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Investigating the Effect of Different
Conventional Regularization Methods
on Convergence in Moving Boundary

Inverse Heat Conduction Problems

A.H. Kakaee' and B. Farhanieh*

In this paper, the temperature of a moving surface is determined with a moving, finite element-
based inverse method. In order to overcome the ill-condition of moving inverse problems, three
different conventional regularization methods are used: Levenberg, Marquardt and Modified
Levenberg. The moving mesh is generated employing the transfinite mapping technique. The
proposed algorithms are used in the estimation of surface temperature on a moving boundary
in the burning process of a homogenous solid fuel. The measurements obtained inside the solid
media are used to circumvent problems associated with the sensor and the receding surface. As
the surface recedes, the sensors are swept over by the thermal penetration depth. The produced
oscillations occurring at certain intervals in the solution are a phenomenon associated with this
process. It is shown that regularization delays convergence and, therefore, the use of normal
analysis is sufficient. The method can be used successfully for a wide range of thermal diffusivity

coefficients.

INTRODUCTION

Two different approaches can be taken in determining
the temperature of the burning surface of a solid
propellant. In the first approach, surface tempera-
tures are measured directly. This approach is proven
difficult, due to extreme temperatures at the moving
surface. The second approach, which bypasses direct
surface measurements, is based on an indirect or inverse
strategy and estimates surface temperature based on
measurements within the solid. Due to the lower
experimental costs associated with inverse approaches,
this area has attracted significant attention and, there-
fore, considerable effort has been devoted to investigate
inverse heat conduction analysis in many design and
manufacturing problems, where direct measurements
of surface conditions are not possible. The use of
the inverse method for determination of boundary
conditions, such as temperature and heat flux, or
the estimation of thermal properties, such as thermal
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conductivity and heat capacity of solids, by utilizing
the transient temperature measurements taken within
the medium, has numerous practical applications [1-
8]. Various methods, including analytical or numerical
approaches, have been developed to solve inverse heat
conduction problems. There are two processes dealing
with the inverse problems; first, the processes of
analysis and, second, the process of optimization. In
the former, the unknown quantities are assumed and,
then, the results of the problem are solved directly
using numerical methods. The conventional numerical
methods are finite difference, finite volume, finite
element and boundary element methods. The solutions
from the mentioned processes are used to integrate
with data measuring at the interior point of the solid.
Consequently, a nonlinear problem is established for
the process of optimization. In this process, an
optimizer, such as sensitivity analysis, the conjugate
gradient method and the regularization method ought
to be used to guide the exploring points systematically,
to search for a new set of guess quantities, which are
then substituted for the unknown quantities in the
analysis process. However, the constraints arising when
dealing with a moving boundary should be addressed
with care. The sensitivity analysis is suitable for on
line measurements. The derived system of equations
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within the analysis is often ill conditioned and, thus,
the convergence is difficult [3]. The regularization
methods can be used to assist the convergence.

Several studies of moving boundary related prob-
lems have been presented in the past. Huang et al.,
used the conjugate gradient method for determining
unknown conductance during metal casting in a one
dimensional field [9]. Keanini and Desai employed the
inverse finite element reduced mesh method, in or-
der to predict multi-dimensional phase change bound-
aries [10]. The thermal diffusivity of this problem
was around 1 x 1077 m?/s and the workpiece traveled
at a speed of 1.24 x 107* m/s. Woodbury and Ke
investigated a one-dimensional boundary inverse heat
conduction problem with phase change to a moisture
bearing porous medium [11]. Xu and Naterer used the
inverse method to study the heat and entropy transport
in the solidification processing of material [12]. The
thermal diffusivity of the materials was, approximately,
in the order of 107° m?/s. The interface velocity was
around 7.6 x 1075 m/s.

This paper presents a unified, moving, finite
element algorithm for the solution of a general, two-
dimensional, non-linear, inverse heat conduction prob-
lem with a moving boundary condition. The employed
moving finite element method uses a finite volume
formulation [13] and keeps the numerical boundary
consistent with the moving surface. The derived
algorithm, which is used in the sensitivity analysis,
is capable of evaluating surface heat flux, surface
temperature and the heat transfer coefficient on the
moving surface. The mathematical framework of this
method is so general that a variation of inverse heat
conduction problems with moving boundary conditions
and complex geometries, can be treated. Other in-
herent complexities, such as material non-linearity and
the number and locations of the data points, have all
been included in the algorithm. The three different
conventional zeroth order regularization methods are
used to investigate the accuracy and the convergence
of the solution.

A numerical test case is presented to demonstrate
the application of the algorithm. This application
relates to the determination of the temperature on a
moving surface of an annular homogenous solid fuel.
The resulting temperature distribution can be used to
assess the thermal behavior of the solid, as well as
determining the flame temperature.

DIRECT PROBLEM

The governing equation for a three-dimensional, non-
linear, direct and unsteady heat conduction problem
reads:

oT
pepsr = V. (kVT), (1)

where T denotes the temperature field and is the
function of space and time. p,c, and k are density,
specific heat capacity and conductivity, respectively.
In order to illustrate the implications of different
types of boundary condition in the formulation of the
inverse problem, three different boundary conditions
are considered:

orT
k= + hT = f (7,1), Fele, t>0, (2
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—k%:qb(r,t), Terq7t>07 (3)
T=T"1)), Felr, t>0. (4)

The initial condition for Equation 1 is:

T:TO(F)7 FEQ?'t:Ov (5)
where I'c,I'; and I'7 are continuous boundary surfaces
of the region Q. h, f,¢*, T® and T, are known functions
in the direct problem.

INVERSE PROBLEM

In the presented inverse heat conduction problem, one
of the boundary conditions is unknown. Let it be
assumed that there are M temperature sensors in the
region (2, where the measured temperatures are:

T$:T(Fm7t)7 m:]‘727"'7M7 (6)
where 7, is the location vector of the mth sensor. The
measured data constitute a vector at time ¢:

= T

™ =17 19" - Tyl . (7)
Superscript 7' is the transpose symbol. In order to ex-
plain the methodology used in this work, the boundary
condition expressed in Equation 2c, is considered as the
unknown boundary condition. However, the presented
method is general and can be used for other types of
boundary condition.

Assume that 7° is a known variable. The tem-
perature of the mth measuring point at location 7, is
computed by solving Equation 1 and using the Galerkin
interpolation method:

Ty =T (T, 1), (8)

where the superscript, ¢, stands for computed quantity.
Thus, the computed temperature vector at time ¢ is:
—»C T
Te=[ry 15 - Tg)" (9)

The inverse heat conduction problem is an ill condition
problem and the computed temperatures, T¢, deviate
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from the measured temperatures, fm, due to the
measurement errors [3]. To circumvent this problem,
probabilistic approaches such as least square, weighted
least squares or maximum likelihood can be used to
analyze the problem. These methods can all be reduced
to the form of a least square method, using Beck’s
statistical assumptions [1].

Therefore, the solution of the problem can be
defined as the modified least square solution of the
errors:

= (7 —fm)Tw (7 -7

(1 -1%) U (1 -1, (10)

where W and U are the weighting matrix and, by
Beck’s assumptions, W can be calculated as follow [14]:
W =1I/o"", (11)
o™ is the variance of the measurement errors. T°¢
is the estimated unknown boundary condition. The
second term on the right hand side is the regularization
term, which forces the algorithm to converge to a
desired solution. As seen from Equations 1 and 2, E
is the function of the temperature on the boundary,
T®. One of the simplest and most effective methods of
minimizing the function E is normally called the Gauss,
Gauss-Newton, or linearization method. In order to
minimize F, the partial derivative, with respect to T,
must be equal to zero:

- T
% _ (%) W (o= 17) +20 (1~ 1) -

T is also a function of T%. Using the Taylor expansion
series, the following expression is obtained:

N o1
T  OT?

Substituting Expression 9 in Equation 8 reads:

Te =T° AT®. (13)

TP +AT?

(XTW (T~ 7¢) + U (T - T")]
= (X"WX + U) AT", (14)

where X = % is known as the sensitivity matrix. For
the sake of simplicity, the subscripts in Equation 10 are
dropped.

The components of the sensitivity matrix are
calculated using the method presented by Beck [1]:

LT (1 +2)T2) —T¢, (T7)
B eT?

X’(TLTL

m=1,2,...,M andn=1,2,...,N, (15)
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where ¢ is a small positive number. T? is defined as:

reN, n=172

y 2,0,

T, =T"(71), N,  (16)

N
where |J A, = I'r and A;(A; = ®. U matrix can

n=1
be chosen, based on the regularization method.

REGULARIZATION METHOD

The simplest method for regularization is called the
Tikhonov [15] or the Tikhonov-Phillips regulariza-
tion [16]. In this method, U is assumed equal to vI
where v is a small positive value. If the initial guess
of the solution is far from the real boundary, some
overshoot problem is presented in the estimation and
instabilities grow. Levenberg tried to overcome this
instability and presented a new method where [17]:

U =\l (17)
A is a positive parameter, which descends where the
solution converges and is calculated by the following

equation:

L EIWXXTWe !
- = :

(18)

where € 1" is equal to T°—T™. The modified Levenberg
method is another version of this method, where U is
calculated by the following formulation [18]:

32 TWXQ,, XTwe T
T FTWXXIWeET

(19)

where ,, is a diagonal matrix with the diagonal com-
ponents XTWX. Another method is the Marquardt
method, which is simpler than the Levenberg method.
In this method, U is calculated, based on the following
equation [19]:

_ oy

U=,

(20)
where \g is a small positive number, v is some constant
greater than unity and & is the iteration number.

MOVING BOUNDARY FINITE ELEMENT
METHOD

Moving boundary-moving mesh entails the use of a
system whereby numerical boundaries are kept con-
sistently on moving boundaries and the overall mesh
configuration is continuously adjusted in the course of
time to conform to any movement of the boundary.
The finite element formulation is obtained by applying
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the Galerkin method to Equation 1, using the linear
triangular elements [20]:

T .
/ [V. (kVT) — pcp%—t — pc, V.NT | N;(7,t)d2 =0
Q

i=1,2,...,J, (21)

where N; (7,t) is the basis function and V is the
mesh velocity. Note that this formulation has added a
convection term to the governing numerical equation.
This apparent convection is due to the movement of
the mesh and highlights the fact that the problem is
being analyzed through a coordinate system implicitly
attached to the mesh. Equation 21 is now rewritten in
the form of a finite volume formulation [21]:

I I
J dT; - i .
ZC—L‘,]‘ dt] + ZHi,j.ni,j =0, (22)

=1 1=1

where I; is the number of nodes neighboring the jth
node and Cj; ; is a constant in each control volume. The
second term in Equation 22 represents the summation
of the fluxes across the faces of the jth node’s control
volume. The Crank-Nicklson scheme is used to solve
the ordinary differential Equation 22 at each time
step [22]:

I; Tn-l-l " 1 I; il
2 B Y 7
ZC’L,] At + D) _ZHW'”Z’]
=1 =1
I "
1S,
+ 5 ZHi’j'niJ =0, (23)
=1

where the superscript, n, denotes the time step. Equa-
tion 23 can be rewritten in the following compact form:

AT =, (24)

A is the coefficient matrix and b is called the force
vector. T' represents the temperatures at the nodes in
region () at time step (n + 1).

Due to the convective term in the equation, the
coefficient matrix could become nonpositive definite.
Thus, the Lower Upper decomposition (LU) method
is used for solving this system of linear equations [23].
Due to the large dimension of the coefficient matrix,
the sparse matrix data structure is adopted for data
storage [24].

Owing to the complexity of the domain and the
moving nature of the boundary, in order to minimize
CPU time, the efficient algorithm of the transfinite
mapping is used. Since the moving boundary may
travel large distances and undergo a significant change

in shape in the course of the solution, a flexible system
for arranging the interior nodes must be applied, in
order to keep the mesh in a reasonable condition.
The method used in this work to accomplish this task
involves the generation of a new mesh each time step,
using transfinite mappings.

Haber et al. [25], Gordon [26,27] and Hall [28]
describe the transfinite mapping in terms of projectors.
The transfinite mapping used in this work is the
bilinear projector, which is given by:

P(s,t) =(1=t)&1(s)+t&2(s)+(1—s)1(t) +5¢2(t)
+ (s — 1)(1 — t)F(0,0) + (s — 1)t F(0,1)
— stF(1,1) + s(1 — t)F(1,0),

0<t<l, 0<s<l. (25)
This projector represents the continuous mapping of
a unit square in the transformed (s,t) space onto the
region to be meshed in the original (x,y) F-space. In
F-space, the region has four sides, described by the
curves £1(s),&2(s),¥1(t) and 9»(t) and four corners
with coordinates F'(s,t), where s and ¢ equal zero
or one. This projector maps equal divisions of the
unit square in (s,t) onto a desired shape, as shown
in Figure 2a.

In practice, a finite number of nodes is identified
on each side: These correspond to discrete values of £
and %. Thus, £ and ¥ need not be smooth functions or
any known functions at all. One only needs to specify
nodal coordinates at various points along the boundary
curves, such that these points may be identified with
values of s and ¢ between zero and one along opposing
sides. In principle, the use of higher order elements to
treat topologies that are more general than those which
are dealt with here, can also be accommodated. The
method will match any set of boundary curves exactly
at all points on those curves, if the actual boundary
functions (&, ) are used in Equation 17.

SOLUTION ALGORITHM

The sequence of the solution algorithm can be stated
as:

1. Guess the boundary condition, 7,
2. Solve Equation 1 for fc,

3. Calculate the sensitivity matrix and regularization
factor,

4. Solve Equation 14 for AT® and correct fb,

5. Using the newly calculated fb, solve Equation 1 for
Te,
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6. Check the following convergence criteria:

E* < e, (26)
|EFTY — EF| JE* < ey, (27)
|AT®| < €3, (28)

where superscript, k, denotes the iteration number.
€1,e2 and =3 are arbitrary constants and their
values are determined upon the accuracy require-
ment and cannot be smaller than the measuring
error [29],

7. If none of these criteria is satisfied, return to
step 3. Otherwise, the convergence in the solution
is achieved.

RESULTS AND DISCUSSION

The performance of the above-described methodology
is assessed by comparing the computed results of the
inverse analysis with the simulated results based on the
method presented by Ozisik [30]. In this method, the
simulated temperature measurement, 7", is generated
from the exact temperature in the problem and is
presumed to have measurement errors. In other words,
the random errors of measurement are added to the
exact temperature. This can be shown by the following
equation:

T =Tr +ws™, m=12 .. M, (29)

where T . denotes the exact temperature from the
solution of the direct problem at the measuring lo-
cation, 7,,. o™ is the standard deviation of mea-
surement errors and w is a random variable with a
normal distribution with a zero mean and a standard
deviation of one. For normally distributed random
errors, the probability of a random value, w, lying
in the range, —2.576 < w < 2.576, is 99%. The
value of w is calculated by Gasdev subroutine [31].
Based on the described method, a computer code,
MIHCP, is developed for solving the problem. This
code consists of transfinite mapping; mesh generator,
moving finite element solver for a direct problem and
an LU decomposition solver with a sparse matrix data
structure for solving the linear system of equations.

Test case

A critical case of a homogenous burning annular solid
fuel is considered in the present work. Due to the
burning process of the fuel, the inner surface recedes
by a velocity of 10 mm/s. For the simplicity of the
analysis, only one quarter of the circle is considered.

A H. Kakaee and B. Farhanieh

The boundary and initial conditions of the case to be
studied are given below:

T =1000K ¢>0, r=0.1m, 0<6 < 90° (30a)
T=300K t>0,r=0.2m, 0<6<90° (30Db)
oT

5-=0 >0, 0m<r<0.2m, 6=0 and 90°, (30c)
n

T=300K t¢=0, 0.lm<r<0.2m, 0 <6 <90°. (30d)

The physical properties of a typical solid fuel are [32]:
k = 0418 W/mK, p = 1750 kg/m? and ¢, =
1260 J/kgK.

To apply the inverse heat conduction methodol-
ogy to the moving boundary, the temperature of the
inner surface is now considered unknown. The inverse
analysis is performed by arranging 18 thermocouples,
radially, at the centerline of the domain, 3 mm apart
from each other.

In order to investigate the grid size effect, ex-
ploratory test runs were performed under various grid
sizes to compute the temperature at the third sensor.
The temperature history for these grids is plotted in
Figure 1. The maximum changes in the temperature
between the coarsest mesh (11x11) and the finest mesh
(51 x 51) are within 85%. The results show that by
increasing the fineness of the grid to more than (41 x
41), no significant changes appear in the temperature
history. The final computations were performed with
(41 x 41) grid points to maintain relatively moderate
computing times in the final calculations. A typical
grid is shown in Figure 2a. The temperature contours
at t = 2 seconds are plotted and presented in Figure 2b.
As seen from this figure, the thermal penetration depth
of the heat flux is less than 3 mm. This is due to

600

Temperature
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400

LNLELEEN LA NI NLEL LA NI BN LAY UL

0.5 1.0 1.5 2.0

Time (second)

Figure 1. The temperature history of the point
(r,0) = (0.115, 45) for different mesh size.



Convergence in Moving Boundary Inverse Heat Conduction Problems 109

7
y

i
a4
1
7
i
W
/f///

Y
i
il
i
;z
4

N

»&&\\‘\\\\\\\x\\\.\\g@:\\\
KR

SRR \‘\\\g\\\@\&\:\\“\\\%\\\\

N
X N Nk
RN N
> 0.100 R
: N W
N W \) W
AN \\l\\ \
0.075 RN N
RN
N R \\\\ \‘\\\\\\
S WY “\\“‘\\\
A Y
0.050 “ﬂ\\“‘ W A N
R BTN
RARAAVHR AN NI R AN
TRV R ATV
AN NNHATRAAVVIVIVYYL
SRR AR
0.000b o ot 1 EARAARANAARANNANNY
0.00 0.05 0.10 0.15 0.20

Figure 2a. A typical grid presentation at ¢t = 2 s.

y
co0000000000
[elelelolelolelelelolele]
0000 D OOV OVVOO
0000 N ND~00

L BLALELRE BLEALA SN LA

0.000 ?
0.00 0.05 0.100 0.15 0.20

T

Figure 2b. The temperature contours and the thermal
penetration depth at ¢ = 2 s.

the effect of low thermal diffusivity of the solid fuel
(less than 2 x 10=7 m?/s). It is worth noting that in
a semi-infinite flat plate with no moving boundary and
with the same physical properties as the test case, the
temperature at the depth of 3 mm varies only by one
degree centigrade after 2 seconds. In this problem, the
effective mechanism of the heat flux penetration is the
velocity of the surface. Thus, the sensitivity of the
computational domain is very low to the variation of
the surface temperature.

The comparison between the simulated and the
computed surface temperatures for ¢™ = 0.1°C is
shown in Figure 3a. In Figure 3b, the computed
and simulated temperatures at the positions where
the thermocouples are located, are compared with
each other. The computed results are in very good
agreement with the simulated data. However, as can
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Figure 3a. Computed and simulated temperature on the
moving surface.
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Figure 3b. Temperature of the four thermocouples
adjacent to the moving boundary.

be seen clearly from Figure 3a, this is not the case
for surface temperatures. A good agreement between
the computed and simulated surface temperature exists
up to t = 1.0 s. At this point, the computed
surface temperature differs from the simulated one.
This phenomenon should be studied in conjunction
with Figure 3c. As can be seen, the number of
the thermocouples left in the computational domain
decreases with time, due to the receding of the surface.
Therefore, when a thermocouple leaves the computa-
tional domain, the next adjacent thermocouple is at
a distance relative to the moving surface outside the
thermal penetration depth. The receding boundary
approaches the thermocouple causing the temperature
variation to be felt by this sensor and the simulated
and computed result coincides again.
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Figure 3c. The number of active thermocouple.

To investigate the influence of the thermocouple’s
errors on the solution, the variance of the difference
between the simulated and the computed temperature
of the moving surface, o® = var(T®¢ — T"*)1/2 is
obtained and plotted for different ¢™, in Figure 4a.
Also, the mean value of the deviation between com-
puted and simulated results, u® = E(T%¢ — T%*%), is
shown in Figure 4b. As seen from Figure 4a, the
calculated variance increases with increasing o™. This
is the obvious nature of the inverse heat conduction
problem; increased errors in thermocouple readings
increases the errors in computing boundary temper-
ature values. However, this figure shows that the
method is applicable for moving boundary problems.
For example, if K-type thermocouples, which have
one degree centigrade normal error, are used, the
error occurring in the solution will be approximately
10°C. As can be seen from Figure 4b, the method
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Figure 4a. ¢” versus o™.
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Figure 4b. b versus o™.

is unbiased for a small error value in temperature
measurement.

The influence of the thermal diffusivity, «, on the
solution is investigated by examining the variation of o®
and p® for different o, assuming constant ¢™ = 0.1°C.
As seen from Figure 5a, at low thermal diffusivity, the
variation of ¢’ is in the same order as the error of
sensors. However, after « = 107* m?/s, a very sharp
decrease in ¢ is observed. The sharp decrease in o
is due to the fact that the thermal penetration depth
is directly related to the thermal diffusivity. As « in-
creases, the thermal penetration depth becomes larger,
increasing the sensitivity of the adjacent thermocouple
to the temperature of the moving surface. Increasing
the value of a to more than 10~* m?/s, decreases the
errors in the solution. From Figure 5b, it can be seen
that the method is unbiased for large diffusivity and
relatively unbiased for small ones.
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Figure 5a. o’ versus diffusivity.
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To improve the convergence rate and the accuracy
of the estimation, three regularization methods are
used. In Figures 6a to 6c, the decrease in AT?,
the relative sum of the square of the errors and the
sum of the square of the errors in each iteration, are
shown. The Marquardt and Levenberg regularization
methods under-relax the solution and, thereby, delay
the convergence. No significant changes are observed
employing the modified Levenberg method. As can be
seen from Figures 6a to 6¢, the applied regularization
methods do not enhance the accuracy of the obtained
results. Therefore, the contribution of the regulariza-
tion methods to overcome the ill-condition of the mov-
ing boundary inverse heat problems, is insignificant.
As the mapping of the infinite dimension to a finite
dimension domain can act as a kind of regularization,
the applied modified finite-element method, by itself,
avoids the ill-condition problem associated with the
moving boundary.

CONCLUSION

A flexible hybrid method is presented for solving an
inverse heat conduction problem with a moving bound-
ary. Based on the moving finite element and transfinite
mapping properties, the method is developed for the
cases with complex moving boundary conditions. The
unique feature of the proposed algorithm is that the
method can be used to treat any cases with unknown
surface heat flux, surface temperature and heat transfer
coefficient on the moving surface. The applicability
of the proposed method has been demonstrated in a
case involving the burning of a homogenous solid fuel
with unknown surface temperature on the receding
boundary. The excellent correlation of the computed
temperature histories and those measured at selected
locations in the solid wall provides a clear indication
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of the credibility of the proposed method. From the
results, it appears that reasonably accurate estimation
could be made, even when measurement errors are
considered. The velocity of the receding surface on
the formation of the thermal penetration depth and,
hence, on the sensitivity of the sensors measuring
the temperature, is recognized and discussed. Some
oscillations in temperature readings are observed when
a sensor is swept over by the thermal penetration
depth and leaves the computational domain. Thus
in online measurements of the boundary temperature,
these oscillations should be omitted from the results.
The variation of the thermal diffusivity on the solution
is also considered. The effect of different regularization
methods on the convergence and accuracy of the solu-
tion is investigated. It is shown that the employment
of regularization does not have any significant role in
the convergence of the solution and the accuracy of the
obtained results.
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