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Regular RGC,-Commutative Semigroups

A. Nagy!

In this paper, it is proven that a semigroup is regular and RGC ,-commutative if, and only if, it
is a spined product of a commutative Clifford semigroup and a right regular band.

INTRODUCTION

A semigroup S is said to be an R-commutative semi-
group if, for every couple (a,b) € S x S, there is an
element, u € S*, such that ab = bau (see [1,2]). The R-
commutativity is not hereditary for subsemigroups, in
general. The next lemma gives a sufficient condition for
an ideal K of a semigroup S when the R-commutativity
of S is hereditary for K.

Lemma 1

If K is an ideal of an R-commutative semigroup, such
that K is simple, then K is R-commutative [1].

A semigroup S is called a conditionally commu-
tative semigroup if, for every a,b € S,ab = ba implies
axb = bza for all x € S (see for example [3]). It is
clear that every conditionally commutative semigroup
satisfies the identity aza? = a%za.

In [4], B. Pondélicek defined the notion of the
generalized conditionally commutative semigroup (or
GC-commutative semigroup) as a semigroup satisfying
the identity aza? = a’?za. He proved that a GC-
commutative semigroup satisfies the identity aza® =
a‘ra for every positive integer i(> 2).

For a positive integer n a semigroup is called a
generalized conditionally n-commutative semigroup (or
GC,,-commutative semigroup) if it satisfies the identity
a"wa' = a'za”, for every integer i > 2 (see [5]). It
is noted that the GC;-commutative semigroups are the
GC-commutative ones and the conditionally commuta-
tive semigroups are GC,,-commutative for every positive
integer n.

An R-commutative and GC,-commutative semi-
group is called an RGC,-commutative semigroup
(see [5]).

An element a of a semigroup S is called regular, if
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there exists « in S, such that axa = a. The semigroup
S is called regular, if all its elements are regular.

In this paper, the regular RGC,-commutative
semigroups are described. For the notions not defined
here, please refer to [3,6,7].

REGULAR R-COMMUTATIVE
SEMIGROUPS

A semigroup S is called an orthogroup, if it is a union of
its subgroups and the set Eg of all idempotent elements
of S is a subsemigroup of S.

A semigroup S is called a rectangular group, if it
is a direct product of a rectangular band B and a group
G. In particular, if B is a right zero semigroup, then
S is called a right group; if G is commutative and B is
a right zero semigroup, then S is called a right abelian

group.

Lemma 2

A semigroup is an orthogroup if and ouly if it is a
semilattice of rectangular groups (see [8]).

Theorem 1

Every regular R-commutative semigroup is an or-
thogroup, which is a semilattice of right groups.

Proof

Let S be a regular R-commutative semigroup. Then,
for every element a € S, there are elements x € S and
y € S1, such that a = a(za) = a(axy) = a’zy. Thus S
is also right regular. By Theorem 4.3 of [7], S is a union
of groups. Since S is R-commutative, then, for every
idempotent elements e and f of S, there are elements
x,y € S, such that ef = fex and fe = efy. Then:

(ef)? = e(fe)f = elefy)f = (efy)f = flef)
= f(fex) = fex = ef,
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that is, the set of all idempotent elements of S is a
subsemigroup. Consequently, S is an orthogroup. By
Lemma 2, S is a semilattice Y of rectangular groups
So(a € Y). Let a € Y be an arbitrary element. Let
Ay = U{Ss : a < B}. If bc € A, be arbitrary
elements, say b € Sz and ¢ € Sy(a < f,7), then,
a < By and so be,cb € A,. Thus A, is a subsemigroup

of S. It is clear that bc and cb are in the same
Ss(a < 6). As S is R-commutative, there is an
element € S', such that bc = cbz. If € S,

then 6 = 6£ and so 6 < &, which implies a < ¢&.
Thus x € S¢ C A,. Hence, A, is R-commutative.
Since S, is an ideal of A,, and S, is simple, then,
by Lemma 1, it follows that S, is R-commutative. If
Sa = Lo X Gy X Ry, where L, is a left zero semigroup,
R, is a right zero semigroup and G, is a group, then
for arbitrary elements, [,lo € L,,r € R,, and the
identity element e of G, there is an element x € S,
such that:

(llv €, T) = (l1l27 €, ’f‘) = (l17 €, ’f')(lz, €, T)
= (l27 €, r)(ll €y 1“)33,

from which one can conclude that I; = ls. Thus, L,
has only one element and, so, S, is a right group.H
REGULAR RGC,-COMMUTATIVE
SEMIGROUPS
By Theorem 1, one can formulate a corollary about
regular RGC,-commutative semigroups.
Corollary 1

Every regular RGC,-commutative semigroup is an
orthogroup, which is a semilattice of right abelian
groups.

Proof

By the previous theorem, a regular R-commutative
semigroup is an orthogroup, such that it is a semilattice
Y of right groups G, x R, where G, are groups, R,
are right zero semigroups, a € Y. If h,g € G, 7 €
R,,a € Y are arbitrary elements, then;

(R"gh™*,r) = (h,7)"(g,7)(h, )"
= (h,r)"* (g, r)(h,1)"
= (" Lgh™,r).
Thus, gh = hg and, so, G, is an abelian group.®
In the investigations, notations of the Preston’s

Theorem will be used, which gives a construction for
orthogroups and so it is formulated in the next lemma.
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Lemma 3 (Preston’s Theorem [8])

Let E be a band and let £ = UyecyFE, be the
decomposition of F into a semilattice Y of rectangular
bands E, = Ly X Ry(a € Y). For each a in Y,
let G4 be a group, 1, be the identity element of G,
Sa = Lo XGoy X Ry and S = Uyey Sy Identify 1, x E,,
with E,.

For each pair of elements a, 5 € Y with a > [,
let ¥, be a homomorphism of G, into Gz and let
ta,3 (Ta,3) be a left (right) representation of S, by
transformations of Lg (Rg) such that if e, = (in, ko) €
E,, and (jg,)\g) € Eg, then:

eozf,@’ = ((ta”@’ea)jﬂv )‘ﬂ) )

fsea = (g, Ag(€aTa,p)) -

Define ¥g,a,ta,0 and 7,,o (@ € Y) as follows. Let
Ya,o be the identity automorphism of G,. For A =
(la,Gay k) € Sa, let toq A map every element of L,
onto i,, and let Ar, o map every element of R, onto
Ka-

Define the product AB of any two elements
A,B € S, as follows. Suppose A = (iq,q, ko) € Sa
and B = (jz,bs, A\g) € Sg. Let v = af (product in Y),
and let:

(kvvﬂv) = (iav“a)(jﬁv/\ﬁ)v

be the given product of (iq,kq) and (jz,Ag) in the
band E. Then, define:

AB = ((taﬂA)k’Y? (aawa,v)(bﬁwﬁﬁ)vNW(BTL?,V))-

This definition is consistent with the given products
in E and the various Sy (@ € Y). When a > f3, the
product AB simplifies to:

AB = ((tOhﬁA)]ﬂ? (a'a"/)aﬂ)bﬂ, )\ﬂ)7

BA = (jg,bg(aa¥a,6), \s(ATa,5))-
Assume, furthermore, that the following conditions
hold for all a, 3,7 € Y, such that a > § > ~ and,
forall Ae S,, B € Ss:

"/)a”@"‘/)ﬂ;y = 1/)04,77

tg,4(AB) = (ta,A)(ts,4B),

tg,y(BA) = (tp,B)(tayA),

(AB)73, = (ATa,y)(Btg,y),

(BA)T3, = (B7s,7)(ATa,5).-

Then S becomes an orthogroup and, conversely, every
orthogroup can be constructed in this way.ll
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Let S; and S, be semigroups having Y as their
common greatest semilattice homomorphic image. Let
¢1 : S1 — Y and ¢ : S; — Y be the canonical
homomorphisms. Let S = {(a,b) € S1 x Sz : ¢1(a) =
¢2(b)}. S is a subdirect product of S; and Sy which is
called the spined product of S; and S,.

A Clifford semigroup, means a regular semigroup
S, in which the idempotent elements are central, i.e.
es = se for every idempotent element e and every s
in S. It is well known that a semigroup is a Clifford
semigroup if and only if it is a (strong) semilattice of
groups (see, for example, [6]).

A band is called a right regular band if it satisfies
the identity ab = bab. Since every band is a semilattice
of rectangular bands, then it is easy to see that a band
is right regular if and only if it is a semilattice of right
Zero semigroups.

Theorem 2

A semigroup is regular and RGC,-commutative if, and
ounly if it is a spined product of a commutative Clifford
semigroup and a right regular band.

Proof

Let S be a regular RGC,-commutative semigroup.
Then, by Corollary 1, S is an orthogroup, which is a
semilattice Y of right abelian groups G, X R, (a € Y).
It is clear that Es = Usey (eq X Ry ), where e, denotes
the identity of G,. On R = U,ecy Ry, one can define
an operation * as follows: If r, € R, and rg € Rp
be arbitrary elements and (eq, 7« )(eg,78) = (€as,Tus),
for some 1,5 € Rqp, then, let:

To * g =Tas-

It is easy to see that (R,x) is a semigroup, which
is a semilattice, Y, of the right zero semigroups R,
(e € Y). Thus (R, *) is a right regular band. It is
noted that (eq, 7o) — 7o is an isomorphism of Eg onto
(R,*). By Preston’s Theorem, the product in S is
determined by right representations ()74,3 of Sq, by
transformations of Rz and homomorphism ()i g of
G, into Gg (o, B € Y, with a > ). It is clear that
{Ya,pta>p 1s a transitive system, which determines a
multiplication o on G = U,ecy G, defined by:

9o © 95 = (Ja¥a,ap)(98¥5,05);

and (Gj;o) is a (strong) semilattice Y of the commuta-
tive groups, G4, a € Y. Thus (G;0) is a commutative
Clifford semigroup. It is clear that Y is the common
greatest semilattice homomorphic image of (G, o) and
(R, %). Moreover, S = {(g,7) € GX R 61(g) = 62(r)},
where ¢; and ¢, denote the canonical homomorphisms
of G and R onto Y, respectively. The proof will be
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complete if it is shown that, for arbitrary a, 3 € ¥ and
(goura)v (g,@',T,@') € S, the product, (gou'ra)(gﬁvr,@') in S
equals (go © 93,70 *73).

If A= (gu,Ta) € So and B = (gg,rg) € Sz are
arbitrary elements and « > 3, then:

AB = ((ga¢a,ﬁ)gﬁ7 r5)7

and:

BA = (gﬁ(ga"/}aﬂ)v rﬁ(ATOéﬁ))'

Since:

AMBAM = (ga7 ra)n(gﬁv Tﬁ)(go” ra)n+1

= (g0, ra)(gs.m8) (g0t ra)
= ((92%a,8)98,78) (90" Ta)

=(92%a,8)95(90  Va,p), Ta (A 10 5)),

and:
AMEBAY = (9o, 70)" (95, 78) (Gas Ta)"
= (951" ra) (95, 75) (95 7a)
= (95 Va,8)98,76) (90 7a)

= (92" %a,5)95(90 % ,8), 75 (A" Ta ),

one has:

An+17’a’5 = AnTa’g.

As 74,5 is a homomorphism of S, into 7g,,,
(€asTa)Tap = (9o "GarTa)Tas
= ((9a"7ra)(98,7a))Ta s
= (90" 7a)7a,8(95:Ta)Ta,s
= (92" ,7a) 70,89, Ta) " Ta 8
=(92",7a)Ta,8A a5
= (92" ra)Ta,s A" 7o

=(9.",7a)Ta,6(9a; ra)nJrlTaﬁ

= (92", 7a)Tas (g0 ™!

s Ta)Ta,B
= ((ga"ra) (gt ra))Tas

= (gou Ta)Ta”@'-



Regular RGC,,-Commutative Semigroups

Thus (ga,7a)7a,s does not depend on g, and so 74
induces a homomorphism T(;”@ of R, into 7g, defined
by:

Top  Ta 7 (€arTa)Ta,s-

It is noted that if r, € R, and 75 € R (o and [ are
arbitrary in Y) and ry = rq *xrg in R, then;

(ey,y) = (€asTa)(es, 7))
= (ea,7a)(es,75)(€s,75)
= (ey:74)(€p,75)
= (ey(ests,5), 7y ((€5,76)75,4))

= (677T7(T/8T,(I?,’y))7
and so:
!
ry = T’Y(TﬁT,ﬁ’,'y)v

because $ > v and 13, maps eg to e,.
Thus, for arbitrary «,8 € Y,(ga,7a) €
Sa,(98,73) € Sp(y = af and r, = 14 *x1rg), one has:

(9o 7a)(9p:78) = ((9oVa,y)(95¥5.4), 74 ((95,76)75.4))
= ((9a¥ar)(95%5,7), 72 ((€5,75)75,7))
= ((9a¥a,y)(98%8.4): 7+ (1575 4))
= (ga © 98,7+)

= (ga 0093, Ta *T,@')'

Thus S is the spined product of the commutative
Clifford semigroup (G;o) and the right regular band
(R, *). Consequently, the first part of the theorem is
proved.

If (go,7o) and (gs,73) are arbitrary elements of
the spined product S of a commutative Clifford semi-
group, (G, o) and a right regular band (R, *) (o, 8 € Y,
the common greatest semilattice homomorphic image
of G and R) then, denoting the identity of G by eg,
one has:

(goﬁra)(gﬂ?rﬁ) = (ga 03gp,Ta * 7‘5)
=(gaogsoes, T3 *Tq *Tg)
=(ggogaoes, T3 * Ty *T3)

= (96,75)(9as7a)(€5,75),
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therefore, S is R-commutative. It is a matter of
checking to see that S is also GC,-commutative (for
every n) and regular. Thus the theorem is proved.l

REMARKS
Remark 1

Through this investigation, only the fact that ev-
ery GC,-commutative semigroup satisfies the identity
aba™t! = a™ba® was used. Thus a regular
semigroup is RGC,-commutative if and only if it is
R-commutative and satisfies the identity a”ba”t! =
a™tlba™.

Remark 2

Theorem 2 shows that a regular semigroup is RGC,,-
commutative for some n if and only if it is RGC,,-
commutative for every n.
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