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A new approach� based on a Generalized Regression Neural Network �GRNN�� has been proposed
to predict the unsteady forces and moments of two di�erent models� a ��� swept delta wing
in subsonic incompressible �ow and a standard 	ghter model �SDM� in a compressible �ow
regime� both undergoing sinusoidal pitching motion
 Extensive wind tunnel results were used
for training the network and veri	cation of the values predicted by this approach
 GRNN was
trained by the aforementioned experimental data and� subsequently� was used as a prediction
tool to determine the unsteady longitudinal forces and moment of the two models under various
conditions
 Further� it was applied to extend the experimental data beyond the conditions
tested in the tunnel
 The results are in a good agreement with the experimental 	ndings
 This
indicates that the present prediction and optimization tool provides su�cient accuracy with a
modest amount of experimental data


INTRODUCTION

Classic experimental methods have been popular for
many years and have formed the basis of the con�
ventional wind tunnel testing procedures used today�
The de�ning feature of classic testing methods is the
Error Control Strategy that requires each independent
variable to be changed one at a time� while holding
all other variables constant� The authors� however�
suggest a new approach to aerodynamic prediction
problems� The approach is based on creating an
experimental data bank� An intelligent block uses
this data to extract a reasonable trend and extend
the results to any other cases out of this data bank�
This intelligent block is called an Arti�cial Neural
Network�

Arti�cial neural networks are relatively crude
electronic models based on the neural structure of the
brain� The brain basically learns from experience� It is
natural that some problems beyond the scope of current
computers are indeed solvable by small energy e�cient
packages� called brain modeling� This brain modeling
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promises a less technical way of developing machine
solutions�

Recently� neural networks have been applied to
a wide range of aerospace problems� e�g�� the aero�
dynamic performance optimization of a rotor blade
design ���� prediction of measured data to enable
identi�cation of instrument system degradation �	�� etc�
Most of the previous applications of neural networks
in aerospace industries have been concentrated on
several aerospace problems� such as high performance
aircraft autopilots� 
ight path simulations� aircraft
control systems� component simulations and structural
fault detectors� etc� While the aforementioned sub�
jects are important� �nding an alternative method
for di�cult� expensive and time consuming wind tun�
nel tests or computational methods is necessary for
predicting the behavior of present and future 
ying
vehicles�

The neural network in 
uid mechanics is still
a new concept� Little work has been done in this
�eld� Faller and Schreck ��� used neural networks
to predict the real�time three�dimensional unsteady
separated 
ow�elds and aerodynamic coe�cients of a
pitching wing� This work was restricted to a wing
alone and a whole aircraft or missile con�guration has
not been considered� Lo and Zhao ��� combined the
nonlinear neural network methods with conventional
linear regression techniques in wind tunnel force mea�
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surements� However� their study was only for static
cases� Berdahl ��� recently proposed a new application
of neural networks in the observation of shock waves
in a supersonic channel 
ow� Though many attempts
have been made to apply the neural network concept
to aerospace problems� none has been reported or
being used as a prediction tool for estimating the
aerodynamic forces and moments for a whole aircraft
or missile in an unsteady 
ow �eld�

In addition� tight and lower program budgets� as
well as aggressive schedules� will no longer allow either
the extensive wind tunnel test programs implemented
in the past or a thorough numerical investigation to
study and predict the aerodynamic behavior of 
ying
vehicles� especially during unsteady maneuvers� Thus�
the introduction of an alternative tool� enabling one to
foresee unsteady aerodynamic behavior� will be of great
importance�

This paper addresses a novel approach to predict
the unsteady aerodynamic behavior of 
ying vehicles�
The method is based on neural networks and is suf�
�ciently fast� simple and accurate enough to predict
aerodynamic variables� Extensive wind tunnel tests
have been conducted on two di�erent models oscillating
in pitch in di�erent 
ow conditions� The �rst model
was a ��� swept delta wing tested in subsonic incom�
pressible 
ow�

The second model was a typical �ghter called
SDM� which has been tested in several research centers
all over the world� In these investigations� the second
model was tested in compressible 
ow and at moderate
to high oscillation frequencies� Although numerous
results on SDM have been published ������ there is
still insu�cient information about its aerodynamic
behavior� especially in high subsonic and supersonic
regimes at high frequencies�

The goal was to gain physical insight into the
unsteady 
ow phenomena using two di�erent oscillat�
ing models and� further� to introduce a new prediction
tool� based on a neural network� to determine the
unsteady longitudinal aerodynamic forces and moment
of the two models� The experimental data have been
partly used for training the network and the rest
have been used to check the ability of the network
as a prediction tool� In addition� the e�ects on these
models of di�erent parameters and 
ow conditions on
an unsteady 
ow�eld have been studied�

The acquired wind tunnel data were used to
train a GRNN network� The scheme� once proved
to give correct results for various conditions tested in
the tunnel� was extended to include other conditions
that had not been tested in the tunnel� Furthermore�
the network was used to predict the normal force
and pitching moment of both models beyond the
conditions used for training the system� The results
show an interesting relationship between reduced fre�

quency� oscillation amplitude and the hysteresis loops
observed in the normal force and pitching moment
data�

GENERALIZED REGRESSION NEURAL
NETWORK �GRNN�

Arti�cial neural networks are a wide class of 
exible
nonlinear regression and discriminate models� data
reduction models and nonlinear dynamic systems� The
neural networks often consist of a large number of neu�
rons� which are simply linear or nonlinear computing
elements� interconnected in some complex ways and
normally structured into layers�

The General Regression Neural Network �GRNN�
was �rst introduced by Donald Specht in ���� ����
and its topology is shown in Figure �� The GRNN
architecture consists of an input layer followed by
three computational layers� Pattern� summation and
output� When an input pattern is presented at
the input layer� the pattern layer units compute the
Euclidean distance between its weight vector and the
input vector� This distance is then transformed by
the unit�s activation function� which are exponential
�Gaussian� functions�

In a prediction problem such as aerodynamic
modeling� the number of neurons in the input layer
is equal to the number of input variables� and the
number of neurons in the output layer is the same as the
number of predicted variables� Selection of the rest of
the architecture in the network� in terms of the number
of neurons in the hidden layer� the learning rate� etc��
is not an exact science and one has to resort to trial
and error methods to �nd a suitable network structure
for a given problem�

Consider the dependent vectors Y and X � These

Figure �� The generalized regression neural network�
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variables are known as the system�s output and input�
respectively� The regression of a dependent variable�
Y � on an independent variable� X � is the computation
of the most probable value of Y for each value of X
by taking a �nite number of X measurements� For
this reason� it is usually necessary to assume some
functions with unknown parameter ai� The values of
these parameters are chosen to provide the best �t to
the measured data� The approach presented here uses
a method that does not require a speci�c functional
form� It allows the appropriate form to be expressed
as a Probability Density Function �PDF�� which is
determined empirically from the observed data� Thus�
the method is not limited and does not require pre�
knowledge of any particular form�

Assume that f�x� y� represents the known joint
continuous probability density function of the vector
random variable� x� and a scalar random variable� y�
Let X be the particular measured value of the random
variable� x� The conditional mean of y for a given X
�also called the regression of y on X� is given by�

E�yjX� �

R
�

��
yf�X� y�dyR

�

��
f�X� y�dy

� ���

When the density function f�x� y� is not known� it
is usually estimated from a sample of observations of
x and y� For a non�parametric estimate of f�x� y��
Parzen ���� proposed a class of consistent estimators
for one�dimensional cases� Further estimators for mul�
tidimensional cases were proposed by Cacoullos ��	��
These estimators are good choices for estimating the
probability density function� f�x� y�� if it can be
assumed that the density is continuous and that the
�rst partial derivatives of the function evaluated at
any x are su�ciently small� The probability estimator�
�f�X�Y �� is based on the sample values X i and Y i of
the random variables� x and y� and is expressed as�

�f�X�Y � �
�

�	���p�������p���
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where n is the number of sample observations� p is
the dimension of the vector variable� x� and � is the
correlation parameter� which will be explained later
in this section� Substituting the joint probability
estimate� �f � from Equation 	 into the conditional
mean �Equation �� the desired conditional mean of
y for a given X will be obtained� In particular�
combining Equations � and 	 and interchanging the
orders of integration and summation results in the

desired conditional mean� �Y �X��
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De�ning the scalar function� D�
i � as� D�

i � �X �
X i�T �X � X i� and performing the integration yields
the following expression�
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��� �
� ���

Parzen and Cacoullos �����	� have shown that the prob�

ability estimator� �f�x� y�� in the form of Equation 	 is
a consistent estimator� i�e�� it asymptotically converges
to the underlying probability density function� f�x� y��
at all points� �x� y�� However� the density function�
f�x� y�� is continuous and � � ��n� is a decreasing
function of n� such that�

lim
n��

��n� � ��

and�

lim
n��

n�n�n� ���

The topology of a GRNN shown in Figure � consists
of four layers� the input layer� the hidden layer� the
summation layer and the output layer� The input layer
passes the input vector variable� X � to all the units
in the hidden layer� which consists of all the training
samples� X�� � � � � Xn� Further� the scalar function� D

�
i �

between the unknown pattern and the training sample
is calculated and passed through the kernel function�
As illustrated in Figure �� the summation layer has two
units� A and B� While unit A computes the summation
of exp��D�

i �	�
��� multiplied by the Yi associated with

Xi� unit B computes the summation of exp��D�
i �	�

���
Finally� the output unit divides A by B to provide the
prediction result as�

�Y �X� �

nP
i��

Ai exp
h
�
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with Ai�k� and Bi�k� de�ned as�

Ai�k� � Ai�k � �� � Y i�

Bi�k� � Bi�k � �� � ��
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where Ai�k� and Bi�k� are the values of the coe�cients
for cluster i after k observations and are the summation
of the Y values and the number of samples assigned to
cluster i� respectively �����

The correlation or smoothing parameter� �� de�
�ned in Equation �� is one of the most important
parameters in a GRNN structure� If this parameter
is made large� the estimated density is forced to be
smooth� On the other hand� the smaller value of �
allows the estimated density function to assume a non�
Gaussian shape� However� for an accurate prediction�
� must be optimized �����

Suppose that in a GRNN network there are k
predicted values of �X i� Y i�i������ �k� which are inputs
and outputs� respectively� The optimum value of �
minimizes the mean error ����� de�ned by�

Emean �

kP
i��

��Ye�X i�� Y i
��

k
�

where Ye�X
i� and Y i are real and predicted values�

respectively� A useful method for selecting � is called
the holdout method� This method consists of removing
one sample at a time and constructing the new network
based on all other samples� which will be used to
estimate Y for the removed sample� By repeating
this process for each sample and storing each estimate�
the mean squared error can be measured between the
actual and the predicted samples� The value of � that
gives the smallest error is an optimum one and should
be used in the prediction steps �����

In the present investigation� two models� a ���

swept delta wing model and a �ghter model� both
undergoing sinusoidal pitching motions in subsonic

ow� were considered� Various experiments at di�erent
conditions have been carried out� For the delta wing
model� the pitching frequency and the instantaneous
angles of attack were used as the training data for
GRNN� while the velocity� sideslip angle and Reynolds
number were constant� However� the experiments
were conducted at various Reynolds numbers� reduced
frequencies and sideslip angles� For the SDM model�
oscillation frequency� oscillation amplitude and Mach
number were �xed and the network has been trained
with various mean and instantaneous angles of attack�
The experimental data for this model included the
e�ects of reduced frequencies� mean angles of attack
and Mach numbers for both sinusoidal pitching and
plunging motions�

The system outputs for the delta wing model were
normal� as well as the drag forces and the pitching
moment coe�cients� �CN � CD and Cm�� However�
for the SDM model� the outputs were normal force
and pitching moment coe�cients only �CN and Cm��
This is because� for the delta wing model� forces and

moments at various conditions were measured using a
six�component internal strain gauge balance� while the
balance used for the SDM model was a �ve�component
type� i�e�� the drag force was excluded�

Two types of output from the GRNN were con�
sidered� The �rst type was the results of interpolation�
where the network was programmed to predict the
aerodynamic force and moment at some conditions
between the trained data� The second type� extrap�
olation� dealt with the conditions out of range of
the data used for training the network� The results
were compared with the experimental data� The
comparisons show remarkable agreement between the
experiments and GRNN outputs�

MODELS AND EXPERIMENTAL
APPARATUS

Two di�erent models have been used for these investi�
gations� The �rst model was a simple 
at plate delta
wing with a ��� leading edge sweep and a �
�� cm
span at the trailing edge� A schematic view of this
model is shown in Figure 	a� The second model was a
standard model used in various dynamic tests all over
the world ������ It is a simpli�ed version of the F���
aircraft with air inlet and ventral �ns and is known as
SDM �Figure 	b��

The ��� delta wing model has been tested in the
subsonic wind tunnel of the Ohio State University �����
It is an indraft� open circuit tunnel which exhausts to
the atmosphere� It has a test section of approximately
���� ���� 	�� m� and operates at speeds from � to ��
m�sec at the Reynolds numbers of up to ���� ��� per

Figure �� Models used for the present investigations�
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meter� The model was sinusoidally oscillated in pitch
from a �� to ��� angle of attack at reduced frequencies
ranging from ����� to ���
�� The sideslip angle was
also varied between �� and ����

The standard dynamic model� SDM� was tested in
the transonic wind tunnel of Qhadr Research Center�
Tehran� It is a continuous open circuit tunnel with
test section dimensions of ��� ��� �	� cm�� The test
section Mach number varies from ��� to 	�	� via the
engine RPM and di�erent nozzle settings�

Static� direct and cross coupling derivatives in
pitch and plunge modes at various frequencies� Mach
numbers and mean angles of attack were measured on
the SDM� Static and oscillatory data were taken at the
Mach numbers of ���� ��� and ���� which correspond
to the Reynolds numbers of ��
�� ��	� and ����� ��	

per meter� respectively� The mean angle of attack
ranged from �� to ���� The oscillatory data were taken
at oscillation amplitudes of �� and �� degrees and
frequencies of ��	�� 	��� and ���� Hz� which correspond
to the reduced frequencies ranging from k � �������


to ���� �����
The oscillation systems for both models are nearly

the same� The system for testing the ��� delta wing
model uses a belt and pulley arrangement to reduce
the motor R�P�M� to speeds from zero to 	�� Hz�
The desired motion is produced by a cam� This cam
generates a sinusoidal oscillation of the model inside
the tunnel during the pitching motion� The system
for testing the SDM uses a crankshaft to convert the
circular motion of the motor to reciprocal motion�
which is transferred to the model by means of rods�
This system can oscillate the model with frequencies
from ���� to 
��� Hz�

The dynamic oscillatory data presented in this
paper for both models are an average of several cycles
at a sample rate based on the reduced frequency� Var�
ious data acquisition rates were tested to �nd the best
combination� which would provide as many cycles of
quality data as possible� Raw data were then digitally
�ltered using a low�pass �ltering routine� During the
�ltering process� cut o� and transition frequencies were
varied until the deviation between the original and the
�ltered ones was at a minimum�

RESULTS AND DISCUSSION

In this section� the major predicted results and �ndings
of the GRNN� along with the wind tunnel veri�cation
tests� are discussed� It is� however� beyond the scope
of this paper to present all of the wind tunnel data� as
well as the predicted ones� Only the data that support
conclusions or are of particular interest are given� The
main emphasis is on the dynamic normal force data�
even though the pitching moment measurements were
also included�

Figure � compares the measured static variation
of the lift coe�cient with an angle of attack for
the delta wing model� with theory and other exper�
iments ����� For small incidences� the experimental
data compare well with the predicted potential lift�
As the incidence is increased� the measured lift data
deviate from that predicted by the potential theory�
The deviation is due to the additional lift produced by
the leading edge vortices� which is not accounted for in
the theory�

Good agreement is achieved when the present
results are compared with Polhamus�s method ����
for angles of attack below 	
�� Large deviations
between the experimental and theoretical values above
an incidence of 	
� are caused by the bursting phe�
nomenon ��
�� which was not considered in Polhamus�s
method� Figure � has been presented to show the
accuracy of our experimental setup� There were no
dynamic data on a ��� delta wing under the same
conditions considered here� hence� only the static
data on this model have been compared with other
experimental and theoretical �ndings�

As stated previously� the delta wing model was
oscillated in pitch at various reduced frequencies�
Reynolds numbers� sideslip angles and angles of attack
up to ���� Both static and dynamic force and moment
data were measured using a six�component internal
strain gauge balance� The dynamic data at various
reduced frequencies were used to train the GRNN�
Once the optimum � for the ranges of the variables used
to train the system� such as reduced frequencies� mean
angles of attack� etc�� was determined� the network
output for the cases beyond the training data could be
easily obtained� It should be noted that the optimum �
for each situation was determined for the given ranges
of variables that were used as the training data�

Figure � shows the e�ects of � on the mean error

Figure �� Variations of the static lift coe�cient with
angle of attack for the ��� delta wing model�
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of the predicted data� It can be seen that for � between
���	 and ����� the mean error is minimum� For �
greater than ��	� the mean error increases drastically�
Further� for � less than ���	� the magnitude of the error
increases slightly from its minimum value� Hence� the
optimum value of � for this case is between ���	 and
����� The values of � in this range give the best results
for a ��� delta wing model at the ranges of the reduced
frequencies studied in the present investigation� For
this model� throughout the paper� a value of � � ���	
has been used to train the network�

Figure � shows the e�ect of � on predicting the
pitching moment coe�cient for the reduced frequency
of ������ Note that as � decreases from ��� to ���	� the
di�erences between the predicted and measured data
reduce continuously� For � � ���	� the predicted data

Figure �� E�ects of � on the mean error prediction for
the ��� delta wing model�

Figure �� E�ects of � on prediction of the pitching
moment coe�cient for the ��� delta wing model�

compare well with the experimental results� This value
of � is within the values that give minimum error� as
shown in Figure ��

Figure � shows variations of the normal force�
drag force and pitching moment coe�cients with angle
of attack for two di�erent reduced frequencies� k �
����� and ����
 ����� The experimental data for both
reduced frequencies are compared with the GRNN
predicted data� The predicted data for each case is
the result of either extrapolation or interpolation of
the experimental data� Thus� for each case presented
in Figures �a and �b� the GRNN has been trained such
that its output is either interpolating or extrapolating
the experimental data� For example� the GRNN was
trained using the experimental variations of CN � CD
and Cm with the angle of attack for the reduced

Figure �a� Normal force and pitching moment
coe�cients predicted by the GRNN for the ��� delta wing
model�

Figure �b� Drag coe�cients predicted by the GRNN for
the ��� delta wing model�
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frequencies of k � ������ ����
 and ���
�� while its
output is for k � ������ that is extrapolating the
experimental data� For other reduced frequencies
shown in this �gure� the trained experimental data were
for reduced frequencies of k � ������ ����� and ���
�
and the output is for k � ����
� which is interpolating
the experimental results� It should be noted that the
least experimental data needed to train the network are
three sets� i�e� three di�erent reduced frequencies for
this particular case�

Therefore� for the extrapolation case� the experi�
mental data for the reduced frequencies of ������ ����

and ���
� were used as training data� while for the
interpolation one� the experimental data for k � ������
����� and ����
 were selected� If the experimental data
for more ranges of reduced frequencies were available�
there would be no need to train the network twice� once
for interpolation and once for extrapolation� However�
to the author�s knowledge� no experimental data for
a pitching delta wing under similar conditions as
described in ����� i�e�� Reynolds number� Mach number
and angle of attack ranges� are available to be used
as the training data� hence� it was necessary to train
the network twice and predict the data for each case
individually�

As can be seen� the experimental and predicted
data are in good agreement� For both reduced fre�
quencies shown in Figure �� the error between the
experimental and predicted values is almost zero� up
to the stall region near the angle of attack of about ���

to ���� Beyond this range� some discrepancies between
the predicted and experimental data are observed�
which are caused by the changes in the 
ow�eld� This
phenomenon is due to the delay in the 
ow separation
and re�attachment process� common for all pitching
motions� From Figure � it is seen� by inspection� that
for angles of attack of about ��� to 		� in a downstroke
motion� for both reduced frequencies� the values of
CN � CD and Cm are much lower than the corresponding
values for angles of attack from 		� to ��� in the
upstroke motion� This di�erence in the 
ow�eld during
upstroke and downstroke motions is due to the lag in
vortex breakdown and re�establishment process and is
fully explained in �����������

For these ranges of angles of attack� � � 		� to
���� the discrepancies between the experimental and
predicted data are due to the abrupt changes in the
slopes� For both cases examined here� i�e� interpolation
�k � ����
� and extrapolation �k � ������� the
predicted and experimental data match exactly for the
angles of attack from �� to 		� in the upward motion
and from 		� to �� in the downward motion where there
are almost no changes in the slopes� Note that for
these ranges of angles of attack� � � �� to 		� in the
upstroke motion and � � 		� to �� in the downstroke
motion� Figure � shows that the forces and moment

vary almost linearly while for the rest of the motion�
� � 		� to ��� in the upstroke and ��� to 		� in the
downstroke� variations are highly nonlinear� However�
by examining Figures �a and �b� it is clearly seen that
the di�erences between the measured and predicted
ranges in the bifurcated range� where CN � CD and Cm
have di�erent values at the same angle of attack in
the upward and downward motions� are within the
acceptable limits�

Further note that the di�erence in the data at
high angles of attack is caused by the 
ow lag and lead
phenomenon� Hence� to predict these variations via
neural networks� more experimental data are needed
for training the network� Additional discussion about
the 
ow�eld� the vortex formation and breakdown and
Reynolds number e�ects� as well as physical expla�
nation regarding the e�ects of reduced frequency� are
given in detail in �����������

The aforementioned discussion was on the ���

swept delta wing model� For the second case� a stan�
dard dynamic model� which has been tested in several
wind tunnels� is considered� Figures � and 
 show
variations of the normal force slope and pitch damping
coe�cients with an angle of attack for the reduced
frequency of ��� � ���� and a pitching amplitude of
�A � ��� The aerodynamic forces and moments have
been measured using a �ve�component internal strain
gage balance� It should be noted that the present
tunnel setup and the alpha�mechanism system used for
changing the angle of attack of the model for both static
and dynamic studies were such that the maximum
static angle of attack obtainable in the test section
for this particular model was about �
�� In addition�
the blockage problem in dynamic tests necessitated this
angle of attack limitation�

The present results are compared to the pre�
viously obtained dynamic database for this model

Figure �� Variations of the slope of the dynamic normal
force coe�cient with angle of attack for the SDM�
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Figure 	� Variations of the pitch damping coe�cient
with angle of attack for the SDM�

and� as seen from Figures � and 
� good agreements
are achieved verifying the accuracy of the measured
parameters� This comparison also indicates that the
experimental set up� as well as the data acquisition
system� data corrections and reduction schemes� are
correct� From Figure �� note that CN� �rst reaches its
maximum value at about �� angle of attack� Beyond
this angle� CN� decreases drastically indicating 
ow
separation over the wing surface� The normal force
slope continues to decrease until an angle of attack of
about ���� By further increasing the angle of attack�
CN� starts to increase again� The experimental data
of �	�� indicate that for a delta wing with a leading
edge sweep of about ���� the leading edge vortices start
to form at an angle of attack of about ���� causing
nonlinear increase in the normal force data as shown in
Figure �� These vortices create additional lift� known
as vortex lift� The present model has strakes with a
leading edge sweep of about ���� Thus� the increase
in CN�� at angles of attack beyond ���� shown in
Figure �� is due to formation of the strake vortices�
From this �gure it is seen that CN� increases until
an angle of attack of about ���� This increase in
CN� is due to the strength of the strake vortices� even
though the 
ow over the main portion of the wing is
separated� Subsonic 
ow�eld study over a wing surface
of a similar model indicated that the maximum lift
occurs at about a �	� angle of attack �	��� Beyond this
angle of attack� the separated 
ow is dominated over
the main portion of the wing surface� deteriorating the
aerodynamic performance� As mentioned before� the
present experimental setup was limited to a mean angle
of attack of about �
�� However� the variations of CN��
with � for the range of angles of attack tested� compare
well with those of ������

Figure 
 compares variations of the present pitch
damping derivative result with other �ndings� Again�

within the range of the angles of attack tested� the data
compares well with those of ������ From this �gure�
it is seen that the pitch damping derivative contin�
uously decreases as the angle of attack is increased�
a dynamically stable condition� Beyond an angle of
attack of ���� the reduction of dynamic stability is due
to the strake vortices breakdown location� which has
reached the tail surfaces� hence� decreasing the stability
level� For a ��� swept delta wing model� experimental
data ����	�� show that the vortex burst point reaches
the wing trailing edge at about 	
� angle of attack�
Hence� it is expected that the burst location reaches
the tail surface at an angle of attack much lower than
the one for the wing itself� In addition� the separated

ow over the wing surface causes the strake vortices
to burst at a smaller angle of attack than the one
they originally would have� Therefore� the reduction in
dynamic stability beyond an angle of attack of about
��� is due to the breakdown of the strake vortices�
which causes 
ow separation over the tail surfaces and�
hence� reduces their lifting mechanisms�

Figure � shows variations of the dynamic normal
force and pitching moment coe�cients with an angle
of attack for three di�erent reduced frequencies� two
mean angles of attack� �mean � �� and �� and at a
constant Mach number of ���� Static data for all cases
are also shown for comparison� From this �gure� it is
seen that as the reduced frequency increases� both the
slope and width of the hysteresis loops decrease� At
k � 	�	 � ����� the di�erence between the motion of
the model and 
ow�eld around it at any instantaneous
angle of attack creates the hysteresis loop in both CN
and Cm data�

From Figure �� note that the values of CN and Cm
at any instantaneous angle of attack between upstroke
and downstroke motion are di�erent� indicating a time

Figure 
a� E�ects of the oscillation frequency on normal
force coe�cient for the SDM� �mean 	 ���
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Figure 
b� E�ects of the oscillation frequency on normal
force coe�cient for the SDM� �mean 	 �
��

Figure 
c� E�ects of the oscillation frequency on pitching
moment coe�cient for the SDM� �mean 	 ���

Figure 
d� E�ects of the oscillation frequency on
pitching moment coe�cient for the SDM� �mean 	 �
��

lag in the 
ow�eld over the model� As the reduced
frequency increases� the phase di�erence between the
motion and the corresponding 
ow around the model
decreases� Thus� the width and slope of the hysteresis
loop are reduced� At k � ����� the 
ow no longer
follows the motion of the model� Consequently� the
upstroke and downstroke curves collapse on each other
and CN and Cm will have a nearly constant value for
the range of angle of attack tested� Further� note that
for zero� mean angle of attack� the static data for
both CN and Cm fall within the dynamic values at
the reduced frequency of k � 	�	 � ����� but� for the
mean angle of attack of ���� there are some di�erences
in static and dynamic data at k � 	�	������ especially
for the Cm case� This phenomenon is mainly due to the
strake vortices and the e�ects of oscillation frequency
on their development and breakdown� etc�

From this �gure� the e�ects of mean angle of
attack on the dynamic and static variation of the
longitudinal force and moment of the SDM is clearly
seen� As the mean angle of attack increases from �� to
���� the variations mentioned before become nonlinear�
which is an indication of the strake vortices formation
and the 
ow separation over the wing surface�

Using the previously trained neural network� the
values of CN were predicted for the SDM for several
frequencies and mean angles of attack� Figure �� shows
variations of the mean error with �� For the values of �
between ���	 and ����� the mean error is minimum� For
� higher than ����� the error begins to increase slightly
until� at � � ��	 and beyond� a drastic increase in the
mean error is observed� Figure �� shows the e�ects of
� on the prediction accuracy� Again� as seen from this
�gure� � has a pronounced e�ect on predicting CN � For
all test cases examined here� a value of � � ���� gives
minimum error� Thus� for this model throughout the

Figure ��� E�ects of � on the mean error prediction for
the SDM�
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Figure ��� E�ects of � on predicting the normal force
coe�cient for the SDM�

paper� the value of � � ���� has been chosen as the
optimum ��

Figure �	 shows variations of the normal force
coe�cient with angles of attack for four typical cases
of �mean � ��� ��� �� and ���� Note that for all cases
considered in this �gure� the value of the free stream
Mach number was ��� and the reduced frequency was
	�	 � ����� The experimental data for each case is
compared with the GRNN predicted data� Again�
the predicted data for each case is the result of the
extrapolation or interpolation of the experimental data�
The experimental data were obtained at the mean
angles of attack of �� to ����

For each case presented in Figure �	� the GRNN
has been trained such that it�s output is either extrap�
olating or interpolating the experimental data� For

Figure ��a� Comparison of the predicted and
experimental normal force coe�cient data for the SDM�
�mean 	 ��� k 	 ���� �����

Figure ��b� Comparison of the predicted and
experimental normal force coe�cient data for the SDM�
�mean 	 
�� k 	 ���� �����

Figure ��c� Comparison of the predicted and
experimental normal force coe�cient data for the SDM�
�mean 	 ��� k 	 ���� �����

instance� in Figure �	a� the GRNN was trained using
the experimental variations of CN with angle of attack
for the mean angles of 	�� ��� �� and 
�� while its
output is for the mean angle of attack of ��� that is�
extrapolating the experimental data� For Figure �	b
the trained experimental data were for �mean � ��� 	��
�� and 
� and the GRNN has interpolated the acquired
data for the mean angle of ���

From this �gure� it is seen that the prediction ac�
curacy is su�ciently high at low mean angles of attack
�Figures �	a and �	b�� However� as the mean angle
increases� some discrepancies are observed between
the predicted and experimental data� Comparing
Figures �	c and �	d with �	a and �	b� it is clearly
seen that for mean angles of attack of �mean � �� and
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Figure ��d� Comparison of the predicted and
experimental normal force coe�cient data for the SDM�
�mean 	 ���� k 	 ���� �����

���� the shape of the hysteresis loop is slightly di�erent
from that of the lower mean angles� i�e�� �mean � ��

and �� �Figures �	a and �	b�� These di�erences are
caused by the strake vortex formation and breakdown
over the tail surface and the wing 
ow�eld� as discussed
previously�

Furthermore� comparing Figure �	c with �	d�
it is clearly seen that the network has been able to
predict the variation of CN with angle of attack for
the mean angle of �� much better than that of ���

�Figure �	d�� The maximum angle of attack from
Figure �	d was ���� hence� it is likely that the 
ow
re�attachment process in the downstroke motion is
delayed� due to fast variations of the angle of attack�
thus� di�ering the shape of the hysteresis loop when
compared with other cases� For the mean angles of
attack of �� and ��� the small hysteresis in experimental
data between increasing and decreasing the angle of
attack is caused by the dynamic e�ects rather than the

ow�eld variations over di�erent parts of the model�
Since� for these angles of attack� the 
ow over the main
portion of the model is attached� thus� as expected� the
deviations between the aerodynamic loads in upstroke
and downstroke motions are minimal�

Figure �� shows both the predicted and experi�
mental variations of the normal force coe�cient with
angles of attack for two di�erent mean angles of attack
of �mean � � and ��� and a reduced frequency of
��� � ���� at a constant Mach number of ���� It can
be seen that the predicted data compare well with the
measured ones� verifying the accuracy and capability of
the proposed approach� The results for other cases� i�e��
di�erent mean angles of attack� reduced frequencies
and Mach numbers show similar trends and are not
included in this paper�

For the highest reduced frequency examined here�

Figure ��a� Comparison of the predicted and
experimental normal force coe�cient data for the SDM�
�mean 	 ��� k 	 
�
 � �����

Figure ��b� Comparison of the predicted and
experimental normal force coe�cient data for the SDM�
�mean 	 ���� k 	 
�
� �����

k � ����� for all combinations of mean angles of
attack and Mach numbers� the present experimental
data show that variations of the aerodynamic force and
moment with angle of attack is almost constant with no
hysteresis loop in the data �see Figure ��� Therefore�
the GRNN was not trained for this reduced frequency�

The pitching moment from the balance data in
the present experiments is obtained using the normal
forces measured at the forward and aft strain gauges in
the balance� hence� its variation is similar to that of the
normal force� as seen in Figure �� Thus� the pitching
moment data for the cases beyond those tested in the
tunnel� were not predicted via the GRNN method�
However� the method is similar and the GRNN can
easily predict variations of the pitching moment with
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angles of attack for various Mach numbers� mean angles
of attack� reduced frequencies� etc� as was done for the
normal force� even though it has not been shown in this
paper�

CONCLUSION

A new method based on the Generalized Regression
Neural Network has been introduced to predict un�
steady aerodynamic forces and moment on vehicles
undergoing sinusoidal pitching motion� Extensive wind
tunnel tests have been conducted on two di�erent
models to train the network and check its prediction
accuracy� For the delta wing model� the GRNN
predictions of CN � CD and Cm data for various cases
are shown to be accurate enough� except for the
regions where there was an abrupt change in the
force or moment coe�cients� i�e� bifurcation region�
The aerodynamic behavior of the SDM was slightly
di�erent� The wing sweep for this model was about
��� and the experiments were restricted to mean angles
of attack of about ���� Therefore� the shape of the
hysteresis loops for all cases examined� were nearly
ellipsoid�

However� the same network could successfully
predict the normal force coe�cient of this model� The
output results of the network were in good agreement
with those obtained in the wind tunnel� At angles
of attack where some complicated phenomena were
caused by 
ow separation over the wing surface and
the strake vortex formation and breakdown� there are
some deviations between the values predicted by the
GRNN and the experimental data� thus� the network
must be trained with more data points in those regions�
Further work� including the e�ects of Mach number and
reduced frequency� etc� is underway to improve and
extend the capability of the proposed method�
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NOMENCLATURE

U free stream velocity� m�sec

M free stream Mach number

f oscillation frequency� Hz

Sref wing area� m�

c wing mean aerodynamic chord� m

Re � U�� Reynolds number��m

� � 	�f angular velocity� rad�sec

k � c��	U reduced frequency

� instantaneous angle of attack� deg�

�A oscillation amplitude� deg�

�mean oscillation mean angle of attack� deg�

CL lift coe�cient

CN normal force coe�cient

Cm pitching moment coe�cient

CN� dynamic normal force slope� �rad

Cmq� ��
pitch damping derivative� �rad

� the correlation parameter in the
generalized regression neural network

Emean the mean squared error between the
actual and predicted samples
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