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Simulation of Average Stress-Average Strain
Relationship of Ship Unstiffened /Stiffened

Plates Subject to in-Plane Compression

M.R. Khedmati'

In this paper, a simple and efficient analytical method, combining elastic large deflection analysis
and rigid plastic mechanism analysis, is presented for derivation of the average stress-average
strain relationship of plates subject to in-plane longitudinal compression. By imposing equilibrium
conditions of forces and bending moments and assuming proper stress and strain distributions in
the stiffened plate cross-sections, the average stress-average strain relationship of the stiffened
plates is also derived. The algorithm can be easily implemented in methods for the evaluation
of ship hull girder strength, as well as in the estimation of the ultimate capacity of offshore

structures.

INTRODUCTION

In the design of ships and offshore structures, it is
essential to ensure that the structure has sufficient
strength to sustain extreme loading situations. Such
marine structures are mostly assembled with plates
and stiffened plates (Figure 1). The strength of
such plates and stiffened plates is crucial for the
overall structural capacity or, in other words, for
the ultimate strength of the whole structure. For
a thorough assessment of a structural design, for
understanding possible improvements and for predict-
ing the consequences in the event of failure, an ap-
proximation of the value of ultimate strength is not
sufficient. The complete behavior, up to collapse
and beyond, of the structure has to be simulated to
gain insight into the causes and effects of a structural
failure.

For the analysis of large marine structures, an
accurate and efficient approach is required to obtain
results within a reasonable space of time. Despite
the enormous developments in computer technology,
elastoplastic large deflection analyses with conventional
Finite Element Analysis (FEA) are too time-consuming
for large structures. Therefore, a simplified method
has to be employed to reduce the computational time
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Figure 1. Ship hull girder.

and/or increase the size of the structural parts that can
be analyzed.

Methods to obtain the moment-curvature rela-
tionship (Figure 2), considering the collapse of parts
of the cross-section, have been developed for cross-
sections of ships in bending. One of the best known
methods is Smith’s method [1,2], in which the ship
cross-section is divided into small elements, each of
which is composed of plates without/with stiffener.
The average stress-average strain relationships of all
elements are derived, before the analysis of the whole
cross-section progresses, as follows: Curvature is ap-
plied incrementally about the instantaneous neutral
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Figure 2. Typical moment-curvature relationship.

axis and the strain of each element is calculated.
The corresponding stress is taken from the stress-
strain curves previously derived and the corresponding
moments are obtained by integration over the cross-
section (Figure 3). FEA is usually applied, in order to
derive the average stress-average strain relationships of
plate and stiffened plate elements.

The analytical method proposed in this paper
is one suitable framework for implementing a general
approach to collapse analysis, since it leads to a
reduction, either in time or in cost, of the solution
process. Combining the theory of elastic large de-
flection analysis with rigid-plastic mechanism analysis,
a simple formulation is expressed, in order to derive
average stress-average strain relationships of plates
and stiffened plates. The accuracy of the method
or formulation is verified against the FEA obtained
results. Employing such a formulation, the ultimate
strength evaluation of ships and offshore structures is
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Figure 3. Ship hull girder bending concept (Smith’s
method).
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made possible in a very short time, with reasonable
accuracy and cost.

GENERAL ASSUMPTIONS

The longitudinal stiffening system (Figure 4) is usually
employed in large ships at their midlength part, espe-
cially in the deck and bottom structures. If an extreme
bending moment acts on a hull girder, the highest
possible collapse mode may be the overall collapse of
the stiffened panels after the local collapse of individual
plate elements between stiffeners. In what follows, such
a collapse mode is assumed in derivation of average
stress-average strain relationships of the elements.

A typical element, consisting of a stiffener with
attached plating, is shown in Figure 5. This element
may deflect, as indicated in Figure 5b, under axial
compression. To keep the rationality of the method,
the region of the element between sections 1 and 2 is
counsidered in the modeling (double span model).
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Figure 4. Longitudinal stiffening system.

(a) Cross-section

(b) Deflection mode under axial compression

Figure 5. Stiffener (stiffened plate) element.



Simulation of Average Stress-Average Strain Relationship

The following assumptions are made in the deriva-
tion of the average stress-average strain relationships of
the stiffener elements:

1. Attached platings behave as isolated plates;

2. Plane cross-sections remain plane, and the strain
varies linearly over the cross-section;

3. The material is assumed to be elastic-perfectly
plastic;

4. The stiffener element is modeled as a continuous
beam resting on simple supports;

5. The deformation in torsional buckling mode of a
stiffener is not considered.

Average stress-average strain relationships of the iso-
lated plates are derived, first, combining the results
of elastic large deflection analysis and rigid plastic
mechanism analysis. The average stress-average strain
relationships of the stiffener elements are derived con-
sidering elastoplastic stress distributions at both ends
of the element, which satisfy the equilibrium conditions
of forces and moments.

AVERAGE STRESS-AVERAGE STRAIN
RELATIONSHIP OF PLATES

Welding Induced Initial Deflections

The actual mode of the initial deflection of the plate is
very complex. For a plate of length a, breadth b and
thickness t, this complex mode can be expressed by a
double sinusoidal series as:

= ZZAOU sin%sin % (].)

i=1 j=1

When a compressive load acts in the direction of the
longer side of the plate (z-direction), the deflection
components in the direction of the shorter side of the
plate (y-direction) decrease with the increase in load,
except the first term, with one half-wave. In this case,
only the first term (j = 1) may play a dominant role
and the simpler form of initial deflection can be used
for analysis as follows:

Z Ap; sin _x sin W—by (2)

Ueda and Yao [3] idealized this mode with another
expression as follows:

wp = Z Aolsln—xSIHW—by (3)
i=1,3,5,.

which includes only odd terms. Later, Yao et al. [4]
introduced even terms also in this mode and, finally,
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the idealized hungry-horse mode took the following
form:

wy = Z Ag; sin ? sin =¥, (4)

The initial deflection is, herein, assumed to be in
the idealized hungry-horse mode. The coefficients of
this mode (Ay; ), nondimensionalized by plate thickness
(t), ie., Ag;/t, are given in [4] as functions of the
plate aspect ratio. The maximum magnitude of initial
deflection, wgmax, is taken as:

WO max = 00562t7 (5)

where 3 is the slenderness parameter of the plate and
defined by:

b oy
b= 7 (6)
in which oy and E are yield stress and modulus of
elasticity of the plate, respectively. The value of wp max
given by Equation 5, is the average magnitude of
initial deflection of ship plates [5]. To consider the
plate continuity, it is assumed that the plate is simply-
supported along its four edges, which remain straight
while subjected to in-plane movements.
The total deflection mode, under the action of in-
plane longitudinal compression, is assumed to follow
as:

w—ZA sm—xsmﬂ—by (7)

Stable Mode

According to the work presented in [4], it is shown
that with an increase in the compressive load above
the buckling load, just one single deflection component
among the deflection components, A;, is magnified.
Consequently, taking single deflection modes, as fol-
lows, can approximate the behavior of the plate:

wy = Agy, sin —— x sin 7r_by (8)
and:
w = A, sin 22 sin ﬂ-—by (9)

In the above equations, m is the number of half-waves
in the stable deflection mode above the plate buckling
load and is determined as [4]:

_f1iap<is | (10)
k:k—-07<a/b<k+03

where a/b is the plate aspect ratio and k is an integer
greater than 1. Hereafter, Ay, and A,, are simply
denoted as Ay and A, respectively.
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Relationship Between Average Stress and
Deflection

Elastic Range

The relationship between average stress and deflection
in the elastic range is derived applying the Elastic Large
Deflection Analysis (ELDA). The differential equation
representing the compatibility condition of an initially
deflected plate is expressed as:

ViF = E O*w 2_82_1082_10_ Pwo \*
N oxdy 0x2 Jy? oxdy
82’11}0 82w0
92 0y ] . (11)

Figure 6 shows a plate under longitudinal compression,
0 =0,.

Substituting the assumed initial deflection (Equa-
tion 8) and total deflection (Equation 9) into Equa-
tion 11, the Airy’s stress function is obtained in the
following form:

E(A2— A2 . 2 1 2
F:u a? cos mmc—l——cosly +o0,
32 a o? b (12)
where:
a
= . 13
a=— (13)

Having acquired Airy’s stress function, in-plane stress
components are easily obtained as:

0’F o’F o’F

Owp = ==, Oyp=—=—, Oaoyp=——"1.

P oy P g2 up 0x0y

Applying the stress-strain relationships for the plane

stress state, the corresponding in-plane strains are:

(14)

Ezp = E(Uwp — Vo),

1
Cyp = E(pr — V0gp),
2(1+v)
Yayp = Tszpv (15)
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Figure 6. Rectangular plate under longitudinal
compression.
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where v is Poisson’s ratio. On the other hand, the
bending strain components are given as:

0% (w — wp)
S
0% (w —wo)
T e
0% (w — wp)
gy = —27 20— W0) 16
eyt ? Ox0y (16)

while the corresponding bending stress components
are:

Ogp = m(ﬁzb'FVSyb)v
Oybp = m(&‘yb-l-l/é‘zb),
E
b = —————Youb- 17

The principle of virtual work is expressed as:
dw; = dwe, (18)

where dw; and dw, are the internal and external virtual
work done for a virtual deflection, 6 A, respectively, and
are expressed as:

Sw; = / [(0p + 026) (622 + 8221)

+ (oyp + oyp)(0eyp + deyp)
+ (Toyp + Toyd) (8Vayp + 67ayp)] dv,  (19)
and:
Sw. = —obtsT. (20)

Therefore, the average stress-deflection relationship is
obtained as follows:

E (1 A
u (—,+Oé2> (A2—Ag)+0'”0 <]-__0> _0'207

2 2
1602 \ o A (21)
where:
2’ E 1 2
CcrT = Ta71 _ovio - ) 22
Ter0 = 11 — 122 (a +a> (22)

oo 18 the buckling strength of a simply-supported
rectangular plate.



Simulation of Average Stress-Average Strain Relationship

Plastic Range

With the increase in the applied end-shortening dis-
placement, a plate undergoes buckling and yielding
and, then, attains its ultimate strength. After the
ultimate strength, the compressive load decreases with
the increase in the applied end-shortening displacement
and deflection.

The average stress-plastic deflection relationship
at the post-ultimate strength region, is derived accord-
ing to the Rigid-Plastic Mechanism Analysis (RPMA),
assuming rigid-perfectly plastic material. Depending
on the plate aspect ratio (a/b), two configurations
of the plastic mechanism may exist, as illustrated
in Figure 7. For these mechanisms, the following
relationships are derived [6]:

mas+(1/a—1)mgy/2=(2/a—1)7.A for a < 1.0,

(23)

mys + (a — 1)my/2 =7.A for a > 1.0, (24)
where & = 0 /oy, A = A/t and:

mey =1 — 72, (25)

mo = 2m90/\/ 1+ 3m90, (26)
mys = 4m90/\/ 1+ 15m90. (27)
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Figure 7. Plastic mechanisms of plate under compression.
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Relationship Between Average Stress and
Average Strain

Elastic Range

According to elastic large deflection analysis, the in-
plane shortening in the z-direction will become:

i -G - () Y

a m?r? . .

Dividing u by the plate length a, the average stress-
average strain relationship is derived as follows:

1 m2mw?

_ 2 2
Plastic Range

Based on rigid-plastic mechanism analysis, the average
stress-average strain relationship is derived as:

1 2m?
f= g0 (A2 — A%) for a<1.0, (30)
e = Eo— ab 0 or o U.

Procedure to Obtain the Average
Stress-Average Strain Curve

The average stress-deflection relationship changes from
that explained by Equation 21 to that explained by
Equation 23 or 24 at the ultimate strength. Until ul-
timate strength is attained, the average stress-average
strain relationship is expressed by Equation 29. After
the ultimate strength, the relationships of Equation 30
or 31 are followed. The ultimate strength (oyrp7:)
of the plate is accurately estimated by the author’s
formulas [7] as follows:

1.0 for B<1.73

. (32)
0.1+1571/3 for B>1.73

ovLr/oy = {

The procedure is shown schematically in Figure 8. A
computer program was written in the Fortran 77 lan-
guage, in order to implement the explained procedure.

Accuracy of the Method for Plates

The accuracy of the average stress-average strain re-
lationships obtained by the analytical formulas and
expressions derived above, are verified against those
obtained applying FEA (Figure 9). The plate model
applied in FEA and its meshing and boundary con-
ditions have been shown in Figure 10. In order to
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Figure 8. Schematic representation of the average
stress-deflection and average stress-average strain
relationships of the plate.
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Figure 9. Comparison between simulated average

stress-average strain relationships with FEA results
(plates).

perform elastoplastic analysis of plates, the ULSAS
code has been used. The ULSAS is a house made code
developed in Hiroshima University [8] to model the col-
lapse behavior of structures, considering the influence
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Figure 10. Plate and stiffened plate models applied in
FEA, meshing and boundary conditions.

of material and geometrical nonlinearities induced by
yielding and large deflection. An isoparametric shell
element with four nodal points was used. They are
degenerated elements with a linear displacement field
and a reduced integration. Axial compression was
simulated by an imposed displacement in a longitudinal
direction, applied in small enough increments to ensure
that the analysis would closely follow the model load-
response curve. The same elastic-perfectly plastic
behavior for material was assumed in the ULSAS FE
code. As can be seen from the results, good correlations
are observed among them.

AVERAGE STRESS-AVERAGE STRAIN
RELATIONSHIP OF STIFFENED PLATES

Assumed Deflection Mode

The initial deflection mode of the stiffener element
(stiffened plate) is assumed to be in the following
mode [9]:

wy = bp sin L (33)

a

The total deflection under compressive axial load is
expressed as the sum of the elastic and plastic com-
ponents as below [10]:

w=w"+wP. (34)
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The elastic component is in the same mode as the initial
deflection mode:
T
w® = b, sin —.
a

(35)

Based on [9], the coefficient of the elastic component
is:

6 = b0/(1— P/P.,), (36)

where P is the axial compressive load and P., is the
elastic buckling load. The plastic component is [10]:

w? =

2cx/a

22

c[—m+2—z+1—0.5(i+

a? a?

37)

From the assumed deflection modes, the curvature, x,
and its components at the mid-span point, are derived
as follows:

K = K® + K?,
K¢ = (m/a)*(6m — b0),

kP =4c/aaP. (38)

Deflection and curvature components in a single span
are shown in Figure 11. a? is the length of yielded zone,
which is evaluated according to the method expressed
in [10].
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Figure 11. Elastic and plastic components of deflection
and curvature.

Axial Force and Bending Moment in
Cross-Section

The stress and strain distributions at cross-sections 1
and 2 take one of the patterns shown in Figure 12. In
the plate part, the stress-strain relationship developed
in the previous section is used. Axial forces and
bending moments at each cross-section are evaluated
by integrating stresses in Figure 12.
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Figure 12. Possible stress and strain distributions at the cross-sections 1 and 2 [10].
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Equilibrium Conditions

Neglecting the reaction forces at supporting points, the
equilibrium conditions are:

P =P, My+ M =W(P +P)/2, (39)
where Py, P>, M; and M, are shown in Figure 13. Since
the strains in plating in sections 1 and 2 are different
from each other, the point of zero-bending moment
moves along the span from the original supporting
point as the axial compressive load increases. Denoting
the distances between zero-bending moment point and
sections 1 and 2 by a; and a2, one has:

Pcrl :7I'2EI1/(1%, Pcr2 :7T2EI2/(1§, (40)
where EI; and FI, are bending rigidities at cross-
sections 1 and 2. a; and as are determined from the
following conditions:

{a1+a2:2a 7 (41)
Py = Pers
SO:

a1 =2a/(1+3), az=2aB/(1+7), (42)

where 8 = /(EL)/(EI,). When both spans are

elastic, the ratio of curvatures at cross-sections 1 and 2
is:

H2/K1 = ]./ﬁ (43)
Relationship Between Average Stress and
Average Strain

After satisfying equilibrium conditions, the axial com-
pressive strain is evaluated as [7]:

1 & ki dw; \
0 k 7
= — C 4+ 0.5 — d 44
© €+2a2/ st (dx)lx’ (44)
z:lo
Ll @ ».|
| Y 71

Point of zero-

bending moment

P,

1
Py

w2 | a2 “

<
< ra |

A
\

Figure 13. Forces and bending moments acting at both
ends of the double-span model.
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where e = P/EF and % = rk;(d; —e) —° F,
e and d; represent the sectional area, the location of
original neutral axis and the current location of zero-
stress point, respectively. The subscript, ¢, indicates
the corresponding span or cross-section.

Procedure to Obtain the Average
Stress-Average Strain Curve

The average stress-average strain relationship of the
stiffened plate element is derived according to the flow
chart shown in Figure 14.

Accuracy of the Method for Stiffened Plates

The accuracy of the average stress-average strain re-
lationships, obtained by using the explained method,
are verified against those obtained applying FEA (Fig-
ure 15). The plates are of dimensions 2400 x 800 mm.
Different plate thicknesses and different stiffener cross-
sections are considered. The same code (ULSAS), shell

| a1=az =a: (is assumed) |
T

|Modify Kll Pl

| K1: is given incrementally |

i

I dy: is given incrementally |

Py, M;: are evaluated for the
prescribed k1,d1

Ko: is calculated
s )

I da: is given incrementally |

v
|Modify K2| P>, Ms: are .evaluated for the
prescribed k2, d2

No

| Modify I<L2|

Calculate 6,1, 6m2
ap,,apy,C1,C2

Is there
equilibrium for the
bending moments?

| o, e are calculated I

i

| B, a1, as are calculated I

| Continue I

Figure 14. Flow chart of the method for derivation of the
average stress-average strain relationship of the stiffened
plate [7].




Simulation of Average Stress-Average Strain Relationship

—FEM
1.0pF aee-- Analytical method 1.0
0.8} 0.8}
& 0.6k g 06fk ..
Nea. =
© oo Xt by Xty = 5 howXtw+bysxts=
0.4} 250x104+90x15mm 0.4 250%x104-90x 15 mm
0.2 0.2
=1
0.0 t=13 mm 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
eley e/ey
1.0 1.0
i
0.8} 0.8 5\
S
& 0.6 g 0.6k RN
P By Xt = & hay Xt =
0.4 250%x19 mm 0.4k 250x19 mm
0.2 0.2}
t=13 mm t=20 mm
0.0 0.0 1 1 1 J
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
eley eley
1.0p 1.0¢
0.8} 0.8k —
Foosk  f 0 SNIn > o0.6f
S haw Xt by Xty = By oo Xt +by Xty =
0.4f 250%x10490x15 mm 0.4k 250%x10490x 15 mm
0.2} 0.2k
t=13 mm t=20 mm
0.0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
eley eley

Figure 15. Comparison between simulated average
stress-average strain relationships with FEA results
(stiffened plates).

elements and simulation method were applied in the FE
model of stiffened plates. A sample of an FE model of
stiffened plate has been shown in Figure 10. Relatively
good correlations are observed among the results.

CONCLUSIONS

A simple method for simulation of the average stress-
average strain relationships of plates and stiffened
plates, under the action of longitudinal axial compres-
sion, is developed. The features of the method are:

1. The results of elastic large deflection analysis and
rigid-plastic mechanism analysis are combined to-
gether in the derivation of the average stress-
average strain relationship of the plates;
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Applying a double span model of the stiffened
plate and imposing equilibrium conditions of forces
and moments at the end sections of the model,
the average stress-average strain relationship of the
stiffened plate model is derived;

In both derivations, the influences of buckling and
plastic deformations are considered;

The results show that the explained method is
simple and relatively accurate and can be applied
effectively in the ultimate strength evaluation of
ship hull girders.
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