
Scientia Iranica, Vol. 13, No. 1, pp 1{13

c Sharif University of Technology, January 2006

A Heuristic Approach Based on Tabu Search

for Early/Tardy Flexible Job Shop Problems

N. Imanipour1 and S.H. Zegordi�

This paper addresses minimizing Total Weighted Earliness/Tardiness (TWET) of jobs in a
Flexible Job Shop (FJS) problem. The FJS problem is an extension of the classical Job Shop
(JS) problem that implies each operation may be assigned to alternative available machines. So,
a job may have alternative routing. The FJS problem with a TWET criterion is modeled as a
mixed integer programming. The model is proven to be Np-complete. To solve the model, an
algorithm, based on a Tabu Search approach (TS), is developed. The proposed algorithm employs
TS to �nd the best routing of each job and a backward procedure to operations scheduling. Two
neighboring functions are designed and their e�ect is investigated on the performance. The
numerical experiments show the suggested algorithm e�ciently solves the model in a reasonable
CPU time.

INTRODUCTION

The FJS is an extension of the classical Job Shop
(JS) problem, which is one of the most important and
di�cult problems in scheduling theory. In classical JS,
each job has a known and �xed route. In the FJS
problem, there is a type of exibility called \routing
exibility", which means a job can be completed
through alternative routes because each operation of
a job can be processed by alternative machines. In
fact, the FJS problem consists of two sub-problems:
\Routing" and \Scheduling". These two sub-problems
may be solved simultaneously or on a hierarchical basis.
In other words, routing and scheduling decisions are
made concurrently or sequentially. Some research has
studied the FJS problem. The hierarchical approach
of Brandimarte [1] that minimizes makespan, was the
�rst research done in FJS. Chambers and Barnes [2,3]
suggested a tabu search in order to minimize makespan
in FJS. Chen et al. [4] developed a genetic algorithm for
FJS to minimize makespan. Jansen et al. [5] designed
a polynomial time approximation scheme for the non-
preemptive version of an FJS problem with delivery
times. They also studied a preemptive version of the
FJS problem. The objective function in their research
is minimizing makespan. Baykasohlu [6] proposed an

1. Faculty of Management, University of Tehran, Tehran,
I.R. Iran.

*. Corresponding Author, Department of Industrial Engi-
neering, Tarbiat Modarres University, Tehran, I.R. Iran.

approach in which linguistic terms are incorporated
for the modeling of FJS scheduling with a process
plan selection problem. The objective function is
minimizing makespan or maximum tardiness. The
FJS problem was studied by Kacem et al. [7] with
a view to multiple objectives. They presented a
heuristic, which is a hybrid evolutionary algorithm
and fuzzy logic, for �nding pareto optimal solutions.
Recently, Kim et al. [8] presented a symbiotic evolu-
tionary algorithm for minimizing makespan in a JS
problem with three types of exibility in the process
planning.

All this research studied regular criteria as
makespan. None of them have addressed JIT criteria
such as TWET. The TWET is an on-time delivery
measure, which controls both tardiness and earliness
in compliance with JIT philosophy. In competitive
markets, neither tardy nor early are desirable. Our
investigation shows that most of the research on ear-
liness/tardiness criteria has been focused on a single
machine environment. In the present research, the FJS
problem with TWET criterion is modeled. To solve
the model, a heuristic approach is developed. The
suggested algorithm is a combination of TS to solve
the routing sub-problem and another heuristic, called
the backward procedure, to solve the scheduling sub-
problem.

The remainder of this paper is organized as
follows. In the next section, the mathematical model is
de�ned and the computational complexity is discussed.
Then, the terminology and structure of the proposed



2 N. Imanipour and S.H. Zegordi

algorithm are discussed. After that, the design of
numerical experiments and the computational results
are, respectively, reported and, �nally, the conclusion
is presented.

MATHEMATICAL MODEL

The FJS problem with TWET criterion is modeled as a
mixed integer programming. The model is based on the
model developed by Baker [9] for job shop scheduling.
According to the Baker model, the route of each job is
�xed and known. While, in the FJS problem, each job
may have alternative routing, in the proposed model, a
0/1 variable is de�ned and added to solve the routing
sub-problem. As a result, the model becomes non-
linear.

Assumptions

1. All jobs and machines are available at time t = 0;

2. Each operation of a job can be performed on
alternative machines;

3. The processing time of each operation of each job
is known and deterministic;

4. Each job has a distinct and speci�c due date;

5. The earliness and tardiness weight of each job is
known and deterministic;

6. Preemption is not allowed;

7. Transportation time between machines is negligible;

8. There is only one machine of each type.

Notations

Data

N number of jobs;
nj number of operations of job j;
m number of machines;
dj due date of job j;
�j earliness weight of job j;
�j tardiness weight of job j;
Pijk processing time required for kth operation

of job j on machine i;
Mjk set of alternative machines for kth operation

of job j;
M a very large positive value,
j job index;
k operation index;
i machine index;

ajik =

(
1 if mi 2Mjk

0 otherwise

Variables

fijk completion time of kth operation
of job j on machine i;

cj completion time of last operation of job j;

yijk

8><
>:
1 if kth operation of job j is performed

on machine i

0 otherwise

Xijkph

8><
>:
1 if kth operation of job j precedes

hth operation of job p on machine i

0 otherwise

Sj appropriate change variable to job j.

Model

min

NX
j=1

[max[�j(dj � cj); �j(cj � dj)]] =

NX
j=1

Sj : (1)

Subject to:

fij(k+1) � Pij(k+1) +M(1� aij(k+1)yij(k+1)) � fljk

j = 1; � � � ; N ; k = 1; � � � ; nj � 1;

i; l = 1; � � � ;m; (2)

fijk � fiph +MXijkph � Pijkyijk

i = 1; � � � ;m; j = 1; � � � ; N � 1;

p = j + 1; � � � ; N; K = 1; � � � ; nj ;

h = 1; � � � ; np; (3)

fiph � fijk +M(1�Xijkph) � Piphyiph (4)

fij1 � Pij1yij1;

j = 1; � � � ; N ; i = 1; � � � ;m; (5)

fijk �Myijk ;

j = 1; � � � ; N ; k = 1; � � � ; nj ; i = 1; � � � ;m; (6)

mX
i=1

aijkyijk = 1

j = 1; � � � ; N ; k = 1; � � � ; nj ; (7)

cj =

mX
i=1

aijnj fijnj ; j = 1; � � � ; N; (8)

�j(dj � cj) � Sj ; j = 1; � � � ; N; (9)

�j(cj � dj) � Sj ; j = 1; � � � ; N: (10)



Early/Tardy Flexible Job Shop Problem 3

Relation 1 indicates the objective function that focuses
on minimizing the total weighted earliness/tardiness of
jobs. As remarked, the objective function (Relation 1)
is nonlinear; however, by de�ning the change variables,
Sj , and considering the constraints set of Relations 9
and 10, the objective function becomes linear (second
part of Relation 1). The constraint set of Relation 2
demonstrates that the (k + 1)th operation of job j
on machine i can only start after the kth operation
of the same job is completed. The constraints sets of
Relations 3 and 4 ensure that any two operations are
not processed by the same machine in a single time.
The constraint set of Relation 5 guarantees that if the
1st operation of job j is assigned to machine i, its
completion time must be equal to, or greater than, its
processing time. The constraint set of Relation 6 states
that if machine i is not assigned to the kth operation of
job j, the completion time of it on machine i must be
considered 0. The constraint set of Equation 7 ensures
that each operation of each job is assigned to only one
machine among the alternative machines. Finally, the
constraint set of Equation 8 determines the completion
time of the jobs.

Computational Complexity

As mentioned above, the FJS problem could be divided
to two sub-problems: \Routing" and \Scheduling".
The number of the job's routing combinations is de-
termined by the following relation:

NY
j=1

njY
k=1

jMjkj: (11)

Each of the above combinations converts the FJS to
a JS problem. Considering the JS problem is known
as Np-complete [10], the FJS problem is Np-complete
as well. However, the FJS problem with a TWET
criterion was formulated in the previous section but
is very di�cult to solve and takes a long time because
of using nonlinear mixed integer programming, even in
small instances. (See the computational results in [11].)

ALGORITHM STRUCTURE

The Tabu Search (TS), introduced by Glover [12], is
a local search method that can provide optimal or
near optimal solutions for combinatorial optimization
problems. It has the ability to intensify the search
via short-term memory and diversify the search via
long-term memory into new regions. The principles of
TS have been documented in [13-15]. As a successful
method, TS rapidly gained a high position among
scheduling problem solving methods. Barnes et al. [16]
have done a comprehensive research on applying TS in
scheduling problem solving.

The proposed algorithm is a heuristic approach
based on the tabu search. Figure 1 indicates its general
structure. The algorithm seeks the best routing of jobs
in order to improve the objective function. At the
beginning, an initial route is randomly generated for
each job and this route is assumed as the current route.
Then, the schedule maker is recalled and the operations
are scheduled. In each iteration, a neighborhood of
the current route is generated. A move is de�ned
as a strategy for generating neighborhood. When a
move is accepted, it becomes tabu for the next speci�c
iterations. It means that this move is forbidden unless
an aspiration level value is satis�ed. The aspiration
level is a measure for accepting tabu moves. After
evaluating all neighbors, the best neighbor (based
on the objective function) is selected from among
the neighbors that are not tabu, or that satisfy the
aspiration level. The selected neighbor (route) replaces
the current route. If a lower bound value is reached or
other termination criteria are met, the algorithm will
be stopped, otherwise the tabu list is updated and this
process repeats. Table 1 shows the pseudo code of the
proposed algorithm.

To clarify the issue, the basic elements of the
algorithm are described by a simple example, which in-
cludes 4 jobs and 3 machines. Minimum and maximum
operations per job are 3 and 4, respectively. Maximum
exibility (max-ex) is set to 3. This means there are
maximum 3 alternative machines for each operation.
The data of this problem is stated in Table 2.

Initial Solution (Initial Routing)

A route consists of N sub-strings, any one of which is
related to a job and has max-opr length. Initial routing
(solution) is generated by allocating each operation
to one machine of its possible alternative machines,
randomly. An initial routing for the given example

Figure 1. General structure of the proposed algorithm.



4 N. Imanipour and S.H. Zegordi

Table 1. Pseudo code of the proposed algorithm.

Initialize:

Randomly generate an initial route: (Ri);

Recall schedule maker for Ri and calculate the objective function for it: (f(Ri));

Set Ro = Rc = Ri; f(Ro) = f(Rc) = f(Ri); AL = f(Ri); n� iter = 0 TL = fg;

Set max-iter and LB.

Dof

Generate neighboring solutions of Rc by de�ned neighboring function: (NRc).

For (all neighboring solutions)

Recall schedule maker.

Select the best neighboring solution, which is not tabu or satis�es AL and replace Rc.

If (there is an improvement in the objective function) f

n-iter=0

Update the best solution (Ro and f(Ro)).

g

Else n - iter = n - iter + 1

Update TL and AL.

gWhile (n - iter < max - iter or f(Ro) >LB)

Report the best solution found, which includes the best known routing and the best known schedule.

Table 2. Data of a simple example with 4 jobs and 3 machines.

Operation k = 1 k = 2 k = 3 k = 4 dj �j �j

Job

j = 1 20 21 24 | 103 5 21

j = 2 9 13 24 21 97 4 16

j = 3 23 21 14 | 83 9 38

j = 4 17 18 16 15 123 16 66

could be:

R0 = [(2 1 1 0)(2 1 2 1)(2 2 3 0)(1 2 1 2)]:

Neighboring Function

Each neighbor of a route is generated by a move. A
move is made by changing the machine assigned to
a selected operation while others are �xed. As an
example, two neighbors of R0 are:

NR11 = [(3 1 1 0)(2 1 2 1)(2 2 3 0)(1 2 1 2)];

NR21 = [(2 1 1 0)(1 1 2 1)(2 2 3 0)(1 2 1 2)]:

For generating the neighboring set of each route, two
methods are used:

N1: For each operation whose number of alternative
machines is greater than 1 all possible moves are
evaluated.

N2: For each operation, only one move is done
randomly.

Tabu List

Tabu list is an array with �xed and de�ned length.
In the problem solving process, whenever a neighbor
solution is selected, its appropriate reverse move will be
forbidden and added to the tabu list. For example, if, in
a selected move, the 3rd operation of job 4 is allocated
from machine M1 to machine M3, then, M43 = 1 will
be forbidden and added to the list. This means that in
the next iterations, allocating operation 3rd of job 4 to
machineM1 is tabu unless this allocation improves the
objective function.

Aspiration Level

At the onset, the aspiration level is set as the initial
value of the objective function. At the end of each



Early/Tardy Flexible Job Shop Problem 5

iteration, whenever an improvement in the objective
function is achieved, the aspiration level will be up-
dated and will be considered as the best value obtained
for the objective function.

Termination Criteria

The number of sequential iterations without improve-
ment in the objective function is used as a termination
criterion. Another criterion is to achieve the optimal
solution or a lower bound. The optimal solution of
the test problems is unknown. Considering the test
problems are randomly generated, then, in some cases,
the total process time of a job may be larger than its
due date, hence, this job will de�nitely face unavoidable
tardiness that is determined as:

MTj =

(Pnj
k=1 Pjk � dj if

Pnj
k=1 Pjk > dj

0 otherwise
: (12)

Based on Equation 12, the lower bound of TWET could
be determined by the following equation:

LB =
nX
j=1

�j �MTj : (13)

It is obvious that this lower bound just covers the
tardiness part of the objective function. Since the
objective function has two parts, achieving this lower
bound may be impossible.

Schedule Maker

The schedule maker is a constructive approach, based
on the Gi�er and Thompson algorithm [17]. It
schedules operations in a \forward" procedure. This
means that the operations of each job are scheduled in
main order. For example, if job j has 3 operations,
these are scheduled 1st, 2nd and 3rd, respectively.
Whenever some available operations need the same
machine, the schedule maker uses the priority rule in
order to select an operation with higher priority.

There are many priority rules in the literature
but most of them are generally designed for regular
criteria. The TWET is a non-regular criterion. Ow
and Morton [18] suggested a priority rule for minimiz-
ing TWET criterion in the single machine problem.
Their rule was developed, in order to be used in FJS
problems. However, the numerical experiments showed
the better e�ciency of this rule among other selected
priority rules, but results were not satisfactory because
earliness had the lions share of the objective function.
(See computational results in [11].) In this phase, a
heuristic procedure called the \backward procedure"
was developed . The backward procedure is similar to
the forward, but, �rst, the sequence of operations of

each job becomes reverse, which are later scheduled.
In order to specify the priority of operations, a priority
rule, based on the Shortest Processing Time (SPT), is
developed as follows:

priority index for operation Ojk :Ijk=k�
�j+�j
pjk

:
(14)

When some operations are ready to process on the
same machine, an operation with a higher priority is
selected. In the next section, the backward procedure
is described in detail.

Backward Procedure

When the objective function is TWET, the ideal
schedule is a feasible schedule in which each job is
ful�lled on its due date; not early, not tardy. In other
words, the completion time of each job is the same as its
due date. According to Figure 2, if the largest due date
is speci�ed with dmax and job j is completed exactly
on its due date, then, the derivation completion time
of job j from dmax would be equal to (dmax � dj). The
idea of a backward procedure is based on this point. For
each job, a virtual ready time is de�ned by Equation 15,
which is:

rtj =

(
dmax � dj if dj �

Pnj
k=1 pjk

dmax �
Pnj

k=1 pjk otherwise
: (15)

Then, the operations of each job are scheduled in
reverse order. For example, if job j has 3 operations,
these operations are scheduled 3rd, 2nd and 1st, re-
spectively. In other words, the kth operation of each
job could be scheduled only if the (k + 1)th operation
is scheduled and completed and causes the obtained
schedule to become feasible. It should be taken into
account that the last operation of each job could not
be started earlier than its virtual ready time. After
all operations are scheduled, actual scheduling time,
interval (T ), is calculated as follows:

T =

(
dmax if cmax � dmax

cmax otherwise
: (16)

Figure 2. Ideal schedule for a simple example with 4 jobs
and 3 machines.



6 N. Imanipour and S.H. Zegordi

Table 3. Pseudo code of schedule maker with backward procedure.

Initialize:

S = fOjk=j = 1; � � � ; N ; k is equal to the last operation of each jobg;

Calculate ready time of each job (rtj),

Set the earliest start time for all members of S: etjk = rtj

Set the idle time of each machine: Iti = 0

While (S is not empty)

f

Qjk = etjk + Pjk 8 Ojk 2 S

Determine Q� (minimum Qjk) and call the assigned machine to it m�;

De�ne the set C as: C = fOjk=Ojk 2 S & etjk � Q� & mjk = m�g

Calculate the priority index for all member of the set C via relation: Ijk = k � (
�j+�j
Pjk

)

Select the operation with the maximum priority index and call it O�jk .

Schedule O�jk at possible earliest time on m�.

Update the idle time (It) of m�.

Delete O�jk from S.

If (K > 1)

Add Oj(k�1) to S;

Update the earliest start time for the members of S: etjk = max(Qj(k+1); Itmjk
)

g

Calculate Cmax for the obtained schedule.

If (Cmax <= dmax) T = dmax;

Else T = Cmax;

Calculate the real time interval of each operation: rstjk = T � ftjk ,

rftjk = T � stjk.

Calculate the completion time of each job: cj = rtfjnj

Calculate the objective function.

Report the obtained schedule and its objective function.

etjk: possible earliest time of Ojk rftjk : real �nish time of Ojk

stjk: start time of Ojk cj : completion time of job j

ftjk: �nish time of Ojk : ftjk = stjk + Pjk Itm: idle time of machine m

rstjk : real start time of Ojk T : scheduling time interval

In this phase, the schedule shifted back as much as T
unit. Finally, by calculating the earliness or tardiness
of each job, the objective function could be determined.
Table 3 describes the pseudo code of the schedule maker
with a backward procedure.

To clarify the backward procedure, consider the
above-mentioned example. The current route is: [(1, 1,
2, 0) (3, 3, 2, 1) (2, 3, 2, 0) (1, 3, 3, 1)]. According to the
pseudo code of Table 3 , at the beginning, the set S is

determined as: S = fO13; O24; O33; O44g with fetjkg =
f20; 26; 40; 0g and fQjkg = f20; 26; 40; 0g, thus, Q� =
15 and m� = 1. The set C is equal to C = fO44g;
because the set C has only 1 operation, there is no need
for calculating the priority index for the members of
set C. Consequently, the O44 is selected and scheduled
in time interval [015] on machine M1. Then, the set S
is updated as: S = fO13; O24; O33; O43g with fetjkg =
f20; 26; 40; 15g. The WHILE loop is repeated until



Early/Tardy Flexible Job Shop Problem 7

Figure 3. The obtained schedule by backward procedure
for a simple example with 4 jobs and 3 machines.

all operations are scheduled. Figure 3 indicates the
obtained schedule for this example. In this schedule,
job 1, 2 and 4 are completed on time and job 3 has
4/units of earliness. The TWET is equal to 36.

NUMERICAL EXPERIMENTS

Design of Test Problems

The design of the test problems is similar to previous
studies for TWET [18,19]. Ow and Morton presented
a method, which controls due dates by two main
factors: � and R. � is the tardiness factor to be a
coarse measure of the proportion of jobs that might be
expected to be tardy in a given sequence. The other is
the due date range, R, by which the range of due date
distribution is controlled. If P is the average processing
time and d is the average due date, � can be determined
by the following equation:

� = 1�
d

N � P
: (17)

The process of generating test data is as follows:

� Processing time, Pjk � U [5; 25];

� Due date, dj � U [d
�
1� R

2

�
; d(1 + R

2 )]; where d =
NP
j=1

njP
k=1

Pjk � (1� �);

� Tardiness weight, �j = WIP � (
Pnj

k=1 Pjk=nj) and
earliness weight, �j = 0:25�j , where WIP deter-
mines the cost per processing time and is generated
from U � [0; 5];

� The size of test problems is determined based on the
di�erent combinations of �ve factors: The number
of jobs (N), the number of machines (m), minimum
(Min-Opr) and maximum (Max-Opr) operations per
job and maximum exibility (Max-Flex). The test
problems are generated in seven sizes, according to
Table 4. These combinations are taken from [1].

The test data generated for each problem size are
classi�ed into four types of combinations between the
tardiness factor (� = 0:2; 0:6) and the due date range
(R = 0:6; 1:6).

Design of Test Method and Parameter Setting

The algorithm is coded in Borland C language and is
implemented on a 486 PC, 100 MHZ. For each size,
5 test problems are randomly generated and for each
test problem, 4 due date sets are determined based on
4 combinations of � and R. Thus, 140 test problems
(7 � 4 � 5) are developed. To avoid the e�ect of
initial solution on results, each test problem is solved
using 10 random initial solutions. Based on preliminary
experiments, for each test problem, the length of the
tabu list and the max-iter are considered equal to
N=2 and max-ex, respectively. The max-iter is the
maximum sequential iteration without improvement in
the objective function.

Compared Methods

Studying the FJS problem with TWET has no back-
ground in the literature. The e�ect of forward and
backward procedures and the two neighboring func-
tions, N1 andN2, is investigated on the performance of
the proposed algorithm. The performance is measured
based on quality and time. The proposed lower bound
is used as a base for evaluating the quality of the

Table 4. Characteristics of test problems.

Problem Code N M Min-Opr Max-Opr Max-Flex

FJS1 5 5 10 10 3

FJS2 10 5 5 5 3

FJS3 15 4 5 10 2

FJS4 15 8 3 10 3

FJS5 15 8 10 10 5

FJS6 20 5 5 5 3

FJS7 20 10 10 15 3



8 N. Imanipour and S.H. Zegordi

obtained solutions. Also, the best and the mean value
of the objective function and the frequency of the best
solution found are selected as quality indexes. The
mean CPU time is selected as an index for time.

COMPUTATIONAL RESULTS

In the �rst phase, the e�ect of two forward and back-
ward procedures is studied on the performance. The
proposed algorithm, with two procedures, is employed
to solve a midsize problem (FJS2). According to the
results reported in Table 5, the backward procedure is
completely superior to the forward. Hence, the next
experiments focus on the backward procedure.

In the next phase, the algorithm with a backward
procedure is employed to solve all test problems while
the neighboring function is set as N1 or N2. The ob-
tained results are shown in Tables 6 to 12. Considering
di�erent combinations between � and R, these tables
compare the best and the mean values of TWET, CPU
times and the frequency of the best known solution
found. Analysis of these computational results point
to the following:

� The proposed algorithm is able to �nd the good
solutions (optimal in some cases) for test problems
with di�erent sizes. 1n 70% of trials, the LB value
(minimum unavoidable tardiness) is achieved;

Table 5. Comparison of results for FJS2 test problem.

Opt. or TS with Forward Procedure TS with Backward Procedure

Prob. Best Known
Cost

(TWET)
Frq.

Cost

(TWET)
Frq.

No. Cost Best Mean Opt. Best Mean Opt.

1 0 728 1141 0 0 11 8

2 0 715 1363 0 0 44 7

� = 0:2 3 0 964 1264 0 0 141 6

R = 0:6 4 0 2157 3884 0 0 76 3

5 0 1153 2034 0 0 69 6

Total 0 30

1 0 1296 1556 0 0 9 5

2 0 946 1003 0 0 0 10

� = 0:2 3 0 888 924 0 0 1 9

R = 1:6 4 0 1075 1252 0 0 0 10

5 0 3187 3288 0 0 0 10

Total 0 44

1 0 839 1840 0 0 32 2

2 0 1799 2555 0 0 120 4

� = 0:6 3 0 1323 2113 0 0 40 4

R = 0:6 4 135 880 1508 0 135 164 4

5 184 2195 4317 0 184 251 3

Total 0 17

1 0 1210 1506 0 0 0 10

2 1140 2396 2712 0 1140 1140 10

� = 0:6 3 1390 3995 4329 0 1390 1531 2

R = 1:6 4 448 2089 2317 0 448 848 6

5 2336 3104 3309 0 2336 2350 2

Total 0 30



Early/Tardy Flexible Job Shop Problem 9

Table 6. Comparison of results for FJS1 test problem (CPU time is in second).

Mean Opt. or TS with N1 TS with N2
Prob. LB Initial Best Known Cost (TWET) Frq. CPU Cost (TWET) No. CPU

No. Cost Cost Best Mean Opt. Time Best Mean Opt. Time
1 0 122 0 0 0 10 0.2 0 0 10 0.2
2 0 70 0 0 1 9 0.3 0 1 9 0.2

� = 0:2 3 0 69 0 0 7 7 0.9 0 7 7 0.6
R = 0:6 4 0 93 0 0 0 10 0.3 0 0 10 0.2

5 0 76 0 0 0 10 0.5 0 1 8 0.6
Total, Average 46 0.4 44 0.4

1 0 37 0 0 0 10 0.2 0 0 10 0.1
2 0 81 0 0 0 10 0.2 0 0 10 0.2

� = 0:2 3 0 74 0 0 0 10 0.4 0 0 10 0.3
R = 1:6 4 0 114 0 0 0 10 0.1 0 0 10 0.1

5 0 100 9 9 9 10 1.5 9 9 10 1.0
Total, Average 50 0.5 50 0.3

1 0 109 0 0 15 8 0.5 0 15 8 0.4
2 0 200 0 0 18 9 0.6 0 18 9 0.5

� = 0:6 3 0 72 0 0 0 10 0.1 0 0 10 0.1
R = 0:6 4 0 207 22 22 59 2 2.2 22 54 3 1.3

5 0 32 0 0 0 10 0.3 0 0 10 0.4
Total, Average 39 0.7 40 0.5

1 0 141 0 0 0 10 0.2 0 4 9 0.3
2 0 27 0 0 0 10 0.2 0 0 10 0.1

� = 0:6 3 5416 10352 6556 6556 6572 6 2.5 6556 6580 3 1.6
R = 1:6 4 572 1394 572 572 579 9 0.4 572 579 8 0.3

5 616 10370 1690 1690 1690 2 2.4 1690 3404 3 1.7
Total, Average 37 1.1 33 0.8

Table 7. Comparison of results for FJS2 test problem (CPU time is in second).

Mean Opt. or TS with N1 TS with N2
Prob. LB Initial Best Known Cost (TWET) Frq. CPU Cost (TWET) Frq. CPU

No. Cost Cost Best Mean Opt. Time Best Mean Opt. Time
1 0 188 0 0 11 8 1.7 0 11 8 1.3
2 0 323 0 0 18 9 2.2 0 18 9 1.7

� = 0:2 3 0 288 0 0 33 7 1.5 0 33 7 1.1
R = 0:6 4 0 288 0 0 10 6 3.1 0 14 5 2.3

5 0 509 0 0 69 6 2.6 0 69 6 1.7
Total, Average 36 2.2 31 1.6

1 0 108 0 0 9 5 2.5 0 10 4 1.8
2 0 108 0 0 0 10 0.4 0 0 10 0.3

� = 0:2 3 0 36 0 0 11 9 0.5 0 11 9 0.3
R = 1:6 4 0 320 0 0 0 10 1.0 0 0 10 0.7

5 0 124 0 0 0 10 0.8 0 0 10 0.6
Total, Average 44 1.0 43 0.7

1 0 153 0 0 30 2 4.5 0 27 2 3.4
2 0 546 0 0 122 5 3.2 0 133 4 2.4

� = 0:6 3 0 511 0 0 33 5 3.5 0 30 5 2.6
R = 0:6 4 0 348 0 135 166 4 4.4 135 176 5 3.2

5 0 632 0 184 215 4 4.7 184 226 4 3.3
Total, Average 20 4.1 20 3.0

1 0 549 0 0 0 10 1.5 0 0 10 1.1
2 1140 1292 1140 1140 1140 10 0.5 1140 1140 10 0.5

� = 0:6 3 1344 1950 1390 1390 1489 3 3.4 1390 1531 2 2.6
R = 1:6 4 448 2181 448 448 743 7 1.7 448 848 6 1.3

5 2336 2436 2336 2336 2351 1 3.9 2336 2350 2 2.7
Total, Average 31 2.2 30 1.6



10 N. Imanipour and S.H. Zegordi

Table 8. Comparison of results for FJS3 test problem (CPU time is in second).

Mean Opt. or TS with N1 TS with N2

Prob. LB Initial Best Known Cost (TWET) Frq. CPU Cost (TWET) Frq. CPU

No. Cost Cost Best Mean Opt. Time Best Mean Opt. Time
1 0 334 0 0 12 8 7.4 0 12 8 7.4
2 0 461 32 32 99 1 18.2 32 99 1 18.2

� = 0:2 3 0 304 0 0 70 1 13.9 0 70 1 13.9
R = 0:6 4 0 455 36 36 80 2 22.0 36 80 2 22.0

5 0 915 182 182 355 1 20.2 182 355 1 20.2
Total, Average 13 16.3 13 16.3

1 0 280 0 0 26 7 6.9 0 26 7 6.9
2 0 44 15 15 15 10 4.3 15 15 10 4.3

� = 0:2 3 0 27 0 0 0 10 1.9 0 0 10 1.9
R = 1:6 4 0 365 0 0 55 2 10.2 0 55 2 10.2

5 0 243 52 52 52 10 10.7 52 52 10 10.7
Total, Average 39 6.8 39 6.8

1 0 1302 312 312 418 1 28.0 312 418 1 28.0
2 0 1236 247 247 321 1 29.0 247 321 1 29.0

� = 0:6 3 0 2200 588 588 707 1 21.5 588 707 1 21.5
R = 0:6 4 0 886 129 129 259 1 21.5 129 259 1 21.5

5 0 1109 173 173 285 1 33.4 173 285 1 33.4
Total, Average 5 26.7 5 26.7

1 0 437 225 225 227 8 15.6 225 227 8 15.6
2 0 192 0 0 5 9 5.0 0 5 9 5.0

� = 0:6 3 0 262 0 0 0 10 6.5 0 0 10 6.5
R = 1:6 4 0 1007 81 81 286 1 18.9 81 286 1 18.9

5 0 559 194 194 256 4 11.3 194 256 4 11.3
Total, Average 32 11.5 32 11.5

Table 9. Comparison of results for FJS4 test problem (CPU time is in second).

Mean Opt. or TS with N1 TS with N2
Prob. LB Initial Best Known Cost (TWET) Frq. CPU Cost (TWET) Frq. CPU

No. Cost Cost Best Mean Opt. Time Best Mean Opt. Time
1 0 286 0 0 6 4 16.7 0 3 6 11.2
2 0 383 0 0 30 9 13.3 0 30 9 9.8

� = 0:2 3 0 290 0 0 0 10 5.2 0 0 10 3.6
R = 0:6 4 0 343 91 91 97 9 18.5 91 97 9 13.9

5 0 164 0 0 0 10 3.5 0 0 10 2.4
Total, Average 42 11.4 44 8.2

1 0 126 0 0 0 10 1.1 0 0 10 0.8
2 0 100 0 0 0 10 0.9 0 0 10 0.6

� = 0:2 3 0 64 0 0 0 10 2.4 0 0 10 1.7
R = 1:6 4 0 224 0 0 0 10 6.3 0 0 10 4.4

5 0 44 0 0 0 10 1.6 0 0 10 1.3
Total, Average 50 2.5 50 1.8

1 0 192 0 0 9 7 11.4 0 3 8 8.2
2 0 685 0 0 79 1 21.1 0 64 1 15.5

� = 0:6 3 0 666 0 0 28 3 29.7 0 16 5 20.5
R = 0:6 4 0 422 21 21 84 1 24.9 21 86 1 16.0

5 0 689 0 0 73 2 30.4 0 73 3 24.4
Total, Average 14 23.5 18 16.9

1 0 165 14 14 17 9 14.5 14 17 9 9.7
2 0 213 0 0 1 9 5.9 0 1 9 3.9

� = 0:6 3 0 142 0 0 7 9 7.2 0 7 9 5.1
R = 1:6 4 0 237 0 0 0 10 4.1 0 0 10 3.3

5 0 316 78 78 78 10 12.0 78 78 10 7.9
Total, Average 47 8.7 47 6.0



Early/Tardy Flexible Job Shop Problem 11

Table 10. Comparison of results for FJS5 test problem (CPU time is in second).

Mean Opt. or TS with N1 TS with N2
Prob. LB Initial Best Known Cost (TWET) Frq. CPU Cost (TWET) Frq. CPU

No. Cost Cost Best Mean Opt. Time Best Mean Opt. Time
1 0 413 0 0 24 3 127.0 0 26 3 49.3
2 0 310 0 0 37 6 66.7 0 26 7 28.5

� = 0:2 3 0 301 0 0 9 8 55.6 0 9 8 27.1
R = 0:6 4 0 351 0 0 50 4 82.3 0 53 4 36.8

5 0 174 0 0 0 10 23.9 0 0 10 10.3
Total, Average 31 71.1 29 30.4

1 0 43 0 0 0 10 3.4 0 0 10 1.4
2 0 83 0 0 0 10 6.7 0 0 10 2.7

� = 0:2 3 0 187 0 0 1 9 38.5 0 1 9 16.7
R = 1:6 4 0 133 0 0 0 10 5.9 0 0 10 3.1

5 0 87 0 0 0 10 9.7 0 0 10 4.1
Total, Average 49 12.8 49 5.6

1 0 596 0 0 15 8 84.5 0 11 8 35.8
2 0 570 0 0 59 3 169.8 0 53 3 67.9

� = 0:6 3 0 578 0 0 39 5 136.8 0 64 5 71.5
R = 0:6 4 0 705 0 0 22 8 102.1 0 39 5 55.3

5 0 519 0 0 51 3 109.0 0 48 4 49.1
Total, Average 27 120.0 25 56.0

1 0 107 0 0 0 10 28.2 0 0 10 13.3
2 0 172 0 0 0 10 27.5 0 0 9 16.4

� = 0:6 3 0 150 0 0 7 8 45.6 0 7 8 18.9
R = 1:6 4 0 168 0 0 1 9 42.1 0 0 10 12.3

5 0 156 0 0 0 10 17.7 0 0 10 7.0
Total, Average 47 32.2 47 13.6

Table 11. Comparison of results for FJS6 test problem (CPU time is in second).

Mean Opt. or TS with N1 TS with N2
Prob. LB Initial Best Known Cost (TWET) Frq. CPU Cost (TWET) Frq. CPU

No. Cost Cost Best Mean Opt. Time Best Mean Opt. Time
1 0 596 215 215 230 4 47.4 215 240 2 31.0
2 0 753 0 0 58 6 40.0 0 58 6 26.1

� = 0:2 3 0 404 0 0 13 6 32.4 0 18 8 19.2
R = 0:6 4 0 386 0 0 40 3 32.8 0 38 8 22.5

5 0 606 112 112 116 8 43.8 112 143 5 28.7
Total, Average 27 39.3 29 25.5

1 0 227 0 0 0 10 13.6 0 0 10 9.2
2 0 193 0 0 0 10 8.0 0 0 10 5.7

� = 0:2 3 0 300 0 0 21 8 11.4 0 21 8 9.5
R = 1:6 4 0 235 26 26 26 10 24.7 26 26 10 16.5

5 0 374 126 126 167 6 18.5 126 167 6 14.1
Total, Average 44 15.2 44 11.0

1 0 1570 28 28 303 1 76.7 71 280 0 53.1
2 0 985 68 68 239 1 75.9 99 298 0 46.0

� = 0:6 3 0 1099 47 47 162 1 70.5 47 214 1 51.9
R = 0:6 4 0 1426 286 286 415 1 55.7 351 430 0 42.5

5 0 1689 501 505 727 0 67.8 501 741 1 49.3
Total, Average 5 69.3 5 48.6

1 0 313 20 20 32 5 35.4 20 30 6 24.4
2 0 678 0 0 13 8 32.7 0 15 8 24.9

� = 0:6 3 0 680 0 0 36 7 36.7 0 36 7 24.8
R = 0:6 4 0 709 9 9 41 4 52.1 9 33 5 34.8

5 0 332 18 18 19 9 36.3 18 19 9 24.9
Total, Average 33 38.6 35 24.9



12 N. Imanipour and S.H. Zegordi

Table 12. Comparison of results for FJS7 test problem (CPU time is in second).

Mean Opt. or TS with N1 TS with N2

Prob. LB Initial Best Known
Cost

(TWET)
Frq. CPU

Cost

(TWET)
Frq. CPU

No. Cost Cost Best Mean Opt. Time Best Mean Opt. Time

1 0 286 0 0 0 10 51.7 0 0 10 34.7

2 0 152 0 0 15 8 177.4 0 15 8 51.1

� = 0:2 3 0 355 0 0 84 3 173.9 0 82 2 131.3

R = 0:6 4 0 264 66 66 66 10 193 66 66 10 132.5

5 0 402 0 0 29 8 103.3 0 29 8 72.9

Total, Average 39 139.9 38 84.5

1 0 435 96 96 126 8 130.4 96 188 5 91.8

2 0 161 15 15 15 10 123.0 15 15 10 83.5

� = 0:2 3 0 214 0 0 0 10 33.9 0 0 10 22.4

R = 1:6 4 0 58 0 0 0 10 24.9 0 0 10 17.0

5 0 64 0 0 0 10 15.0 0 0 10 10.7

Total, Average 48 65.4 45 45.1

1 0 771 0 0 79 1 261.6 0 79 1 178.9

2 0 457 0 0 26 7 166.9 0 7 8 115.1

� = 0:6 3 0 746 15 15 76 3 307.2 15 89 3 218.0

R = 0:6 4 0 620 0 0 64 4 191.1 0 72 2 157.1

5 0 685 0 0 33 5 248.0 0 23 7 145.3

Total, Average 20 235.0 21 162.9

1 0 168 0 0 0 10 48.1 0 1 9 36.3

2 0 76 0 0 0 10 29.9 0 0 10 20.0

� = 0:6 3 0 152 0 0 3 7 88.9 0 0 8 52.5

R = 1:6 4 0 240 0 0 4 9 66.5 0 4 9 44.6

5 0 83 0 0 0 10 57.1 0 0 10 36.9

Total, Average 46 58.1 46 30.1

� When neighboring function N2 is applied, CPU
times are signi�cantly decreased. In 90% of the
experiments, the algorithm with N2 achieved the
solutions with the same e�ciency as by N1, but, in
less CPU time. Based on the results, in some cases,
N2 decreases CPU time up to 50%. The better
performance of N2 (in terms of quality solution and
CPU time) can be explained as follows: when N2 is
applied, the neighboring set of the current solution
is randomly created, thus, the TS rarely fall into
local optima;

� For each test problem, comparing the average of the
initial value of TWET with that of the best found
value indicates that routing exibility has a signif-
icant e�ect on the objective function. Comparison
of the obtained results for FJS4 and FJS5 problems
veri�es that when more the exibility increases,
the possibility of developing better routing and
scheduling becomes higher.

CONCLUSION

In this paper, a generalized job shop problem, called
Flexible Job Shop (FJS), is presented. The FJS
problem is considered as one of the most di�cult
combinatorial optimization problems. The objective
function is Total Weighted Earliness and Tardiness
(TWET). The problem is modeled as a mixed (binary)
integer programming. Since the model is ine�ective,
due to the large number of zero/one variables and
nonlinear constraints, a heuristic algorithm is designed,
which combines TS with a schedule maker based on
priority rules to solve routing and scheduling sub-
problems. Two neighboring functions are designed and
their e�ects are investigated on the performance of
the proposed algorithm. Also, a backward procedure
is newly applied to the FJS problem. The obtained
results show the e�ciency of the backward procedure,
in terms of quality solution and CPU time.

Due date assignment in a FJS problem should be



Early/Tardy Flexible Job Shop Problem 13

a topic for future research. Also, studying the multi-
objective FJS is an interesting area.

REFERENCES

1. Brandimarte, P. \Routing and scheduling a exible job
shop by tabu search", Annals of Operations Research,
41, pp 157-183 (1993).

2. Chambers, J.B. and Barnes, J.W. \Flexible job shop
scheduling by tabu search", Graduate Program in
Operations Research and Industrial Engineering, the
University of Texas at Austin, USA, Technical Report,
Available from http://www.cs.utexas.edu/users/jbc/
(1996).

3. Chambers, J.B. and Barnes, J.W. \Reactive search
for exible job shop scheduling", Graduate Program
in Operations Research and Industrial Engineering,
the University of Texas at Austin, Technical Report,
Available from http://www.cs.utexas.edu/users/jbc/
(1998).

4. Chen, H., Hlow, J., and Lehman, C. \A genetic
algorithm for exible job shop scheduling", 0-7803-
5180-0-5/99 IEEE, pp 1120-1125 (1999).

5. Jansen, K., Mastrolilli, M., and Solis-Oba, R. \Ap-
proximation algorithms for exible job shop prob-
lems", Proceedings of Latin American Theoretical In-
formatics (LATIN 2000), LNCS 1776, pp 68-77,
(2000).

6. Bakasoghlu, A. \A linguistic-based meta heuristic op-
timization model for exible job shop scheduling", Int.
J. of Production Research, 40, pp 4523-4543 (2002).

7. Kacem, I., Hammadi, S. and Borne, P. \Pareto-
optimality approach for exible job shop scheduling
problems: Hybridization of evolutionary algorithms
and fuzzy logic", Mathematics and Computers in Sim-
ulation, 60(3-5), pp 245-276 (2002).

8. Kim, Y.K., Park, K. and Ko, J. \A Symbiotic
evolutionary algorithm for the integration of process
planning and job shop scheduling", Computers &
Operations Research, 30, pp 1151-1171,(2003).

9. Baker, K.R., Introduction to Sequencing and Schedul-
ing, John Wiley & Sons (1974).

10. Garey, M.R., Johnson, D.S. and Sethi, R. \The
complexity of the ow shop and job shop scheduling",
Mathematics of Operations Research, 1, pp 117-129
(1976).

11. Imanipour, N. \Flexible job shop scheduling with ear-
liness and tardiness penalties", MS Project, Modarres
University, Tehran, Iran (1999).

12. Glover, F. \Future paths for integer programming
and links to arti�cial intelligence", Computer and
Operations Research, 13, pp 533-549 (1986).

13. Glover, F. \Tabu search part I", ORSA Journal on
Computing, 1(13), pp 190-206 (1989).

14. Glover, F. \Tabu search part II", ORSA Journal on
Computing, 2(1), pp 4-32 (1990).

15. Glover, F. \Tabu search: A tutorial", Interfaces,
20(4), pp 74-94 (1990).

16. Barnes, J.W., Langunan, M. and Glover, F. \Overview
of tabu search approach to production scheduling",
Intelligent Scheduling Systems, Kluwer Academic Pub-
lisher (1995).

17. Gi�er, B. and Thopmson, G.L. \Algorithms for
solving production scheduling problems", Operations
Research, 8(4) (1960).

18. Ow, P.S. and Morton, T.E. \The single machine
early/tardy problem", Management Science, 32(2) pp
177-191 (1989).

19. Zegordi, S.H., Itoh, K. and Enkawa, T. \A knowledge-
able simulated annealing scheme for the early/tardy
ow shop scheduling", Int. Journal of Production
Research, 33(5), pp 1449-1466 (1995).


