Scientia Iranica, Vol. 12, No. 4, pp 348-358
© Sharif University of Technology, October 2005

N-Junction Modeling in Perforate

Silencers for Internal Combustion Engines

A. Faezian', M.R. Modarres Razavi* and A. Onorati’

In this work, boundary conditions of the T'-junctions in engine silencers are modeled by the
Constant Pressure Model (CPM) and the Pressure Loss Model (PLM). Initially, the mean flow
velocity through the ducts is assumed to be zero. Two Benson CPM and Corberan CPM
approaches are employed in perforate silencers simulation. For the silencer with more than one
perforated pipe, in which N-branch junctions are formed, it is possible to apply the Benson CPM
approach. Finally, when the mean flow velocity through the ducts is non-zero, the shortcoming
of the CPM model and the ability of the PLM model in describing the T'-junctions are shown.

INTRODUCTION

Branch junctions are frequently found in the intake and
exhaust systems of multi-cylinder engines, which rep-
resent the most complex boundary conditions for wave
action models. Most wave action models for intake and
exhaust systems are based on the calculation of the
flow in the pipes with the one-dimensional assumption.
As most frequencies of noise in the exhaust system
of engines are less than 3000 Hz [1], the length of
waves are long enough and comparable with the length
of exhaust system elements, so that 1-D approaches
are not far from physical behavior. The flow through
branch junctions is always very complex and really
multi-dimensional. Therefore, branch junctions must
be considered as boundaries between different pipes,
where the unsteady calculation should be based on the
one-dimensional hypothesis. Onorati et al. [2] applied
a hybrid 1D-2D computational approach, in which two
models are coupled in the interface boundaries. The 1-
D approach is used only for the pipes with constant or
gradual changes of the cross section area and smooth
bends and the 2-D one is used in complex geometry
components such as Y or 7" junctions. The 2-D model
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is based on the Euler equation for compressible non-
viscous flow. Although much more information is
obtained from the 2-D model than from the 1-D model,
its accuracy in predicting the wave motion in the pipes
of exhaust systems involving abrupt area changes and
T junctions is almost the same. If the main objective
is to capture the overall behavior of transmitted and
reflected waves, with or without pressure losses, then,
simulation of a multi-pipe junction can be based on
a 1-D model. Especially in silencer modeling, resort-
ing to 1-D approaches for the simulation of complex
silencer geometries with junctions of pipes involved
can be beneficial, in terms of simplicity and reduced
computational time. A junction of several pipes is
called a branch junction. When mass accumulation
within the junction is negligible, the conservation laws
can be applied without considering any sink or source
terms. Flow through a branch junction can be modeled
by the use of empirical correlations or by the use
of simplified equations, which assume some kind of
theoretical behavior of the flow [3]. The modeling
of such junctions with one-dimensional simulation is
possible and has enough accuracy if some modifica-
tions, such as length corrections, are applied on the
ends of the pipes. Length correction may be added
to the length of the duct adjoining the discontinuity
to represent wave reflection and transmission at the
boundaries [4,5].

William-Louis et al. [6] described a model based
on the method of characteristics for the calculation
of pressure wave propagation through a junction.
Their method is valid for subsonic flow, taking the
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Figure 1. The perforate silencer: (a) Schematic of the system; (b) Acoustically equivalent duct-system; (c) A magnified
piece of silencer in which the hole-cavity and hole-pipe connections by means of T-junction is shown.

fluid compressibility and pressure losses into account,
according to the type of junction. They used the
branch superposition method, which decomposes an
N-branch junction into a two-branch junction. In
their method, the elementary two-branch junctions
are modeled separately. Each elementary junction is
formed by an inlet and an outlet branch and other
branches are considered as a sink (for the outlet)
or a source (for the inlet) of mass and stagnation
enthalpy.

There are two ways for dealing with the multi-
pipe junctions: The constant pressure and the pressure
loss approaches [4]. The simplest method of dealing
with a multi-pipe junction is to assume that the
static pressure at all of the pipe ends comprising the
junction is uniform. This assumption is based on the
observations of List and Reyl [7], who showed that
for small wave propagation, the pressure drop across
a junction is negligible. There are some Constant
Pressure Model (CPM) approaches, such as the Benson
CPM [7] and the Corberan CPM [7], which can be
applied to N-junctions. Another approach, which
can be applied to N-branch junctions, is the pressure
loss model (PLM). The Benson PLM model [7] is
based on an empirical form of the momentum equation
incorporating experimental loss coefficients, which are
obtained from steady flow tests. The coefficients were
only obtained for 90° bends and T-junctions and the
calculation procedure was limited to junctions of three
pipes. The results of unsteady flow tests showed
that the momentum model is superior to the constant
pressure models. A similar technique, but with a
generalized form of the momentum equation, was used
by Bingham and Blair [8]. Junctions in the engine
manifolds are classified as supplier and collector types.

In the generalized PLM method by Bingham and Blair,
the loss coefficients are based on experimental results
and are related to the angles between pipes. Bassett
et al. [9] presented a technique for estimating the
pressure loss coefficients for junctions instead of using
experimental data for the steady-flow condition.

Morel et al. [10] split the perforate silencers
into subdivided volumes and Y-junctions, where more
than two ducts are connected together. Onorati [4,5]
modeled perforate silencers by resorting to acoustically
equivalent duct-systems. He considered perforate holes
as short ducts and used the Corberan CPM approach
to represent T-junctions of the duct-system. Fig-
ures la and 1b show the schematic and the acoustically
equivalent of a perforate silencer, respectively. The
short ducts connect the cavity and the perforated
pipe together, forming the T-junctions, as shown in
Figure 1c.

In this work, the two Benson’s CPM, Corberan’s
CPM and, also, Benson’s PLM approaches are applied
to N-junctions of perforates. The performances of
these approaches are studied and compared with each
other. The calculation of the wave motion in the
duct-systems is performed by a one-dimensional non-
linear model using the two-step Lax-Wendroff method
and the MacCormack predictor-corrector method with
second order accuracy, resorting to flux limiting tech-
niques (FCT, TVD algorithms) to get oscillation-free
solutions [7].

CONSTANT PRESSURE MODEL FOR PIPE
JUNCTIONS

When the CPM models are applied to multi-pipe
junctions, the characteristics of such junctions are
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defined by geometric cross section areas and, therefore,
it is not necessary to carry out flow measurements on
the junctions, as is required with the pressure loss
model. This is a great advantage, because flow tests
are both time consuming and expensive. A great
advantage of the constant pressure junction theory is
that it is not limited by the number of pipes that may
be joined [7].

Benson’s CPM Approach to the N-Junction

Benson, in his model, assumed that the volume of the
junction is small compared with the volume of the
pipes. To obtain the entropy levels of the pipe ends
at the junction, the following assumptions were made
by Benson et al. [7].

For pipe ends in which the flow is towards the
junction (gas velocity U* positive), the entropy level is
not changed (i.e. (A4;);j=ns equals previous values of
Aaj).

For pipe ends in which the flow is away from the
junction (gas velocity U* negative), the entropy level
at the pipe is the weighted mean of entropy levels of
the joining flows.

As shown in Figure 2, N pipes are joined in an V-
junction. The joining flows are numbered from 1 to N.J
and separating flows from NJ +1to NJ+ NS = N.
Benson ignored the N-junction volume (quasi-steady
approach). As a result, there are 3N unknowns, at any
end (pressure, temperature and velocity). Both conti-
nuity and energy equations govern the junction. There
are N relations that describe the incident Riemann
variables of all the pipes and N.J relations of joining
flows entropy level. The sum of these equations is
N+NJ+2, so that N+N.S—2 equations must be found.
In addition, there can be obtained N — 1 independent
equations from the constant pressure assumption in
the N-junction (Equation 1). If there are NS — 1
other equations, they are enough for solving the N-
junction. Benson assumed that the entropy levels of all
separating flows are the same and equal to the average
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Figure 2. NJ joining flows (towards the junction) and
NS separating flows (away from the junction).
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entropy level of the joining flows [3]:

j=(NJ+1)toN. (2)

The relationship between entropy level and starred
variables are derived in Equation A1l of the Appendix.
For perforate junctions, the summations involved in
Equation 1, concerning all the ducts meeting at the
junction, can be reduced to the sum of three terms,
related to the three pipe ends entering the 7" junction.
In fact, the numerous short ducts standing for the
holes in each T junction can be well represented by a
single hole-duct with the real geometrical dimensions,
since the holes are identical and experience the same
fluid dynamic and acoustic behavior. By introducing
the number of perforate holes per group npeles, the
corresponding term in the following equation is derived:

AL A A k—1

ny ing 17 ing —

A*_AA1F1+AA2FZ+nhOIeSAA3F3_ Pj 2k
i P B B ,
Aa, + Aa, + Tholes A, DPref (3)

subscripts 7 = 1 to 3 refer to the pipe ends; subscripts 1
and 2 indicate left and right ducts belonging to the
perforate pipe or to the cavity (Figure 1), whereas
subscript 3 indicates the hole-duct representing the
group of n holes (hence, F3 is the single hole area).

Similarly, the dimensionless continuity equation
at the junction can be written as:

2 2
ApeT o Ay
%%—mﬂ+%%—@&
1 2
(45)7
+ Mholes : U;FB =0. (4‘)

Aa,
A silencer with two perforated pipes in the cavity has
been simulated in the same way, as a silencer with one.
Figures 3a and 3b show the schematic and the acoustic
equivalent of a two pass perforate silencer, respectively.
One of the 4-junctions connecting the cavity with two
perforated pipes is magnified, as shown in Figure 3c.
In this case, there is more than one group of holes
connected to the T junction; hence, each group of holes
can be represented by a single hole-duct, introducing
the corresponding number of holes, n, in the boundary
equations. For example, the continuity equation in this



N-Junction Modeling in Perforate Silencers

351

Upstream
microphone
64 80 | 12 | 80 100
75|76 | 308.5 1
- <
~
o laesaas =
o
Ped o
o
el 2 P
-
L=
(2)
Perforated pipe II
——

porosity=4%

Cavity

Perforated pipe I

(b)

A group with 3 holes

Downstream

?mlcrop

hone

()

Figure 3. Two pass perforate silencer: (a) Schematic of the system; (b) Acoustically equivalent duct-system; (c) A
magnified piece of silencer in which the hole-cavity and hole-pipe connections by means of 1T'-junctions and N-junctions are

shown.
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Corberan’s CPM Approach to the N-Junction

Corberan adopted Benson’s assumption for the entropy
level of separating flows and modified it in this way:
although the entropy levels of all the separating flows
are the same, this is not necessarily equal to the average
entropy level of the joining flows (Equation 6). He
called it the equal entropy approach. In a different
approach, he assumed that the total enthalpies of all
separating flows are equal (Equation 7). It means that
the joining flows have enough time to mix completely.
He called it the equal total enthalpy approach. He
showed that the equal entropy and the equal total
enthalpy approaches will be the same for low mean

velocity and temperature [3,7]:

Ag,=Aax,  i#je{(NJ+1)to N}, (6)

k-1 k-1
2 *2 %2 _ 2 *2 *2
A%, (Ai + 5 U, ) =A%, <Aj + 5 U; >,

i#je{(NJ+1)toN}. (7)

BENSON PLM APPROACH TO THE
T-JUNCTION

The CPM model is a simple and useful approach for
dealing with junctions in which the velocities and
pressure losses are low, but it has shortcomings when
applied to the simulation of the behavior of typical
engine manifold junctions. Benson et al. developed a
Pressure Loss Model (PLM) to consider pressure losses
in the N-branch junctions. Benson PLM approach
is limited to the T-junctions and is based on two
assumptions [11,7]:

a) The flow is one-dimensional across any section at
the end of a pipe in which the flow is towards the
junction;

b) The pressures are equal in the two pipes in which
the flow is towards the junction.



352

The areas of the three cross-sections of the T'-
junction are considered equal, since the only exper-
imental loss coefficients for this case are available.
As shown in Figure 1, the holes (short ducts) are
connected to the perforated pipe on one side and to
the cavity from the other side. There are six cases
which can occur in junction flows. T-junction flows
are divided into three joining and three separating flow
cases [7]. The patterns and cases of these flows are
shown in Figure 4. The quasi-momentum equations are
applied to describe pressure losses between sections of
the T-junctions originated by pipe-hole and hole-cavity
connections. These equations could be derived for all
types of flow (all the flow cases and the corresponding
quasi-momentum equations are explained in detail in
[1]). The following Equations are an example for the
flow case shown in Figure 4b:

P — p2 = Ci(p2u3 — prui),

p1 — p3 = Capsus. (8)

The pressure difference equations can be combined
with the continuity equation and the steady flow
equations [11]. There are two forms of the energy
equation, one for the joining flows and one for the
separating flows. The energy equation for joining flows
becomes:

(puFhy); =0. (9)

3
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Figure 4. The T junction flow patterns; (a) and (b)
Separating flows; (c) and (d) Joining flows; (e) Table of
flow cases.
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The energy equation can be derived in the following
form by using the starred variables A* and U*:

3

o k=1 .
3 {AAj(A;)“UJ.* <A*2 + TU“) F]} = 0.

j=1 (10)

For separating flows, the stagnation enthalpy is con-
stant along a streamline of the junction as:

hol = ho2 = h/o3- (]‘]‘)

It can be derived in the following form by using the
starred variables A* and U* as:

k-1

o [ N o [ k=1
(et g )=, (a )

o k=1
= A%, <A32 + TU32> i (12)

It is necessary to relate the pressure difference terms to
the starred variables. The resulting expression for all
the flow types is:

A\ T A\ T
(&) e (R) om0 -2

Functions G; and G, for the different flow types are
reported in Table A2 of the Appendix. Also, in this
boundary condition, the short ducts representing the
holes in each 7' junction can be treated as a single
hole-duct with the real geometrical dimensions, by
introducing the number of holes per group, npeles, in
the continuity and energy equatiouns.

EXPERIMENTAL APPARATUS

A simple experimental apparatus [5] has been employed
in a semi-anechoic room to measure the tailpipe noise
and the attenuation curve of several silencers. The
schematic of the experimental rig is shown in Figure 5.
This has been used with acoustic excitation provided
by a loudspeaker and zero mean flow or with high
amplitude excitation and strong mean flow provided
by an engine. In this study, only the zero mean
flow cases were considered. In the case of acoustic
excitation, the loudspeaker is insulated in a sound-
proof box and radiates white noise (generated by the
spectrum analyzer), which is used to excite the wave
motion in the silencer system. Two microphones are
used with acoustic excitation. The first microphone
measures the pressure within the pipe (the upstream
pressure), while the second microphone records the
pressure field at a distance [ from the tailpipe end
(the downstream pressure). The signals from the
two microphones reach the spectrum analyzer via two
phonometers. The downstream microphone is placed
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Figure 5. Schematic of the experimental rig adopted for
the acoustic excitation of silencing systems.

at a distance of 0.5 m from the open end and at
an angle of 45° to the pipe axis. A sound-absorbent
carpet is placed under the open termination to reduce
the influence of ground reflection and achieve a quasi-
spherical radiation.

The spectrum analyzer performs an FFT analysis
of the two signals and evaluates the transfer function
(i.e. the attenuation curve) in the frequency domain
by taking the difference between the upstream and
downstream sound pressure level spectra in dB. The
transfer function of the acoustic filter can be measured
by means of two microphones (the first upstream of
the silencer, the second at a certain distance from the
open termination). Transfer function and transmission
loss of a system are introduced in Equation A3 of the
Appendix.

RESULTS AND DISCUSSIONS

In the single-pass perforated tube silencer, almost
the same results are obtained from the two Benson
and Corberan CPM approaches, so that it is almost
impossible to recognize any difference between the
results. Comparison of the predicted and the experi-
mental results for zero mean flow of a perforate silencer
with a single perforated pipe is shown in Figure 6.
Onorati [5] applied the Corberan approach on perforate
silencer modeling. In this work, it was found that
when the Corberan approach is applied to the N-
junctions of silencers with more than one perforated
pipe (Figure 3), the calculation can be unstable. By
reviewing the formulations of the two approaches,
it is observed that in the Benson CPM procedure
(Equation 2), the entropy levels of separating flows
are the same and equal to the average entropy level of
joining flows. This procedure controls the oscillations
of entropy levels and does not allow them to overshoot.
Therefore, the N-junctions of perforate silencers with
two perforated pipes (Figure 3) are modeled by the
Benson CPM approach. The predicted results are
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Figure 6. Comparison between the predicted results of
perforate silencer (Figure 1), achieved by the Benson and
Corberan CPM approaches and the experimental data.

compared with experimental results for zero mean flow
in Figure 7. It can be seen from Figures 6 and 7 that
the predicted results follow the experimental results
closely, especially for the resonant frequencies. Some
oscillations of the predicted results may be related to
the kind of upstream excitation, which is white-noise.
In Figures 6 and 7 the transfer function is calculated
based on the upstream excitation source to be white-
noise.

Also, the Benson PLM approach has been applied
to the N-junctions for the case of zero mean flow.
The mean flow is explained in Equation A4 of the
Appendix. A simple configuration with a single-
pass perforated tube, closed in the middle, has been
considered (Figures 8a and 8b), as reported in [12].
Figure 8c shows numerical results, predicted by CPM
model and the predicted PLM model results. The PLM
approach is imposed in three ways:

1. For all flow patterns of Figure 4 (it is indicated in
Figure 8c by a middle wide line);
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Figure 7. Comparison between the predicted results of
two pass perforate silencer (Figure 3), achieved by the
Benson CPM approach and the experimental data.
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Figure 8. Single pass perforate tube silencer closed in the middle: (a) Schematic of the system; (b) Acoustically
equivalent duct-system; (c) Case of zero mean flow, comparison between the predicted results achieved by the CPM and
the PLM approaches and the experimental data taken from [12] (d) Comparison between the predicted results by the CPM
model and the theoretical linear approaches and the experimental data taken from [12].

2. For (a) and (d) flow patterns of Figure 4 (it is
indicated in Figure 8c by a dash line);

3. For (d) flow pattern of Figure 4 (it is indicated in
Figure 8c by a narrow line).

The CPM results are more accurate than the PLM
ones. The results of the third PLM approach are not as
good as the CPM approach but are better than the first
and second PLM approach. Moreover, in Figure 8c,
the experimental resonance at about 2600 Hz is not
well captured by the CPM model. In Figure 8d, these
numerical results are compared with theoretical linear
results. It can be seen that resonate frequencies and
amplitudes of transmission loss, which are predicted by
this numerical method, are better than a theoretical
linear one. An end correction length is added to
the length of the duct to overcome the shortcomings
of the 1-D model on the geometrical discontinuities.
This correction length depends on the geometry of the
discontinuity and on the frequency of the wave. Since
the white-noise excitation is used in upstream of the
silencer, a fixed correction length must be used for

all frequencies. Thus, the adopted correction length
will provide less accuracy for high frequencies. The
experimental results in the low frequency band (less
than 250 Hz) are not reliable for all experimental
measurements.

For non-zero mean flow (Figure 9), the pressure
losses in the N-junction and in sudden area changes are
considerable. In this case, the Benson CPM and PLM
approaches have been applied to the T-junctions of
perforate silencers. In the PLM approach, the pressure
losses in the N-junction are imposed directly, whereas
in the CPM approach they are ignored, although their
effects are considered by a friction coefficient equal
to 0.08 along the short ducts (holes) connected to
the N-branch junctions. When the PLM approach
is used, due to the lack of experimental data for the
case of non-equal cross-section areas of the connecting
ducts to the T-junction, the pressure loss coefficients
are based on the experimental data for equal cross-
section areas. The friction coefficient of the holes
(short ducts) is considered to be 0.08 (greater than
the typical value of 0.005). The higher value of the
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Figure 9. Comparison between the numerical predicted
results of silencer shown in Figure 8 (non-zero mean flow
case, Mach number = 0.05) achieved by the CPM and
PLM approaches, theoretical linear predicted results [12]
and the experimental data taken from [12].

short duct friction coefficient somehow compensates
for the lower value of cross-section area. The results
for the silencer of Figure 8a are shown in Figure 9.
The Mach number (calculated on the basis of the
mean velocity) is about 0.05 in this case. Since the
perforated pipe in the silencer is closed in the middle,
as shown in Figure 8, the whole gas flow has to pass
through the holes. This condition is more suitable for
evaluating the ability of the PLM model. There is a
good agreement over the frequency range of 0-2000 Hz
between the predicted results and the measured data
reported in [12] for this case, as shown in Figure 9.
It should be noted that the theoretical linear results
by Sullivan, J.W. [12] are closer to the experimental
results. In Figures 8 and 9 the transmission loss is
calculated based on the upstream excitation source to
be white-noise.

CONCLUSIONS

The conclusions of this research work are:

e For the single-pass perforated tube silencer and the
case of zero mean flow, the Benson CPM and the
Corberan approaches provide the same results;

e The Benson CPM approach can be applied to model

the N-junctions of perforates with more than one
perforated pipe;

e For the case of zero mean flow, the Benson CPM
approach is more accurate than the PLM one;

e For the case of non-zero mean flow, the Benson PLM
approach gives some better results than the CPM
one, but these results are not sufficient for judging
the advantages and disadvantages of each case.

NOMENCLATURE

Ay entropy level

355

A* starred form of dimensionless sound
velocity

pressure loss coefficient

N Q

cross section

Q

stagnation enthalpy
ratio of specific heats

pressure

=T >

gas velocity

U starred form of dimensionless gas
velocity

p density

*
in

starred (dimensionless) Riemann
variable at the boundary
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APPENDIX

Entropy Level, Starred Variables and
Continuity Equation

If the thermodynamic laws and ideal gas relations are
combined, the following equation will be obtained.

ok
p _ < a )kl e(—S+SrL.f)/R. (Al)

Dref Qref

Here, a and s are the sound speed and the entropy,
respectively, and the subscript ref designated to the ref-
erence property. As shown in Figure Al, an isentropic
process can be considered to occur from an arbitrary
point (temperature 7', pressure p and entropy s) to
reference pressure (prer) line. By using Equation Al
for point A, the following relation will be resulted:

2k
( aa ) E—1 _ e(SA—SrL.f)/R' (AZ)

Qref

If the normalized sound speed of point A is defined by
Ay = ;—‘:t, Equation A3 will be obtained:

(Aa) 7T = loamsed/ R, (A3)

On the other hand, according to the isentropic process:
sS4 = S.

TA

Temperature

Pref

Tret

£ Entropy S
Figure Al. Entropy diagram.
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Thus, relation (AA)% = els—swe0)/ K indicates the
entropy level variation from arbitrary point (p,T") to
Ref. point (pref, Tyer). Here, A 4 is named entropy level.
Equation A1 could be rearranged, such as the following
equation, by using A4 for any non-homentropic flow:

2o\ A4\
p a —1 =1 —1
_ LA (AT (s
Dref (aref) (AA > <AA) ( )

For homentropic flow A4 = 1.

The A, U and A, are non-dimensional sound
speed, flow velocity and entropy level, respectively.
Also, the starred variables are defined as shown below,
which are used to simplify equations:

U . U
l]_aref7 v _AA7
A= =5 (A5)

By rearranging the continuity equation as follows:
N
> piUiF; =0. (A6)
J

Deunsity could be explained as shown below by combin-
ing the ideal gas relations and Equation A4:

po L Fp (2 () (Pt
RT a? Dref a? afef
—k i % i Dref
AA Az CLfef

_ *% 1 Dref
~ kA (A*QAQ (a2 ) (A7)

ref

By using the Riemann variable definition, the following
equation can be obtained.

2
k — 1(
Equations A7 and A8 can be replaced on Equation A5.

N " 1
> (Ap) = (714?4 A*?) An; (N, — ADE
i 7

J

U= Aim — A) = %AA()\TH —A").  (A8)

N N A
j J

Pressure Loss Model Coefficients and
Parameters

The experimental loss coefficients are written in Ta-
ble Al for six flow patterns of Figure 4. These
coefficients are used to determine G; and G5 functions,
which were applied in Equation 13 and introduced in
Table A2.
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Table A1l. Pressure loss coefficients of momentum
equation of a streamline [11].

Flow Type Pressure Drop Coefficient
A p1—p2=Ci(p2u3—p1ui)| Cp =0.3
A p1—p3=Capzuj Cy=0.6
B p3 —p1=C3p1uf C3=0.75
C p2—p1=Ca(prui—pou3)| Cy=0.9
C p3—p1=Cs(pru? —pau3)| Cs =0.9
D p1—p3=Cepsu3 Cs =0.85

Acoustic Parameters

Some acoustic parameters have been in the main text
which are described now. Transfer Function (TF)
represents the sound attenuation in the system from
the upstream to the downstream of it. The sound
pressure level is the logarithmic effective pressure, such
as:

Prms [N/m2]

[dB], (A10)

and the transfer function:

TF = SPLupstream - SPLdownstream' (A]-]-)
Transmission Loss (TL) could be represented by the
difference of upstream incident power and downstream
transmitted power into an anechoic termination:
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w; and wy can be obtained from the following Equa-
tions:
2

w; :% [(% ((pz)rms+(poaouz)rms)> F ’ (A13)

Upstream

Downstream (A14:)

In the numerical methods used in this study, only the
local magnitude of variables are known. Thus, the
linear theory must be employed to obtain the incident
and the transmitted parts of acoustic parameters. The
following equation governs the acoustic perturbation
theory:

9%*p 9%*p

11/1 ’
Wy = 5 [(5 ((px)rms + (poaoux)rms)> F

W = aow. (A15)
The solution of it is:
pe=Aye T 4 A et (A16)

The first part of the solution is the incident part
of pressure perturbation and the second one is the
reflected part of it. Local velocity can be obtained
similarly:

—ikx — A eilcx

Pololy = Are (A17)

By combining Equations A16 and A17, the following
relation for calculating the incident part of pressure
and velocity on the upstream will be obtained:

(Pz)i = (Pottotis)i = l(pm + Pololy). (A18)

2

Similarly, the transmitted part of pressure and velocity
on the downstream with an anechoic condition will be
resulted:

_ w; 1
TL = 1010g U)_t N (A12) (pz)t = (poaouz)t = g(px + poaoux)~ (A19)
Table A2. The functions G1 and G2 of pressure loss (Equation 13).
Flow Type | 3 G, Go Flow Type | 3 G, G
2 2 2 2
us us Us Uy
2|k (%) | ok () +1 v 2 | cuk () 0419(“2) +1
N ~Csk () (42)"
I 3| ok (1) 1 3 0 RAAT) A\
' +1+Csk (§)
1
o | ek (Y | ok (L) 41 v o | ok (22) cuk (Z0) 41
k() | ok () + ik () k() +
U\ 2 ar\ B
I 3| ok (Y1) (%) 3 0 1
U2 U2
2 Cglc(A—’%) Csk (A—) +1 VI 2 0 1
U2 U2
111 3 0 Cok (G5) +1 3| Cok (%) 1
1 1
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Here, the (pg)rms is the root mean square of local
pressure and (p,@oUy )yms 1S the root mean square of the
product of the arbitrary density, the arbitrary sound
speed and the local flow velocity.

Mean Flow

The tailpipe noise of the intake and exhaust system
is caused by: (i) The pressure pulses and (ii) Mean
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flow, which generates turbulence and vortex shedding
at geometric discontinuities. It is possible to investigate
the pulse noise and gas flow noise independently. Usu-
ally, the acoustic parameters of silencers are determined
from their responses versus the reciprocating pulse
noise with zero mean flow. The fluid flow velocity can
be represented by mean and perturbation parts. When
the mean flow velocity is zero, it is called zero mean
flow.



