the fully viscous
upper and lower decks, the two located at the trailing
edge of the cavity. The other deck situated in between
the trailing edge and the inviscid region is named
as the outer viscous region. Normal modes for the
ow properties are introduced to predict an eigenvalue
problem, which governs the wave-number/frequency
relationship in each deck. These eigenvalue prob-
lems are derived using the Fredholm alternative [29],
and solved by numerical techniques. The method of
matched asymptotic expansions is used to match these
wave-numbers to those among the multiple decks in
the viscous region in both directions, as well as to
the one for the inviscid region. In this process of
matching, the boundary conditions at the trailing edge
are enforced. The calculated wave-number of this

analysis serves as a correction to the one obtained by
Tam and Block.

PROBLEM FORMULATION

The basic �eld equations written out in the Cartesian
coordinate systems for a two-dimensional viscous, non-
conducting, compressible ow with no body force in
dimensionless quantities for mass, x-momentum, y-
momentum, energy and state, respectively, are:
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p =
�T

M2
: (5)

Here, x and y are the axes of the Cartesian coordinate
system, t is time, u and v are components of the ow
velocity in the directions of x and y, respectively, � is
the ow density, p is pressure and T is the temperature
of the ow,  is the ratio of speci�c heat and Re is the
Reynolds number of the shear layer ow. The mean
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ow is assumed to be a steady two-dimensional ow
with quantities (U; V; P;R; T ) satisfying the same set of
equations as above without the time-dependent terms
and R is mean ow density.

Because the shear layer is assumed to grow in a
downstream direction, the mean ow is non-parallel.
This non-parallel e�ect is assumed to be weak and can
be represented by a small non-dimensional parameter,
", which represents the amplitude of growth of the
shear layer thickness. That is, whenever x appears in
the mean ow quantities, it appears in combination
with " as "x. In addition, the non-parallel component
of velocity, V , must be of order ", while all other mean
ow quantities are of order one. Thus, it is consistent
to introduce a slow scale de�ned by:

x1 = "x; (6)

then, all mean ow quantities are written as functions
of x1 and y. From these equations, it is indeed apparent
that:

U = O(1); R = O(1); V = O(");

@P
@y = O("2); @T

@x1
= O(1); @T

@y = O(1);

1=Re = O("):

(7)

The ow variables in the shear layer are assumed to be
the mean ow component plus a perturbation quantity.
Thus:

u(x1; y; t) = U(x1; y) +
`

u(x1; y; t);

v(x1; y; t) = V (x1; y) +
`

v(x1; y; t);

�(x1; y; t) = R(x1; y) +
`

�(x1; y; t);

p(x1; y; t) = P (x1; y) +
`

p(x1; y; t);

T (x1; y; t) = T (x1; y) +
`

T (x1; y; t); (8)

where a quantity with a tilde is a perturbation quantity
and is assumed to be small in comparison with the
mean ow quantities. Equations 8 are substituted into
Equations 1 to 5 and equations for mean quantities are
used to subtract out the basic state. The resulting
equations are linearized by neglecting all the terms
which are nonlinear in perturbation quantities. The
resulting mass, x-momentum, y-momentum, energy
and state equations, respectively, are:
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Equations 9 to 13 form a set of �ve equations for the �ve
unknown perturbation quantities. Note that because
of the non-parallelism e�ects of the mean ow, the
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coe�cients of the partial derivatives in these equations
are functions of both independent variables, x1 and y.

The boundary conditions in the x-direction are
those of no slip and no penetration of the shear layer
impinging at the trailing edge of the cavity. These are:

`

u(1; y) = 0;
`

v(1; y) = 0: (14)

The boundary conditions in the y-direction are simply
that the ow quantities must be bounded as y ! �1.

Governing Equations for Inviscid Shear Layer

For inviscid ow, the inverse of the Reynolds number
approaches zero. The governing equations for a two-
dimensional, inviscid, compressible shear layer are
obtained by setting 1=Re = 0 in system Equations 9
to 13.

Viscous Analysis of the Shear Layer

The viscous terms in the set of Equations 9 to 13 are
important at the vicinity of the trailing edge of the
cavity where the shear layer is impinging. This is like a
typical boundary layer problem. The viscous terms are
important near the wall and negligible anywhere away
from the wall. Thus, the shear layer can be divided
into two regions of inviscid (Outer region) and viscous
(Inner region) ow, as in Figure 2. To retain the viscous
terms, which were neglected in the outer region, the
region in the vicinity of the wall is magni�ed by use of
the following change of variables:
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Figure 2. Triple-deck structure.

where the constants � and � are to be determined. The
set of Equations 9 to 13 are written in new variables and
the following expansions are used in these equations:

1=Re = "=Re1 +O("2);

where:

1=Re1 = O(1) and V = "V1 +O("2): (16)

The constants, � and �, are to be determined from bal-
ancing the order of magnitude of the terms contained in
the set of these equations. Keeping the dominant terms
by balancing each term in every equation with the rest
of the terms, three sets of values for � and � yield a
meaningful system of equations governing the viscous
region, distinguished limits [28]. This is a multiple deck
analysis, expected when inviscid and viscous regions
interact in uid mechanics problems. These distinct
regions, shown in Figure 2 enclosed in a viscous region,
are named as follows:

1. Fully viscous upper deck, when � = 2, 0 � � < 1;

2. Fully viscous lower deck, in the case of � = 2, � = 1;

3. Outer viscous deck, when 1 < � < 2, � = 1.

Substituting � = 2, 0 � � < 1, into the system of
Equations 9 to 13 in new variables gives the governing
equations mass, momentum, energy and state for a
fully viscous upper deck, respectively, as follows:
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For any value of 0 � � < 1, the �rst order terms
in the set of equations above are the coe�cients of
"(1��). The choice of perturbation parameter in this
deck is "2 = "(1��). The solution to this system is to
be matched asymptotically to the solutions resulting
from the system equations 1) Fully viscous lower
deck and 2) Outer viscous deck, respectively. In the
process of this matching, the proper value of � is
determined.

Substituting � = 2 and � = 1 into system
Equations 9 to 13 in new variables gives the governing
equations mass, momentum, energy and state for a
fully viscous lower deck. The solution to this system
is to be matched asymptotically to the solution re-
sulting from the system equations governing 1) Fully

viscous upper deck and 2) Outer viscous deck, respec-
tively.

Substituting 1 < � < 2 and � = 1 into system
Equations 9 to 13 in new variables gives the governing
equations mass, momentum, energy and state for the
outer viscous deck, respectively, as:
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+
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+
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@
`

u

@�
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@�
�
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@�

@
`
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@�
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@U

@�

@
`

u

@�

�

= 0; (25)

`

p =
1

M2
(R
`

T + T
`

�): (26)

For any value of 1 < � < 2, the �rst order terms
in the set of these equations are the coe�cients of
"(2��). The choice of perturbation parameter in this
deck is "1 = "(2��). The solution to this system is to
be matched asymptotically to the solutions resulting
from the system equations governing the 1) Outer
viscous deck and 2) Fully viscous upper and lower
decks, respectively. In the process of this matching,
the proper value of � is determined. This section
completes the formulation of the problem of a two-
dimensional compressible, viscous shear layer spanning
an open cavity. In the next section, the normal mode
analysis is presented.

NORMAL MODE ANALYSIS

In this section, the stability characteristics of the shear
layer are considered when it is excited by a reected
wave of frequency !. Since the mean ow is non-
parallel and its properties are functions of both spatial
variables, x and y or � and � in the viscous regions,
the standard parallel stability theory is not appropriate
in this problem. Here, the amplitude functions are
assumed functions of both coordinates x and y or �
and � and a perturbation method (multiple scales), in
conjunction with normal mode theory, is used.

For inviscid shear layer, it is convenient to expand
the mean ow quantities, according to expansions
(Equations 16) in the power series in ", as:

Q(x1; y) = Qo(x1; y) + "Q1(x1; y) + � � � ; (27)

in which Q represents U , V , R, P , T . Additionally,
the perturbation quantities will be decomposed into an
amplitude, which is a function of two variables times an
exponential function, whose exponent is also a function
of two variables. To this end, let:

`

u(x1; y; t) = a(x1; y)e
i�(x1;t);

`

v(x1; y; t) = b(x1; y)e
i�(x1;t);

`

�(x1; y; t) = c(x1; y)e
i�(x1;t);

`

p(x1; y; t) = d(x1; y)e
i�(x1;t);

`

T (x1; y; t) = f(x1; y)e
i�(x1;t); (28)

where:

@�=@t = �! is frequency and @�=@x1 = k(x1):
(29)

It is noted that both the amplitudes and the wave
number, k, are assumed to be functions of the slow
scale, x1, as opposed to the standard linear stability
problem, where k is constant and the amplitudes are
only functions of the y-coordinate [30]. It is also
convenient to expand the amplitude functions in the
power series of ". Thus;

amp(x1; y) = ampo(x1; y) + " amp1(x1; y) + � � � ;

k(x1) =
1

"
k(x1) + � � � (30)

in which amp represents a, b, c, d and f .
Equations 30 are substituted into Equations 28.

The resulting equations are substituted into governing
equations for inviscid shear layer, making use of Equa-
tion 27. Coe�cients of like powers of " are collected
in each equation and set equal to zero independently.
The results are summarized below:

Order "o:

Mass, x-momentum, y-momentum, energy and state
are, respectively, as follows:

ikRoao +Ro
@bo
@y

+
@Ro

@y
bo + i(kUo � !)co = 0; (31)

i(kUo � !)Roao +Ro
@Uo
@y

bo + ikdo = 0; (32)

i(kUo � !)Robo +
@do
@y

= 0; (33)

h
Ro

@To
@y

� ( � 1)M2 @po
@y

i
bo

� ( � 1)M2i
�
kUo � !

�
do

+ i(kUo � !)Rofo

= 0; (34)

1

M2
Toco � do +

1

M2
Rofo = 0: (35)
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Order ":

Mass, x-momentum, y-momentum, energy and state
are, respectively, as follows:

ikRoa1 +Ro
@b1
@y

+
@Ro

@y
b1 + i(kUo � !)c1 =

�Ro
@ao
@x1

� ao
@Ro

@x1
� Uo

@co
@x1

� co
@Uo
@x1

� ikR1ao � ikU1co �R1
@bo
@y

� bo
@R1

@y

� V1
@co
@y

� co
@V1
@y

; (36)

i(kUo � !)Roa1 +Ro
@Uo
@y

b1 + ikd1

= �RoUo
@ao
@x1

�Roao
@Uo
@x1

� coUo
@Uo
@x1

�
@do
@x1

+ i(kUo � !)aoR1 � ikU1aoRo � V1Ro
@ao
@y

�Robo
@U1

@y
�R1bo

@Uo
@y

� V1co
@Uo
@y

; (37)

i(kU0 � !)Rob1 +
@d1
@y

= �i(kUo � !)boR1 �RoUo
@bo
@x1

� ikRoboU1 � V1Ro
@bo
@y

�Robo
@V1
@y

; (38)

h
Ro

@To
@y

� ( � 1)M2 @po
@y

i
b1

� (�1)M2i(kUo � !)d1+i(kUo�!)Rof1

= �i(kUo � !)R1fo +�RoUo
@fo
@x1

� ikRoU1fo �Roao
@To
@x1

� V1Ro
@fo
@y

�Robo
@T1
@y

�R1bo
@To
@y

� Uoco
@To
@x1

� V1co
@To
@y

+ ( � 1)M2
�
Uo

@do
@x1

+ ikU1do

+ ao
@po
@x1

+ V1
@do
@y

+ bo
@p1
@y

i
; (39)

1

M2
Toc1 � d1 +

1

M2
Rof1 =

�
1

M2
(R1fo + T1co): (40)

Equations 31 to 35 represent a set of equations to be
solved for the zeroth order perturbation amplitudes
ao, bo, co, do and fo. This will be presented in later
sections.

For viscous shear layer, in the same way, the mean
ow properties and amplitudes are expanded in the
power series in " as before, but, in terms of � and
� and di�erent ones in each deck. Zeroth-order and
�rst-order mass, x-momentum, y-momentum, energy
and state equations, in a form similar to Equations 31
through 40 for perturbation amplitudes, are obtained
for each deck in the multiple deck structure. These
equations are to be solved for each deck independently
and then the results are to be matched asymptotically
to those among themselves, as well as to the inviscid
region. This task will be presented in the next
sections.

DERIVATION OF WAVE-NUMBER

CORRECTION

The wave-number correction, due to the e�ect of
the non-parallelism of the shear layer, is derived in
this section. This is done for the inviscid region,
as well as for the amplitude deck structure in the
viscous region. The system of equations for zeroth
and �rst-order amplitudes in every region is written
in a matrix form involving a linear operator. The
adjoint of this operator is calculated and the Fredholm
alternative is applied. The resulting solvability con-
dition produces a di�erential equation yielding to the
derivation of the wave-number/frequency correction.
This correction is added to the wave-number/frequency
calculated by Tam and Block. The corrected wave-
number is matched throughout the region asymptoti-
cally.

Wave-Number Correction for Inviscid Region

System Equations 31 to 35 represent a set of equations
to be solved for the zeroth-order perturbation ampli-
tudes ao, bo, co, do and fo for the inviscid region. This
set of equations can be written in matrix form as:

[L][�o(x1; y)] = [0]; (41)

where:

[�o] =
�
ao bo co do fo

�T
;
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and:

[L] =

2
666664

ikRo
@Ro

@y + Ro
@
@y i(kUo � !)

i(kUo � !)Ro R0
@Uo
@y 0

0 i(kUo � !)Ro 0

0 Ro
@To
@y 0

0 0 � To
M2

0 0
ik 0
@
@y 0

�i( � 1)M2(kUo � !) i(kUo � !)Ro

1 � Ro

M2

3
77775 : (42)

It is noted that the operations involved in [L] are simply
multiplications by known functions and di�erentiations
with respect to y. Thus, it is possible to consider
Equation 41 at a given spanwise location independent
of every other spanwise location. This is a result
of the weakly non-parallel approximation. Arbitrary
functions of x1 will be involved in the solution of
Equation 41. Indeed, it is convenient to write:

[�o(x1; y)] = A(x1)[�̂o(x1; y)]; (43)

where A(x1) is, at this level, an arbitrary function of x.
However, since di�erentiations in [L] are with respect
to y only:

[L][�o(x1; y)] = A(x1)[L][�̂o(x1; y)];

or:

[L][�̂o(x1; y)] = [0]: (44)

Equation 44 is a homogeneous system of equations to
solve for the components of [�o(x1; y)]. The matrix, [L],
is a matrix of linear operators that acts on the compo-
nents of a �ve-dimensional vector which are functions
of y and transforms it into a new �ve-dimensional
vector. Thus, the vector space, <, is de�ned as all �ve-
dimensional vectors whose components are complex
functions of a real variable, y, whose range is from �1

to +1. An inner product can be de�ned on this vector
space according to:

([r]; [s]) =

+1Z
�1

[r]T [s]dy; (45)

for all [r], [s] 2 <. The bar in Equation 45 denotes a
complex conjugate. For a given excitation frequency, !,
it is desired to �nd the amplitudes of each variable, as
well as the spatial wave function, k(x1). Equation 44 is
a homogeneous system for solving these amplitudes at

each spatial location with the local value of k(x1) as a
parameter. However, this system will have a non-trivial
solution only for certain values of k(x1). The values of
k(x1), for which this non-trivial solution occurs, can be
determined numerically. Equations 36 to 40 represent a
set of equations to solve for the �rst-order perturbation
amplitudes a1, b1, c1, d1 and f1. These equations can
be written in the form:

[L][�1(x1; y)] = [g(x1; y)]; (46)

where:

[�1(x1; y)] =
�
a1 b1 c1 d1 f1

�T
;

[g(x1; y)] =
�
g1(x1; y) g2(x2; y) g3(x1; y)

g4(x1; y) g5(x1; y)
�T

;

in which g0s are the right hand-side functions of
Equations 36 to 40, respectively. The operator, [L],
in Equation 44 is the same operator that appears in
Equation 46. This equation is a non-homogeneous
system, whereas Equation 44 is a homogeneous sys-
tem. Furthermore, non-trivial solutions of Equation 46
exist. Thus, the Fredholm alternative implies that a
solution to Equation 46 exists if, and only if, the non-
homogeneous terms satisfy a solvability condition. In
particular, one can show that the non-homogeneous
terms must be orthogonal to all non-trivial solutions
of the corresponding adjoint problem. The adjoint of
an operator, [L], with respect to a given inner product,
is the operator, [L�], that:

([L][r]; [s]) = ([r]; [L�][s]); (47)

for all [r], [s] belonging to the domain of [L]. Equa-
tion 47 applied to the inner product given in Equation
45 becomes:

+1Z
�1

([L][r])T [s]dy =

+1Z
�1

[r]T ([L�][s])dy: (48)

Let, [r] =
�
r1 r2 r3 r4 r5

�T
and [s] =�

s1 s2 s3 s4 s5
�T

be arbitrary elements of <.
Then, using the de�nition of [L] from Equation 44, the
left-hand side of Equation 48 becomes:

+1Z
�1

([L][r])T [s]dy=

+1Z
�1

nh
ikRor1+

@Ro

@y
r2+Ro

@r2
@y

+i(kUo � !)r3

i
s1+

h
i(kUo�!)Ror1+Ro

@Uo
@y

r2
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+ikr4

i
s2+

h
i(kUo � !)Ror2+

@r4
@y

i
s3+

h
Ro

@To
@y

r2

� i( � 1)M2(kUo � !)r4 + i(kUo � !)Ror5

i
s4

+
h
�

To
M2

r3 + r4 �
Ro

M2
r5

i
s5

o
dy:

By use of integration by parts, this can be written as:

+1Z
�1

([L][r])T [s]dy =

+1Z
�1

nh
ikRos1 + i(kUo � !)Ros2

i
r1

+
h@Ro

@y
s1�

@

@y
(Ros1)+Ro

@Uo
@y

s2+i(kUo�!)Ros3

+Ro
@To
@y

s4

i
r2 +

h
i(kUo � !)s1 �

To
M2

s5

i
r3

+
h
iks2�i(�1)M

2(kUo�!)s4+s5�
@s3
@y

i
r4

+
h
i(kUo � !)Ros4 �

Ro

M2
s5
�
r5

o
dy: (49)

The right-hand side of Equation 49 can be written in
the same form as the right-hand side of Equation 48
with:

[L�] =

8>>>><
>>>>:

�ikRo �i(kUo � !)Ro 0

�Ro
@
@y Ro

@Uo
@y �i(kUo � !)Ro

�i(kUo � !) 0 0

0 �ik � @
@y

0 0 0

0 0

Ro
@To
@y 0

0 � T0
M2

�i( � 1)M2(kUo � !) 1

�i(kUo � !) � Ro

M2

9>>>>>=
>>>>>;
:

Let [
a

�

�

o(x1; y)] be the solution to:

[L�][
a

�

�

o(x1; y)] = [0]; (50)

subject to the requirement that all components of

[
a

�

�

o(x1; y)] are bounded as y ! �1. The Fredholm
alternative implies that for a solution of Equation 44

to exist, [g(x1; y)] must be orthogonal to [
a

�

�

o(x1; y)].
That is:

([g(x1; y)]; [
a

�

�

o(x1; y)]) = 0;

or:

+1Z
�1

[g(x1; y)]
T [
a

�

�

o(x1; y)]dy = 0: (51)

Upon substitution of all appropriate quantities and ne-
glecting �rst-order perturbation quantitie, Equation 51
becomes:

A(x1)

+1Z
�1

nh
Ro

@
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ao
@x1

+
@Ro

@x1

a

ao + Uo
@
a

co
@x1
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@Uo
@x1

a

co

i
a

a
�

o

+
h
RoUo

@
a

ao
@x1

+Ro
@Uo
@x1

a

ao+Uo
@Uo
@x1

a

co+
@
a

do
@x1

i
a

b

�

o

+
h
RoUo

@
a

bo
@x1

i
a

c
�

o +
h
RoUo

@
a

fo
@x1

+Ro
@To
@x1

a

ao

+ Uo
@To
@x1

a

co � ( � 1)M2Uo
@
a

do
@x1

i
a

d

�

o

o
dy

+
dA

dx1

+1Z
�1

n
(Ro

a

ao+Uo
a

co)
a

a
�

o+(RoUo
a

ao+
a

do)
a

b

�

o

+RoUo
a

bo
a

c
�

o +
h
RoUo

a

fo � ( � 1)M2Uo
a

do

i

:
a

d

�

o

o
dy = 0; (52)

or:

�1(x1)
dA

dx1
� i�2(x1)A(x1) = 0; (53)

where �1(x1) and �2(x1) can be determined by com-
paring Equations 52 to 53. The solution of Equation 53
is:

A(x1) = Aoe
+i

R
�2(x1)

�1(x1) = Aoe
+i�(x1); (54)

where Ao is an arbitrary constant of integration. The
solution for the zeroth-order perturbation quantities
can be written as:

`

u(x1; y) = Aoe
i[k(x1)+�(x1)�!t]ao(x1; y) + � � � ;

`

v(x1; y) = Aoe
i[k(x1)+�(x1)�!t]bo(x1; y) + � � � ;

`

�(x1; y) = Aoe
i[k(x1)+�(x1)�!t]co(x1; y) + � � � ;

`

p(x1; y) = Aoe
i[k(x1)+�(x1)�!t]do(x1; y) + � � � ;

`

T (x1; y) = Aoe
i[k(x1)+�(x1)�!t]fo(x1; y) + � � �
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The sum:

�(x1) = k(x1) + �(x1); (55)

represents a corrected value for the wave-number to
include the e�ects of the shear layer thickness increas-
ing downstream. The value of �(L) is dependent upon
the frequency at which the shear layer is excited. A
numerically de�ned function, �(L), for a given ! is
de�ned. This function can then be used as a correction
to the k(!) used by Tam and Block.

Wave-Number Correction for Viscous Region

In such a manner as the previous section, the wave-
number/frequency correction for the viscous region
is derived. Here, in the same way, the mean ow
properties and amplitudes are expanded in the power
series in " as follows, each deck with di�erent � and �
coordinates:

Q(�; �) = Qo(�; �) + "Q1(�; �) + � � � ;

and introducing normal modes as in Equations 28, but,
in terms of �, � and � , where @�

@� = �! and @�
@� =

k(�). Also, in the same way as in Equations 30, the
amplitudes are expanded, but, in terms of � and �.
Substituting these expansions in governing equations
in the viscous region (Equations 17 to 21 for a fully
viscous upper deck, Equations 17 to 21 with � = 1
for a fully viscous lower deck and Equations 22 to 26
for the outer viscous deck), the systems equations for
perturbation amplitudes in multiple deck structures are
obtained. The wave-number correction for this region
is derived in such a manner as the previous section.

NUMERICAL SOLUTION OF SHEAR

LAYER EQUATIONS

In this section, the solution of the zeroth-order pertur-
bation amplitudes for the inviscid region, as well as for
the multiple deck structure, is presented. These zeroth-
order perturbation amplitudes are used in the derived
functions for the wave-number/frequency corrections
due to the e�ect of non-parallelism of the shear layer,
given in the previous section. An elimination process is
used to reduce the system of equations representing the
zeroth-order perturbation amplitudes to a di�erential
equation of second order or to a system of di�erential
equations of second order. The fourth order Runge-
Kutta is used to solve these resulting di�erential
equations numerically. All mean ow quantities are
assumed to be known. In fact, a tangent hyperbolic
function is assumed to represent the mean ow velocity
pro�les as follows:

Uo =
1

2

�
1 + tanh

�
y=L

2�o=L(1 + �x)

��
: (56)

Here, all the quantities are dimensionless, �o is the
thickness of the shear layer and � represents the rate of
growth of the shear layer. Other mean ow properties,
such as density, temperature and free stream speed of
sound, are:

Ro =
1

1 + �1
2 M2(1� U2

o )
;

To = 1=Ro; Ao =
1

M

p
1=Ro: (57)

By the use of these mean ow properties and a given
frequency, !, the zeroth-order amplitudes are solved
and are used in evaluating the correction functions,
�(x1). First, the numerical solution for zeroth-order
amplitudes in the inviscid region is considered. The
component equations of Equation 44 are:

ikRo
a

ao +Ro
@
a

bo
@y

+
@Ro

@y

a

bo + i(kUo � !)
a

co = 0;
(58)

i(kUo � !)Ro
a

ao +Ro
@Uo
@y

a

bo + ik
a

do = 0; (59)

i(kUo � !)Ro

a

bo +
@
a

do
@y

= 0; (60)

h
Ro

@To
@y

�(�1)M2@po
@y

i
b̂o�(�1)M

2i(kUo�!)
a

do

+ i(kUo � !)Ro

a

f o = 0; (61)

1

M2
To
a

co �
a

do +
1

M2
Ro

a

f o = 0: (62)

Using an elimination process and making use of the
following mean ow property relations:

@Po
@y

= 0;
1

To

@To
@y

= �
1

Ro

@Ro

@y
; (63)

a single di�erential equation of second order, in terms
of the pressure amplitudes, is produced:

@2d̂o
@y2

�

h 2k

(kUo � !)

@Uo
@y

+
1

Ro

@Ro

@y

i@ado
@y

�

h
k2 �

(kUo � !)2

A2
o

i
a

do = 0: (64)

Once this equation is solved for
a

do, the other ampli-

tudes,
a

ao,
a

bo,
a

co and
a

f o, can be determined in terms

of
a

do. The next step is to obtain the non-trivial solution
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of the adjoint problem knowing the eigenvalue, k. The
equations de�ning the components of the adjoint vector
are:

i
a

kRo
a

a
�

o + i(kUo � !)Ro

a

b

�

o = 0; (65)

Ro
@
a

a
�

o

@y
�Ro

@Uo
@y

a

b

�

o+i(
a

kUo�!)Ro
a

c
�

o�Ro
@To
@y

a

d

�

o=0;
(66)

i(kUo � !)
a

a
�

o +
To
M2

a

f

�

o = 0; (67)

ik
a

b

�

o +
@
a

c
�

o

@y
� ( � 1)M2i(

a

kUo � !)
a

d

�

o �
a

f

�

o = 0;
(68)

i(kUo � !)Ro

a

d

�

o +
Ro

M2

a

f

�

o = 0: (69)

Again, using the elimination process and making use
of Equations 63, a single di�erential equation of second

order, in terms of
a

d

�

o, results in:
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Once this di�erential equation is solved, the adjoints of

the other amplitudes,
a

a
�

o,
a

b

�

o,
a

c
�

oand
a

f

�

o, are determined

from
a

d

�

o. The two di�erential equations of second order
obtained from Equations 64 and 70 can be reduced
to two systems of �rst-order di�erential equations
and solved independently by the use of the Runge-
Kutta of order four. The integration is performed
along the y-axis for any spanwise location of x. The
initial guess used for k is the value obtained by Tam
and Block for a shear layer of constant momentum
thickness. The integration is started at y = �1,
using the prescribed value of do and an arbitrary

value of @
a

do=@y. The integration continues until a

value of
a

do at y = +1 is obtained. An iteration is

performed to yield the value of k such that
a

do = 0
at y = +1. The process is performed at a number
of spanwise locations yielding a numerically de�ned
function, k(x1). The correction function, �(x1), is then
obtained from Equation 54.

PRESENTATION OF RESULTS

In this section, the numerical results of the corrected
wave-number, due to the e�ect of non-parallelism of
the shear layer excited by a reected wave of frequency
!, are presented. These wave-numbers calculated in
three di�erent regions of inviscid, outer viscous and
fully viscous are matched asymptotically, based on Van
Dyke's matching principle, to obtain a uniformly valid
result throughout the shear layer region spanning the
cavity. In order to �nd a uniformly valid solution
throughout the region for shear layer properties, the
set of solutions presented by Equations 55 for the
inviscid region and their corresponding equations for
regions of outer viscous and fully viscous, respectively,
should be matched. These solutions are in terms of
the wave-number and their corresponding amplitudes.
The constant of integration in the set of solutions
for the inviscid region is chosen to be one and that
of the outer viscous region is decomposed as Aoe

i�.
Part, �, is chosen, such that the wave-number in
the two regions of inviscid and outer viscous matches
asymptotically. Once the wave-numbers have been
matched, the amplitude part in the set of solutions
for the inviscid region is matched to its counterpart
in the set of solutions for the outer viscous deck
on a thin vortex sheet, accordingly, based on Van
Dyke's matching principle. By adjusting the time scale
between the two foregoing regions, the constant of
integration Ao can be determined. The same process is
repeated in order to match the shear layer properties,
as well as the wave-number between the outer viscous
and fully viscous regions.

Here, the following results for di�erent values of
wave frequency and Mach number are presented: 1)
The corrected wave-number varying along the span of
the cavity and its comparison with that of Tam and
Block, 2) The instability characteristics of the shear
layer at the trailing edge and their comparison with
the result of Tam and Block, 3) The tone frequencies
predicted by Tam and Block, considering the correction
of the wave-number. This result is compared with that
of the experimental results of Rossiter.

Figures 3 and 4 show the corrected wave-number
varying along the span of the cavity for the case of ! =
3:0; M = 0:40 and M = 0:80. This clearly shows the
dependency of the wave-number/frequency from this
study on the spatial coordinate along the span of the
cavity. This is opposed to the wave-number/frequency
relationship derived in Tam and Block's study, which
yields a wave-number that is constant across the cavity
for a given frequency. This wave-number, uniformly
valid throughout the region of shear layer, has been
obtained by matching their corresponding values in
the inviscid and viscous regions, based on Van Dyke's
asymptotic matching principle, numerically. As the
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Figure 3. Corrected wave-number for the case of
! = 3:0; M = 0:4.

Figure 4. Corrected wave-number for the case of
! = 3:0; M = 0:8.

result of this matching, the choice of the perturbation
parameter in the outer viscous region, "1 = "3=2, and
in the fully viscous upper deck, "2 = ", are appropriate.
Where the wave-number value in each region intersects
the corresponding solution in the adjacent region, it af-
fects the choice of these parameters, which, essentially,
are a function of the thickness of the boundary layer in
the viscous region. It should be noted that for a given
value of the frequency, there is an increase in the value
of the wave-number correction function as the Mach
number increases.

Figure 5 shows the instability characteristics of
the shear layer for the case of M=0.40 and its compari-
son with the analytical result of Tam and Block. Since
the author is interested in the temporal instability
analysis of the shear layer, the sign of the imaginary
part of the wave-number determines the range of
instability. If this sign is negative, the shear layer is
asymptotically stable and, if positive, the shear layer is

Figure 5. Instability characteristics of shear Layer.

unstable. In Figure 5, the range of unstable frequencies
can be clearly identi�ed. It is noted that, in each case,
the computations from this study show a reduction
in the range of unstable frequencies compared with
the analytical result of Tam and Block. A possible
explanation is that the viscous e�ects, considered in
the present study but not in Tam and Block's study,
have stabilizing e�ects.

Figure 6 shows the dependence of the Strouhal
number of the discrete tone frequencies as a function of
Mach number and its comparison with the experimen-
tal results of Rossiter [9] for di�erent values of L=D.
This calculation is based on L=D = 4:0 and 2�=L =
0:02. This �gure clearly shows that the Strouhal
number of the discrete tone frequencies obtained by the
present study indeed provides better agreement with
the experimental results of Rossiter. The improvement
in agreement of the calculated Strouhal number with
Rossiter's data is as much as 22%.

Figure 6. Discrete tone frequencies as a function of Mach
number, L=D = 4:0 and Re=100.
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CONCLUSIONS

The analytical results of the wave-number/frequency
and instability characteristics of the shear layer for
the study of a compressible, viscous ow over an open
rectangular cavity, including the e�ects of shear layer
thickness and multiple deck structure on interaction
with the trailing edge, have been presented. The
result of the work is a comprehensive analysis of
the shear layer spanning an open rectangular cavity.
Applications may include aircraft weapons bays and
wheel wells. For cavities of this nature, the assumption
of mean ow inside the cavity is very good. Sound
pressure levels inside such cavities can be as high as
150 dB, leading to structural failure and personnel
discomfort. It is anticipated that the current work can
be used to predict the discrete oscillation frequencies at
which the shear layer is excited and, thus, the cavity
can be modi�ed such that these frequencies are not
excited and the sound pressure level can be reduced.
The important parameters in a study of the ow over
an open rectangular cavity are the Mach number, the
length to depth ratio of the cavity and the Reynolds
number. The Reynolds number is important as it is
a measure of non-parallel e�ects in the shear layer. A
correlation of these three parameters could be made
such that the cavity geometry could be continuously
modi�ed to minimize the sound pressure level during
the ight. This study could lead to the design of an
active controller.
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