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Simulation of Detonation Initiation
in Straight and Baffled Channels

M. Farshchi* and S. Hossainpour!

Euler conservation equations, ideal gas state equations and simplified chemical kinetics models
were used to simulate two-dimensional straight and baffled shock tubes. In a straight channel,
detonation waves were initiated by a strong shock wave and allowed to travel down the channel
to reach a CJ wave condition. It has been shown that a two-step reaction, kinetics model
with an induction time delay, resulted in a physically plausible transient solution. The one-step
kinetics model solution is only valid at the limit of a steady state CJ wave condition and should
not be used for transient problems. The two-step kinetics model was then used to simulate a
detonation initiation in a baffled shock tube. It was shown that the presence of multiple baffles
in a channel could result in an initiation of detonation, in cases where the temperature jump
across the traveling initial compression wave and the presence of a single baffle are not sufficient
to initiate a detonation. Furthermore, it is shown that in the absence of any viscous mechanisms,
shock reflection from the second baffle created a moving Mach stem between the baffles. The
coalescence and focusing of pressure waves behind this Mach stem resulted in the creation of a

hot spot leading to a detonation wave.

INTRODUCTION

The study of shock wave propagation, in channels par-
tially obstructed by baffles and wedges and filled with
reacting mixture of gases, has applications in many
industrial safety situations, as well as in mechanical
operations such as pulsed detonation engines. The
presence of any obstacles in the shock wave path could
result in a detonation wave. Strehlow [1] has observed
that even the presence of bumps and crevasses on
straight channel walls, if large enough, can destroy the
one-dimensional nature of the flow and lead to shock
reinforcement and detonation initiation.

The use of wall obstacles to induce transition
from deflagration to detonation was observed many
years ago. The mechanism by which transition is
facilitated has been credited to the generation of
turbulence by the obstacles, hence, promoting flame
acceleration [2]. However, more recent experiments
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by Chue et al. [3] have demonstrated that channel
wall obstacles create transverse pressure waves whose
interactions result in the formation and maintenance of
a detonation wave. Furthermore, Chan has observed
a complex interaction of shock waves between two
obstacles resulting in the formation of a detonation
wave [4]. Experiments of Chan have indicated that in
stoichiometric hydrogen-oxygen mixtures, initiation of
detonation can be achieved by the collision of a shock
wave with obstacles, whereas the shock wave was not
strong enough to initiate chemical reactions by itself.
The author’s investigation is motivated by Chan
observations [4]. Chan used a 9 x 9 cm, 4 m long
shock channel with two, baflle-type obstacles mounted
in the test section. The heights of these obstacles were
3.8 and 2.5 cm, respectively and they were mounted
20 cm apart from each other. A shock wave was
generated in the gas mixture by breaking the shock
channel’s diaphragm with a plunger. Chan presented
Schlieren photographs for the collision of a 2.2 Mach
number shock wave with obstacles. The collision of
the shock wave with the first obstacle did not cause
ignition in the vicinity of the obstacle. However, as
the transmitted shock wave continued to propagate
downstream and collided with the second obstacle,
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ignition of the mixture occurred near the upstream
face of the second obstacle. The schlieren photographs
indicated that the first obstacle caused the initially
planar shock to diffract. Subsequent oblique collision
of the diffracted shock with the bottom wall caused
the formation of a Mach stem. The collision of
the Mach stem with the second obstacle created a
strong enough shock reflection to heat the gas mixture
beyond its auto-ignition temperature, causing ignition.
The schlieren photographs did not show clearly the
formation of a flame kernel, however, Chan suggested
that viscous dissipation along the slip surface behind
the reflected Mach stem had heated the gas to higher
temperature relative to its surroundings, causing a mild
ignition.

Although viscous dissipations may be the ac-
tual cause of the ignition observed by Chan, there
are also inviscid gas dynamic interactions, such as
pressure wave focusing, which could create local hot
spots capable of causing an ignition point in the
mixture. This is not meant to underestimate the
role of turbulent mixing and viscous dissipation in
creating locally sensitive regions. In fact, both viscous
and inviscid mechanisms are at work under normal
circumstances. However, it is unclear whether inviscid
gas dynamic effects alone could account for Chan’s
observations.

The objective of the present work is to address
this issue and evaluate the possibility of detonation
initiation due to pressure wave interactions in the
absence of any viscous dissipation effects. Chan’s
experimental work has provided a suitable test case
to distinguish between the contributions of viscous
dissipation effects versus inviscid gas dynamics effects.
His experiment was used to construct a computational
model to determine if inviscid gas dynamic effects could
result in detonation initiation in the case of a weak
shock propagating in a channel with multiple obstacles.

To achieve this objective a computational tool for
the study and analysis of detonation initiation and
propagation in two-dimensional complex geometries
was required. Experimental studies of the structure of
detonation waves indicate that the leading shock front
is found to consist of convex segments whose bound-
aries are not stationary but move across the detonation
front as it advances [5]. At the boundaries of these
segments, the shock front is broken discontinuously
and additional gas dynamic processes extend from the
intersection loci into the reaction zone region behind
the primary shock front. Therefore, the structure of
detonation waves is rather three-dimensional. How-
ever, to date, the majority of numerical simulations
of the detonation initiation and propagation have been
limited to two-dimensional models. This is due partly
to computational limitations and partly to the fact that
two-dimensional simulations have been able to capture
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the transverse structures that are the key component of
the detonation structure [6]. The experimental setup
and observations of Chan, which are used as the bases
for the present numerical simulation, reinforce this
assumption.

Numerical methods with monotone second order
space and time differencing and accurate shock captur-
ing capabilities have been developed. These methods
have been used for the solution of chemically reacting
high-speed flows with multiple discontinuity surfaces
on structured and unstructured adaptive grids. Oran et
al. [6] have performed high-resolution, two-dimensional
computations of the propagation of a detonation in a
diluted mixture of hydrogen and oxygen using Euler
equations and a detailed chemical reaction mechanism.
They examined the features of transverse waves and
the cellular structure that develops behind a CJ wave.
Bourlioux and Majda [7] presented numerical simula-
tions of unstable two-dimensional detonations. They
used a higher order Godunov scheme, adaptive mesh
refinement and conservative front tracking to solve two-
dimensional Euler equations with a simplified one step,
chemical reaction model. Molecular transport effects
were neglected in the above investigations and in many
other numerical simulations of detonation waves. Since
the time scales for diffusion transport processes are
long, compared with convective and heat release time
scales, molecular transport processes have a negligible
effect.

A finite volume, upwind, inviscid flow solver has
been developed for simulation of two-dimensional or
axi-symmetric chemically reacting flows on an adap-
tive, square, unstructured grid. The flow solver has
several features. Fluxes on cell faces are calculated us-
ing the Roe’s flux-difference splitting method. Spatial
accuracy is increased using gradients of the solution
variables. The solution algorithm uses a cell-centered
scheme with a mesh refinement method to adapt the
mesh resolution in regions with large pressure or den-
sity gradients. The grid adaptive procedure involves
mesh enrichment and coarsening by adding points in
high gradient regions of the flow and by removing
points where they are not needed. To increase the time
accuracy of the method, a mid-point rule is used for the
time integration.

The chemical reaction kinetics model is probably
the most important physical model in the simulation of
detonation initiation. The reduced kinetics model must
be chosen carefully to prevent the initiation kinetic
effects from being lost in the simulations. Experiments
have shown that direct initiation of a detonation wave
requires sufficient energy and power [8]. A sufficiently
strong shock wave must be created and sustained for a
sufficient period of time before detonation can follow.
This observation points to the importance of chemical
reaction kinetics, in general, and the reaction induction
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time, in particular. In spite of this observation,
many researchers have used simple one-step irreversible
kinetics models in their work (see [7,9,10]). The
justification for the use of these models is that while
they provide a great deal of computational savings,
a remarkable range of physical phenomena can be
captured qualitatively if a few simple parameters, such
as heat release, activation energy or precursor shock
strength, are varied. However, as will be shown later,
such simplification should be done selectively and only
in special cases where the transient nature of the
detonation initiation is not under scrutiny. To account
for the reaction kinetics induction time, a two-step
Arrhenius kinetics model is considered. In this reaction
mechanism, two progress parameters are introduced to
account for the induction time, as well as exothermic
reactions [11,12].

Smirnov and Panfilov [13] used an irreversible,
two-step kinetics model for simulation of the detona-
tion initiation in a viscous, heat-conductive reactive
mixture. They used an induction step and an exother-
mic step with equal rate constants and activation
energies. Using this model, they investigated the range
of activation energies where transition from deflagra-
tion to detonation can take place. They stated that
lowering the activation energy to a certain limit, £=10
kcal/mole in their study, leads to the development of
a strong detonation wave, almost instantly, that is
coincident at the point of the shock formed by the
forced ignition condition. They also pointed out that
the strong detonation wave eventually slows down to
the Chapman-Jouguet speed.

Several one-step and two-step kinetics models for
the simulation of detonation initiation were examined.
In straight channels, where detonation was initiated by
a strong shock wave, a model similar to the Smirnov
and Panfilov model was used. It was shown that a two-
step reaction kinetics model resulted in a physically
plausible transient solution. A one-step version of this
model was shown to be only valid at the limit of a
steady state CJ wave condition and could not be used
for transient problems.

In the following sections, the governing equations,
the numerical solution method and its validation, are
discussed first. Next, the authors’ findings are pre-
sented on the effects of one-step and two-step kinetics
models on the evolution of a detonation wave and
its approach to a CJ wave. Finally, the results on
the initiation of detonation in a baffled shock tube
are presented. Using a test case, based on Chan’s
experimental work it is shown that in the absence
of molecular and turbulent diffusive and dissipative
effects, multidimensional gas dynamic mechanisms,
such as shock focusing, are capable of creating local hot
spots causing a strong ignition leading to a detonation
wave.
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GOVERNING EQUATIONS

The governing equations are time dependent, two-
dimensional or axi-symmetric Euler equations, describ-
ing an inviscid compressible flow of an ideal mixture
of gases with a constant specific heat ratio. A two-
step, irreversible, Arrhenius chemical reaction kinetics
model is utilized. The two-step reaction model consists
of an induction phase, measured by the decay of
the parameter § from the initial value of one to the
final value of zero, followed by an exothermic reaction
phase, modeled by a single irreversible heat release
parameter, \. The heat release parameter is initially
set to zero, resulting in zero chemical reaction heat
release. It is activated after the induction time has
elapsed, then it is allowed to grow and reach the
maximum value of one at the completion of the heat
release phase. The complete model, in a conservative
form, is given as:

A(r*U) 9(r*F) 09(r*G)
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=S5, (1)

where « is zero for Cartesian coordinates and one for
cylindrical coordinates. U,F,G and S are defined as
follows:
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Here, u and v are the longitudinal and transverse
components of the velocity vector, respectively. The
variables v, P,p and e; represent the specific heat
ratio, pressure, density and total energy per unit
mass, respectively. Also, ¢ is the heat of reaction
per unit mass, ky,kg and E),Ez are the forward
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reaction rate constants and activation energy per unit
mass for exothermic reactions and induction time delay,
respectively.

NUMERICAL METHOD

The choice of a numerical method is dictated by
the complex structure and time dependent dynamics
of the detonation wave, as well as the complexity
of the two dimensional geometrical domain of the
problem. The detonation wave can be characterized
by its fast moving shock front (of negligible thickness)
followed by a narrow, heat releasing, reaction zone
which supports the shock motion. Any geometrical
complexity, such as varying cross sectional area or the
presence of obstacles, creates highly complicated wave
interactions. The numerical technique should, thus, be
capable of capturing shocks without any oscillations
and with minimum added numerical diffusion. The
numerical method used in this work is based on the
high-resolution scheme on a Cartesian adaptive-mesh
presented by Chiang [14].

Spatial Discretization

A finite volume, upwind scheme, based on Roe’s flux-
difference splitting method, on an adaptive square
unstructured grid, is employed here. The conservative
finite volume form of the governing transport equations
can be obtained by integrating these equations over a
cell area, 2, and application of Gauss’ theorem.

/ /Q U,dA +azf (Fdy — Gdax) = / /Q SdA. (6)

The surface integrals are expressed in terms of the
average value of state variables over the cell, while the
line integral becomes a sum of the fluxes over the four
faces of the quadrilateral cell as follows:

=3 4
A— + ) (F¥(AX)i + GF(AY),) = AS. (7)
k=1

Here, A is the area of the cell and a bar represents an
average quantity in a cell. The fluxes F¥ and G* are
average values on the cell face, k. Introducing the cell
face length, As, the above equation can be rewritten
as:

A— + Z FX Asy, = AS, (8)

where F; is the flux normal to the cell face (see
Figure 1):
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Figure 1. Geometry for normal flux calculation.
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Next, the numerical flux function, based on Roe’s ap-
proximate Riemann solution, can be used to determine
needed flux values at cell faces [15]. The flux across a
cell face, of which the normal is at an angle, 8, with
respect to the z-axis, is computed from the following
equation:

F(Ur,Ug) =5 (F(Ur) + F(Ug))

where L (left) and R (right) refer to the lower and
higher cell index, respectively. The eigenvalue vector,
a, is composed of the characteristic speeds and the

matrix, R, is composed of the right eigenvectors of the
mean value flux Jacobian matrix:
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The superscript tilde (~) refers to the so-called Roe
average. The Roe average of a quantity is computed
by weighting with /p, for instance, as shown in the
following equation:

_ VL
VPL + /PR

u=mnug+(1—n)ug,

p=PLVPR: 7

v = nvg + (1 —n)vg,

~ ~
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~

B=nbr+ (1 -n)br. (12)

The other quantities with superscript tildes are not
averaged independently, but are obtained from the ba-
sic Roe averaged quantities by their normal functional
relation. The vector, AV, is given as:

( AP—5CAu, )

2¢c?
pAurr

AV =

A0 =0z = 0r: (13)

Second Order Spatial Scheme

High gradient slip lines (caused by moving Mach
stems), as well as inviscid separation points over the
shock tube obstacles, create regions with high velocity
and temperature gradients. These high gradient re-
gions are perpendicular to the principle direction of
gas motion in the shock tube. Application of first
order spatial differencing introduces large amounts of
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numerical viscosity, which could result in artificial
dissipation. This would lead to creation of unintended
and nonphysical hot spots in high Mach number flow
fields. To avoid this problem, higher order spatial
differencing must be considered. Barth [16] has in-
troduced a version of Van Leer’s MUSCL algorithm,
based on a linear reconstruction of the solution inside
cells. High order accuracy in space is achieved by
using interpolated flow values in each cell face using
the known gradient of these values. This method can
be shown as:

U(r) =U(r) + VU e (r — rg)o, (14)

where r and 7y refer to cell face and cell center,
respectively. The special flux limiter, ¢, is used to
prevent numerical instabilities near shock regions.

Adaptive Unstructured Mesh Generation

The diversity of time and length scales present in our
problem makes it very time consuming to reach physi-
cally meaningful results with a stationary uniform grid
resolution. Therefore, a locally adaptive grid is used
to resolve the flow field in the high gradient regions.
Adaptive mesh methods attempt to increase the reso-
lution in the region of necessity and can dramatically
reduce the computational effort, especially in unsteady
calculations [17]. The concept of the hierarchical cell-
based quadtree, where a “parent” cell is refined by
dividing it into four “children” cells, is introduced to
construct the basic grid system. This structure treats
the embedded grid as separate levels, as shown in
Figure 2. However, the numerical calculations take
place only on the cells without children; the parent
values can be obtained by virtue of the children values.

This refinement procedure can be continued to
several levels, until the required local resolution is
reached. By removing children cells, one can recoarsen
the mesh. The adaptive grid resolution technique used
here is fully discussed by Chiang [14]. In the present
study, the gradient of density, as well as the gradient

Level 1

| Level 2

4 Level 3

Level 4

Figure 2. Cell refinement method.
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of pressure, are used as the measure for flagging cell
refinement.

Time Discretization

It is generally agreed that second order accuracy in
time is required for the efficient solution of transient
flow problems. An explicit, multi-stage, time marching
approach with the mid-point rule is used here to achieve
second order, accurate time integration. The Mid-
Point rule is a two-stage technique given as:

At
Ut =U" + = Res(U™),

U™t = U™ + At Res(U™2), (15)

where Res(U) is a discretization of the spatial differen-
tial operator in the Euler equation.

The principle of time adaptation is to use two
small time steps on the fine mesh, in order to keep up
with one time step on a mesh twice as coarse. This is
essentially applicable on a uniform grid and, in order
to apply it, the cell next to the boundary of the fine-
cell region must be divided into two equal cells. Sub-
cell averages in the left and right half of the coarse
cell need to be reconstructed. The first step in this
reconstruction is to average the state vector in two fine
cells near the boundary, in order to obtain a coarse-
cell average in the fine-cell region. This is then used
in combination with the data in the adjacent coarse
cells to get a state-vector profile by interpolation. Once
this profile is available, one can reconstruct sub-cell
averages by integrating over sub-cells. The update from
time 0 to time At on a coarse mesh corresponds to
updating to two cycles of 1/2At on the fine mesh. By
the same procedures of reconstructing and updating,
the fine grid can be updated over another fine-grid time
step, so that both grids end up at the same final time.
Thus, accurate values are obtained on both coarse and
fine grids. After this has been achieved, the coarse
cell bordering the fine grid must be corrected in value
to restore conservation in time. The difference between
the flux integrals used for the fine cell and for the coarse
cell at their interface must be applied to the coarse
cell. Details of the multi-stage time marching and its
adaptation to the mesh refinement technique used here
can be found in Chiang [14].

Flow Solver Validation

The accuracy of a compressible flow solver is measured
by its ability to capture discontinuity surfaces. The
challenge in simulating unsteady flows is that these
discontinuities are not stationary in the domain of
solution and stationary grid clustering could not be
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used. When adaptive meshes and time steps are
used in unsteady calculations, the moving cells on the
boundary of fine and coarse meshes require additional
spatial and temporal interpolations, which produces
numerical errors not present in a uniform grid simu-
lation. Therefore, if the solution results on an adaptive
grid are comparable to those on a high-resolution
uniform grid, then the goal of adaptive method has
been achieved.

To validate the performance of the adaptive mesh
Euler solver described above, two classical tests are
utilized: A one-dimensional shock tube problem and
a supersonic channel flow over a forward facing step.

The classical, one-dimensional shock tube prob-
lem has an exact solution with important features
such as a shock wave, a contact discontinuity and an
expansion fan. The two-dimensional flow solver was
applied to a shock tube 3 m long with a partition
at the middle of the tube. The gas on both sides
of the partition is initially at rest. The pressure and
density at the left side of the partition, 0 < z < 1.5,
are 1.0 Pa and 1.0 kg/m® and on the other side,
1.5 < z < 3.0,0.1 Pa and 0.125 kg/m?, respectively.
Figure 3 compares the exact solution of this problem
to the two-dimensional, adaptive grid solution with
three levels of refinement. The shock wave is accurately
captured; however, some numerical diffusion is noticed
around the contact discontinuity. The corresponding
grid resolution pattern is shown at the bottom of
Figure 3 with mesh refinement in the high gradient
regions. Grid refinement is maintained on the left side
of the shock tube partition due to the presence of the
expansion fan. However, as the shock wave and contact
discontinuity move out of a region on the right side of
the partition, local higher level grids are removed and
the mesh recoarsens.

——a— Numerical solution
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Figure 3. 2D-shock tube adaptive grid solution with four
levels of refinement.
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Figure 4. Time evolution of density contours and mesh refinements in the channel.

Non-reacting supersonic channel flow over a for-
ward facing step is a two-dimensional numerical test
case that has been studied intensively in the past.
First introduced by Emery and later used by Van
Leer and Woodward and Colella to compare a variety
of numerical schemes for computing two-dimensional
fluid flow with strong shocks [18,19], here, this test
problem is used to validate the numerical scheme, as
well as the grid adaptation producer. The problem
involves a Mach 3 flow in a channel containing a
step. The channel is one unit wide and three units
long. The step is 0.2 units high and located 0.6 units
from the entrance of the channel. The test problem
begins with a uniform Mach 3 flow initial condition
over the entire domain of the solution. Specified
uniform, in-flow boundary conditions are used at the

left boundary and “out flow” conditions are used at
the exit boundary on the right. At the walls of the
channel, reflecting boundary conditions are applied.
Initially, the channel is filled with a gas which has
1.4 kg/m? density, 1.0 Pa pressure, 3 m/s velocity
and v = 1.4. Woodward and Colella [19] have
presented the time evolution of the density distribution
in the channel at half second time intervals, up to 4
seconds. They used the PPM numerical method on a
uniform 240 x 80 grid with no local mesh clustering.
In the present work, gradient of density is used as
the measure for flagging mesh refinement and three
levels of grid refinement are allowed on an initially
30 x 10 uniform grid. Therefore, the finest cell size
in the present work is equal to the cell size used in
their work. Figure 4 shows that the mesh refinement
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and coarsening adapt well to the flow field density
variations.

A comparison of these results with the results
of Woodward and Colella [19], indicates that the
present scheme is capable of accurately and efficiently
capturing transient details of the flow field, such as
shock reflection and Mach stem formation, as the flow
field evolves with time. Based on these results, the flow
solver was deemed valid for application to detonation
problems.

RESULTS AND DISCUSSIONS

The effect of simplified chemical kinetics models on the
initiation of a detonation wave and its approach to a
Chapman-Jouguet wave in a straight channel will be
discussed first. Next, initiation of a detonation wave in
a channel with obstacles will be examined.

Effects of Reaction Induction Time Delay

A simplified, two-step reaction kinetics model is used
to introduce exothermic chemical reactions, as well as
an induction time delay into the combustion model.
The two-step kinetics model used in the present study
is similar to that of Smirnov and Panfilov [13]. The en-
ergy release per unit mass of mixture is ¢ = 2x10° J /kg
and the activation energy and the reaction rate con-
stant for the exothermic step are E) = 10° J/kg and
kx = 0.5 x 105 1/sec, respectively. For the induction
time step, the activation energy is Esz = 10° J/kg and
the reaction rate constant is kg = 0.8 x 105 1/sec.

To determine the effect of reaction induction time
on the structure and development of a detonation wave,
a 3.5 m long channel was considered. A diaphragm,
located at 1.5 m from the left wall, divided the channel
into two sections. The high-pressure section, on the
left, was filled with a hot gas at 3.0 x 105 Pa pressure
and 2.35 kg/m? density. The low-pressure section was
filled with a combustible gas mixture at 10% Pa pressure
and 1.2 kg/m? density. The ratio of specific heat capac-
ities was assumed to be constant at v = 1.4. Initially,
the gas velocity on both sides of the partition was
zero. Figure 5 presents the time evolution of density,
temperature and pressure profiles along the channel for
cases of chemical reaction with induction time delay
(a), and no induction time delay (b). To realize the
second case, the induction time parameter, 3, was
initially set to zero, causing the release of chemical
energy as soon as calculations began (see Equations 2,3
and 5). Figure 6 shows the steady state structure of the
detonation wave, one millisecond after precursor shock
wave initiation, for the above cases. A millisecond
after the precursor shock wave initiation, a Chapman-
Jouguet detonation wave, with the steady state speed
of 2037 m/sec, was established in both cases. However,
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there are major differences in the approach to the final
structure of the resulting Chapman-Jouguet detonation
waves. Figure 5 indicates that peak values of pressure
and density behind the shock wave, were higher for the
case of the chemical reaction with an induction time
delay. However, the detonation front moved faster in
the no-delay case. To explain these differences, the
chemical energy release behind the precursor shock
and the structure of the detonation wave must be
examined. The effect of the chemical reaction induction
time on the structure of the steady state detonation
wave can be clearly seen in Figure 6. The detonation
wave front has traveled about 5 mm more in the no-
delay case, indicating that the average speed of the
detonation front was slightly higher in this case. The
application of the one-step reaction model (no-delay
case) is physically equivalent to assuming that the time
interval required for molecular collisions, resulting in
the initiation of chemical reactions and subsequent heat
release, is zero and reactions start instantaneously, as
soon as the precursor shock passes over an unburned
premixed gas.

Therefore, the small increase in the average speed
of the detonation front is due to immediate energy
release right after initial shock propagation into the
combustible gas mixture. Comparison of axial den-
sity and pressure profiles, 60 microseconds after the
shock initiation (Figure 5), indicates that there was
much less energy release for the case with reaction
delay.

The steady state structure of the detonation
wave presented in Figure 6a shows that the reaction
induction time delay allows for a gas dynamic jump
due to the passage of the leading shock, followed
by the increase, due to the chemical reaction energy
release. Such a distinction cannot be made in the
no-delay case (Figure 6b) and, hence, lower values
of peak pressure and density exist behind the shock
front.

The value of the heat release parameter, A, was
used to determine the instantaneous location of the
detonation wave and its thickness. This information
was then used to obtain the time history of the
detonation wave propagation speed and the pressure
behind the detonation wave, i.e. at the point where
[1 — Al < 0.001. Time histories of the detonation wave
speed and its backpressure are presented in Figure 7.
The final steady state values of detonation wave speed
and backpressure are the same in both cases and are
consistent with the CJ wave properties under the above
initial conditions. However, Figure 7 shows that for
the case with reaction induction time delay, the shock
wave has gone through a short transient phase. Within
about 160 microseconds after its initiation, it exceeded
the CJ wave speed, becoming a strong detonation
wave. It then reached its maximum speed at about
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Figure 5. Time evolution of density, temperature and pressure distribution with (a) and without (b) induction time.

200 microseconds and then, gradually, relaxed to a CJ
wave with a terminal speed of 2037 m/sec. For the no-
delay case, the instantaneous detonation velocity value
was always below the steady state CJ wave speed and,
gradually, approached the CJ value. This behavior is
physically unacceptable, since the CJ wave speed is
the minimum detonation speed possible. Therefore,
the solution to the detonation wave problem with no
chemical reaction induction time delay is only valid
at the limit of steady state and cannot be used for
transient calculations.

Detonation Initiation in a Baffled Channel

Clearly, the Chan experiment could not be simulated
with its complete chemical, physical and geometrical
complexity. Therefore, it was decided to create a model

problem that would maintain some of the main features
of his experiment and allow the authors to conduct
numerical experiments and simulate detonation caused
by the collision of a relatively weak shock wave with
multiple obstacles. To do this, a two-dimensional
channel, 25 cm long and 3 cm wide, was considered.
The channel was divided into two sections. The left
section was 3.5 cm long and filled with a compressed
inert gas at a pressure of 1.19179 x 10 Pa and a density
of 4.86 kg/m3. To simulate plunger action and also
save on computational effort by keeping the size of the
driver compartment small, this gas was given an initial
uniform velocity of 827.6 m/sec. The right section
was fitted with two baffle-type obstacles. The first
obstacle was 1.2 cm high and placed 5 cm from the
left boundary and the second obstacle was 1 cm high
and placed 10 cm from the left boundary. This section
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Figure 6. Density, temperature and pressure distribution with (a) and without (b) induction time.

was filled with a combustible gas mixture at a pressure
of 1.0 x 10° pa, a density of 1.2 kg/m? and with zero
initial velocity. Euler conservation equations, ideal gas
state equations and the simplified, two-step, chemical
kinetics model presented above were used to simulate
the two-dimensional baffled shock channel. The values
used for the reaction kinetics model parameters and
the gas energy releases were those presented above.
The auto-ignition temperature of the combustible gas
mixture was set to 1500 K. Given the above activation
energy and reaction rate constant for the induction
delay equation, approximately 12 usec of ignition time
delay is expected at this auto-ignition temperature.
The finite volume, second-order, upwind flow
solver described above was used on an adaptive square
unstructured grid to solve the governing equations.
The computational platform used for these calculations

was a Pentium III PC with a 750 MHz processor and
256 Meg RAM. Each run took about 20 hours and the
maximum number of grid points was limited by the
computer memory size. The numerical domain was
initially sub-divided into a uniform mesh of 320 x 38
(12160) square cells. The mesh was then refined
as the shock wave propagated in the region. Only
one level of refinement was allowed, because greater
refinement levels increase cell numbers beyond the
available computer memory. The final mesh had 51070
cells, of which only 12160 were in the initial level.
Figure 8 presents ten frames of density and
temperature contours for the flow field, as the incident
shock wave propagates down the channel and collides
with obstacles. The second frame of Figure 8 indicates
that the incident shock wave diffracted after collision
with the first obstacle and a Mach stem was created
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upon collision of the diffracted oblique shock wave with
the bottom surface of the channel. The third and forth
frames show that the traveling Mach stem and the
related oblique shock collided with the second obstacle
and created two shock waves. One was diffracted off the
obstacle and became an oblique shock wave colliding
with the bottom surface of the channel, forming a
Mach stem moving downstream. The other one was a
reflected shock wave that became oblique and formed
a Mach stem moving upstream back into the shock-
heated gas. Temperature contours of the fourth frame
(t = 95.9 psec) indicate that there was a chemical
reaction and a high heat release region on the upstream
side of the second obstacle. This was the region most
intensely heated by the reflected shock, increasing its
temperature over the gas auto-ignition temperature.
The second baffle partially blocked blast waves created
by the chemical reactions in this corner region from
propagating downstream and reinforcing the original
incident shock wave. However, these blast waves
can easily propagate upstream, reinforcing the oblique
shock and the Mach stem moving into the preheated
gas. The temperature contours of the fifth frame
(t = 105.5 usec) show that the coalescence and focusing
of these blast waves behind the reflected oblique shock
created an intense region of high temperature chemical
reactions. The density and temperature contours of
the remaining frames show that the reflected oblique
shock wave and related Mach stem became stationary
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almost half way between the two baffles and a large
region, downstream of it, was exploded into chemical
reactions.

Temperature contours in frames seven to ten show
that a strong reaction front was formed. This front
collided with the top channel wall and propagated
downstream, approaching the original incident shock
wave. Figure 9 presents the axial values of temperature
and density at ¢t = 142.9 usec along the channel mid
plane, showing the formation of a detonation wave.

The onset of detonation observed above is similar
to the strong ignition detonation initiation described by
Meyer and Oppenheim [20], whereas Chan [14] suggests
appearance of flame kernels or “spotty” ignition along
the slip surface behind the Mach stem, leading to a
mild ignition. Since molecular transport effects are ne-
glected in our formulation and inviscid Euler equations
are used, one could not directly check the importance
of the viscous dissipation effects. However, using a
first order upwind difference scheme would result in
numerical dissipation, which acts similar to real molec-
ular dissipation. It is interesting to note that when a
first order differencing scheme was used for the solution
of the above problem, a high temperature reacting
region appeared around the slip line of the upstream
moving Mach stem and the dynamics of detonation
initiation were changed by the appearance of a large
reaction region before any pressure wave coalescence
could create a hot spot behind the upstream moving
oblique shock. This is mentioned only as a caveat
and, since these observations were based on numerical
dissipation, which is grid and time dependent, such
results are not presented here.

Even though the above results are only qualita-
tively comparable with the experimental observations
of Chan, they indicate that a numerical simulation with
simplified but sufficient chemical reaction and physical
models can provide insight into the dynamics of the
detonation phenomenon that is not easily accessible
through experimental observations.

CONCLUSION

A finite volume, second-order accurate, upwind adap-
tive, unstructured-grid, inviscid flow solver for simu-
lation of two-dimensional or axi-symmetric chemical
reacting flow fields has been developed. Exothermic
chemical reactions, as well as an induction time de-
lay, are introduced in the combustion model using a
simplified two-step reaction kinetics mechanism. This
flow solver is shown to be capable of capturing major
physical effects in stationary and transient supersonic
flow fields with relatively complex geometry. Numerical
simulations of initiation and propagation of detonation
waves in straight and baffled channels are performed.
First, a shock channel is simulated by initiating a
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Figure 8. Density and temperature contours of collision of a shock wave with obstacles.

strong detonation wave and allowing it to travel down
the channel to reach a CJ wave condition. It is shown
that a two-step reaction kinetics model, accounting
for the reaction induction time delay, is a minimum
requirement to obtain a physically plausible transient
solution. A one-step reaction kinetics model results
in a detonation wave whose transient speed is always
less than the CJ wave speed and approaches this value
only at steady state. Next, the unsteady propagation
of a relatively weak shock wave in a two-dimensional
channel partially obstructed by two consecutive baffles

and filled with a combustible mixture of gases has been
considered. The results are qualitatively consistent
with experimental observations of Chan [4] and show
local heating and reaction initiation caused by shock re-
inforcement upstream of the second baffle. This shock
reinforcement region is created by the coalescence and
focusing of pressure waves behind a reflected oblique
shock and Mach stem moving upstream into the shock-
heated gas mixture. A series of numerical simulations
can be easily performed to evaluate the effects of the
channel and baffle geometrical characteristics upon ini-
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Figure 9. Axial density and temperature profiles at the
channel mid-plane at ¢t = 142.9 psec.

tiation of the detonation wave. Preliminary simulations
indicate that the distance between the baffles for a
channel with a fixed height is a key parameter in local
shock reinforcement and detonation initiation. These
results are encouraging and point to the capability of
analyzing this flow field in more detail.
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