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The innovative aspect of this work is to understand how the intricate interplay between bio-convection,
heat transfer, and other behaviours of nanoparticles in a porous zone is affected by Prandtl nanofluid
flow across an inclined stretched sheet. The stated equations are transformed into dimensionless form
using appropriate similarity transformations, and the resultant set of equations is then numerically solved
using MATLAB bvp4c. The acquired results are additionally verified against existing data. The
incorporation of special parameters, including the Forchheimer drag (F,), bio-convection Rayleigh
number (Rp), density ratio of motile microorganism (f2), stretching parameter (&), Prandtl fluid
parameter (§), and elastic parameter (f3), adds novelty and complexity to the analysis. The density ratio
of motile microorganism plays a crucial role in determining the impact of microorganisms on bio-
convection. Depending on whether this parameter is higher or lower than the surrounding fluid, the
behaviour of velocity can vary, leading to different fluid flow patterns and dynamics within the system.
The higher concentration causes the density of mobile microorganisms to increase, which has a stronger
effect on the dynamics of bio-convection. The motile microorganisms considerably contribute to
convective heat transmission, and the bacteria's density is extremely excessive compared to the fluid
around them.

number;
Forchheimer drag;
Density ratio;
Stretching parameter;
Elastic parameter.

1. Introduction

Bio-convection, the collective motion of microorganisms gaps and potential avenues for further investigation.

induced by gradients in their surrounding fluid medium, has
been a subject of significant exploration interest owing to its
vital role in several natural processes, such as nutrient
transport, ecological dynamics, and harmful algal blooms.
Moreover, bio-convection has attracted attention for its
potential applications in biotechnology, bioengineering, and
wastewater treatment. This literature intends to provide an
overview of the existing studies on the behaviour of
microorganisms in bio-convection over a Prandtl-nanofluid
flowing into an inclined, stretched flat surface in a non-
Darcy background. By examining the current state of
research in this field, this review aims to identify knowledge

The inclusion of nanofluids in bio-convection studies
introduces additional complexities due to the presence of
nanoparticles. Prandtl-nanofluids, characterised by enhanced
thermal properties, have gained prominence in recent years.
The Forchheimer drag term captures the additional drag
forces arising from non-Darcy flow. Several studies have
inspected the outcome of the Forchheimer drag on flow
patterns and bio-convection performance. For instance,
researchers have investigated the impact of different drag
coefficients on the motion and distribution of
microorganisms in the fluid. Several studies have
investigated the impact of the Forchheimer drag on
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microorganisms in bio-convection with different parameters
and conduits. For instance, Li et al. [1] examined the effects
of the Forchheimer drag coefficient on the stability and
patterns of bio-convection. They detected an upsurge in the
drag coefficient directed towards enhanced mixing and a
more uniform distribution of microorganisms. A numerical
investigation on mixed bioconvection in porous media saturated
with nanofluid, including oxytactic microorganisms, was carried
out by Bég et al. [2]. They looked at how different parameters
affected the flow and heat transmission properties,
highlighting the significance of microbial behaviour in
porous media filled with nanofluid. In a computer
examination of bioconvection in Prandtl nanofluid Darcy-
Forchheimer flow across different conduits, Wagqas et al. [3],
Ahmad et al. [4], and Wang et al. [5] presented their findings.
They investigated how inclination affected the
bioconvection process, which has repercussions for a
number of engineering applications. Yaseen et al.'s [6]
investigation of the Cattaneo-Christov heat flux model in the
MoS,-SiOy/kerosene oil Darcy-Forchheimer radiative flow.

The microorganisms may cause flow instabilities that
result in the formation of bioconvection cells, which are
patterns and structures. The microorganisms can move
around and disperse throughout the fluid thanks to the
stretched sheet's dynamic environment. The features of the
system's heat and mass transmission can be considerably
impacted by this interaction between the microorganisms
and the flow. A numerical analysis of the movement of
gyrotactic microorganisms in nanofluids via a porous
medium over a stretched surface was done by Shahid et al.
[7], Alharbi et al. [8], and Waqas et al. [9]. They investigated
the behaviour of the random motion of microorganisms via
bio-convection in nanofluids and develop some significant
findings and resolve then numerically.

Khan et al. [10] examined the combined effects of
bioconvection and velocity slip in the three-dimensional
flow of the Eyring-Powell nanofluid with Arrhenius
activation energy and binary chemical reactions, this work
leads to the incorporation of the study of chemical reaction
by microorganisms in bio-fluid which is quite significant
they mentioned. Muhammad et al.'s [11] investigation of the
bioconvection flow of magnetised Carreau nanofluid under
the influence of slip over a wedge with motile
microorganisms; they were stretched the study on the impact
of slip flow under the action Lorentz force in bio-fluid and
resolve the model by numerical scheme.

Majeed et al. [12] examined thermal radiation in a flow
of magneto-hydrodynamic (MHD) motile gyrotactic
microorganisms that included minute nanoparticles moving
at a slipping velocity towards a nonlinear surface, they
claimed their work is novel under the applications of slipping
velocity of the nanoparticles in bio-fluid and also it has
feasibility due to the movement of microorganisms. The
computational modelling of bioconvection and heat transfer
studies of Prandtl nanofluid in an inclined stretched sheet

was presented by Das and Ahmed [13] using a finite
difference approach. They assert that microorganisms can
move thermophoretically in response to temperature
gradients, but the density ratio can influence this motion. A
computational solution for chemically reactive and thermally
radiative MHD Prandtl nanofluid over a curved surface with
convective boundary conditions was presented by Rasheed
et al. [14]. Babu and Sandeep [15] looked into how nonlinear
thermal radiation affected the flow of a magnetic nanofluid across
a stretching sheet when it reached a non-aligned bio-convective
stagnation point. In a water-based nanofluid, Waqgas et al. [16]
examined how heat radiation and convective circumstances
affected bio-convection. The bio-convection flow of a Casson
nanofluid caused by a revolving and stretched disc was
studied by Siddiqui et al. [17], while Wang et al. [18]
explored a numerical modelling of a hybrid Casson
nanofluid flow taking into account the impact of a magnetic
dipole and gyrotactic microorganism. The findings
contribute to a better understanding of the complex
behaviour of nanofluids with magnetic and biological
influences. Wang et al. [19] concentrated on the MHD
Williamson nanofluid flow through a thin elastic sheet with
an erratic thickness. Additionally, Wang et al. [20] used the
modified Mittag-Leffler kernel of Prabhakar's kind to
analyse the time-dependent thermal transport flow of Casson
nanofluids. In 2003, Shampine [21] presented the crucial
numerical solution by utilizing the finite difference scheme
to resolve the Ordinary Differential Equations (ODEs) via
the bvp4c MATLAB algorithm.

Ahmed et al. [22-28] purposefully brought attention to
the examination of the characteristic's nanoparticles using
hybrid-nanofluid and CNTS under specific boundary
conditions for the relevant different surfaces with non-
axisymmetric flow, and they discovered appropriate
recommendations. The mathematical modelling of blood
flow was investigated by Priyadharsini et al. [29-31] via bio-
convection characteristics with suitable configurations. The
shapes of various surfaces, like heated wavy-walled lid-
driven enclosures, open-sided cubical enclosures, and heated
flexible-walled cavities in a rotating cylinder, are crucial to
investigating the motion of nanoparticles in different base
fluids under the action of magnetic drag force, CNTs, and
free convections that have been studied by Oztop et al. [32-
34]. The authors [35-41] presented various flow models
through the Darcy-Forchheimer model for ferromagnetic
nanoparticles and bioconvection Casson nanofluid with
gyrotactic microorganisms and activation energy aspects;
they also analysed the behaviour of generalised Eyring-
Powell liquid subject to Cattaneo-Christov double diffusion
aspects for magnetised Carreau and Maxwell viscoelastic
nanofluids in different boundary conditions. Finally, the
behaviour of power law fluids using a variety of numerical
schemes in relation to the bioconvection flow of nanofluids
of microorganisms inside a wavy wall of porous materials,
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an omega-shaped porous enclosure, or a lid-driven cavity
have also been presented by Hussain et al. [42-46]. The idea
of microorganisms has attracted a lot of attention from
contemporary researchers [47-57] due to its application in
commercial and industrial items, such as fertilisers, biofuel,
and medicine delivery. Multi-physical factors and different
geometries are taken into account in these investigations [47-
57], and the results show that gyrotactic bacteria and nano-
liquid consideration stabilise the adjourned nanoparticles.

This inquiry is distinctive and novel in several ways. The
originality of this study is to explore the behaviour of micro-
organisms in bio-convection over a Prandtl-nanofluid, which
is a relatively new and emerging research area. Combining
bio-convection with nanofluid flow introduces novel com-
plexities and interactions between microorganisms and na-
noparticles, affecting the overall fluid dynamics and heat
transfer processes. The study considers an inclined,
stretching flat surface in a non-Darcy background, which is
less explored in the context of bio-convection. The inclusion
of the Forchheimer drag term allows for the investigation of
deviations from Darcy flow, providing a more realistic
representation of fluid flow in practical scenarios. The study
incorporates special parameters, including the Forchheimer
drag, bio-convection Rayleigh number, density ratio,
stretching parameter, and elastic parameter, to analyse their
effects on the bio-convection phenomenon. The study
employs a comprehensive numerical analysis by solving the
coupled nonlinear partial differential equations using a finite
difference scheme. The study provides insights for
optimising bio-convection-based systems and can guide the
design and operation of such applications. The study expands
the understanding of bio-convection phenomena and
provides a foundation for further research in this exciting and
evolving field.

2. Mathematical formulation

The study of how microorganisms move through bioconvection
in Prandtl nanofluids provides the novel background for this
investigation and provides an insight into new techniques for
improving heat transfer and fluid mixing, with applications
ranging from advanced cooling systems to more effective
chemical processes. The interaction of microorganisms and
nanoparticles in nanofluids is a fascinating confluence of biology,
nanotechnology, and fluid dynamics, giving intriguing potential
for scientific research and technological advancement.

Figure 1 depicts the flow configuration of the model,
which simulates the flow of microorganism bio-convection
in a Prandtl nanofluid over an inclined stretched surface with
an inclination of y and a stretching velocity of u, = ax along

the x-axis. The surface normal to it is subject to a magnetic
drag force of strength B, . The thermal and molar species as
well as the motile microorganisms at the wall are designated
as Tf = To + a x, Cf = Co + a,x and Nf = NO + asx,
respectively.

The Prandtl fluid equation is [5]:

Figure 1. Flow configuration of the model.
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where, the material constants for the Prandtl fluid are 4 and C.

The vectorial equations for fluid flow are given by Wang
et al. [5] and Shahid et al. [7] as follows:

Continuity (mass conservation) equation:
V.g=0. ()
Momentum equation:
(¢-V)a=
2 2 2
el E 50
pp,(1-C)(T~T,)

_%u—Fu2 +g —(pp —pf)(C—Cw) cosa

—7(pm _pf)(N_Nw)

3)

Energy equation:

D, VC-VT
- K o
VT = VT+t| D —_—
1 pC, +T—TVT-VT pC, (4)

©

B’ (x)(sin2 ;/)uz.
Oxygen conservation equation:

(}~VC=DBV2C+%VZT, (5)

©

Conservation equation for microorganisms:

V-Jy=0, (6)
where,  is the velocity vector, f is the electric current density
in the fluid, B is the magnetic field, f vis the flux of gyrotactic
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micro-organisms.

The flux of microorganisms, J v, is defined as:

Jy=N3-D,V’N, (7)
where,
- dw, 0 oC
st o)
C,-C, oy oy
JxB=cB’ (x)(sin2 }/)~u. ©9)

Egs. (2)-(6) become with the aid of Egs. (7)-(9) in Cartesian
coordinates:
Ou Ov

- O’ 10
ox Oy (19
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Y 2C Yy 4

2
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ox oy Ve )
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_7/('0»« _'Df)(N_Noc)
ocC oT
 ——
or = oT  x O°T o oy
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Ox ov pC, oy D, (oT
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T, \ oy
Y .2 2
. B (x)(sin” y |u~,
¢, B @(sin’y)
x oy ot Tyt
ON oON dw, o0, 0C O°N
U—+v—= “——| N— |+ Dy —. (14)
ox oy C,-C, oy oy oy
The formulated boundary conditions are [5,13]:
y=0:
_uzsuw:ax,v:vo,T:T/.:To—i-a,x,
|C=C,=C +a,x,N=N, =N, +ayx,
y—>00: (15)

(u—>0,T>T, =T,+d,x,
C—C, =C,+d,x,
| N> N, =N, +d;x,

Physical explanations of the boundary conditions (15):

The boundary conditions (15) describe the behaviour of a
bio-convective nanofluid near a boundary ( y= 0) and how

it behaves as it moves towards the far field ( y— 0) . The

specific values of the constants occurred in Eq. (15) will
determine the exact behaviour of the fluid, but this set of
conditions is often used in mathematical modelling and
simulations for bio-convective nanofluid dynamics, heat,
and mass transfer models.

At y=0:

Velocity (u =¢cu, = ax) : The velocity component u, in the
x-direction, is defined as a function of x and has two
components:

e The term su, represents the velocity at y =0,

scaled by a factor ¢ and it suggests that the velocity
near the wall is influenced by the wall's motion or
properties;

e The term ax represents an additional velocity
component that varies linearly with x. This means
that the velocity increases linearly away from the
wall in the positive x-direction.

Velocity (v =v0): It indicates that there is no change in

velocity in the x-direction, and it remains equal to v, at all

points along the y =0 boundary.

Temperature (T =T,=T,+ alx) : The temperature T is
constant at y = 0 and the temperature increases linearly with
x away from the wall.

Concentration (C =C,=(, +a1x): The concentration C

is constant at y =0 and the concentration also increases
linearly with x away from the wall.

Number Density (N =N,=N, +a3x) : The number
density N is constant at y =0 and the number density

increases linearly with x.

At the free stream (y - oo) :

Velocity (u - 0) : The velocity becomes negligible, and the

fluid comes to rest in the x-direction.

Temperature (T —T,=T,+dx): The temperature T
increases without bound as y — o and it continues to rise
linearly with x in the free stream.

Similar to temperature, the concentration C and the number
density N also increases without bound as y — owand they
continue to increase linearly with x in the free stream.

To alter the above system of equations, subsequent
similarity transformations are defined as [5,13]:

1

w =avxf(n), n=(%j2 ” u=aa—l//=axf’(77)

y
_ oy _T-T,
v=-——= \/EXf(U),H(n)—Tf_TO (16)
c-C, _N-N,
¢(n)= c ¢ x(n)——Nf N,

here, y is the stream function.
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Using Eq. (16), the converted system of equations are:

{f”’5(1+ﬂf"2)+ﬁ‘"—Msinz(ﬂ/)f’—Kpf’} I

+(F,+1) /™ +w(0—-N,§— R, x)cos(cx) an

Pie"—f'6'+f¢9’+N,,6>¢’+N,9’2 +MEcf”?=0, (18)
r

¢”—Sc(f'¢+f¢')+%e" ~0, 19)

b
2" =Lyf" + Ly f—P(¢%' + x¢"+Qp")=0. (20)

The converted boundary conditions are:

n=0:
{f(n)=5, f'm=¢, 0(m)=1-8,, ¢(77)=1_S2,}
2()=1=85,
n—0:
LS =0, () >0, ¢(n)—>0

From the perspective of Egs. (17) to (20), non-dimensional
variables are:

(2]

3.2 2
5=2.p= =T e v
C 2C7v pa ? Ka
C,x gﬂlp[
F=Fr=—fw==rH(T, - T )(1-C.).

_(e=p)l6=G) |, _pCw
' ﬂlp/(T/—TE))(l—Cx), K

s

(22)

R - (pm*pf)(Nf*No) _7DB(C/7C0)
y = sV = >
B, (T, -T,)(1-C.) v
N,:M, Vop g
VI, D, D, N,-N,
g by dg
a4 a, a,

3. Physical quantities of interests

The features of a few physical quantities are defined in this
section. The following list includes the density number of
motile microorganisms, Nusselt number, Sherwood number,
and coefficient of skin friction:

Nno=— gy =
D, -N) T D (c-C)
23
Nu =Y c T, (23)

x >~ fi =
fLAL) T v

ON oC
qn = _DN (_] s qm = _DB K_J ’
ay y=0 ay y=0

or Adou A (ou) (24)
qw:_K A ’Tw:_ T_+T3 ~ >
oy =0 Cox ¢C \ oy o

Here ¢,,9m, 9, and t, are the density of motile
microorganisms’ flux, mass flux, heat flux and shear stress
respectively.

By using of Egs. (16) and (24), Eq. (23) is converted to:

Re;%Nnx =—(20)), (25)
Rex_%th =—(4'(0)), (26)
Re;%NuX =—(0'0)), (27)
Re2C, - —(? o0+ a‘f"(O)j, 28)

1
Re? =, /M is the local Reynolds number.
v

4. Solution methodology

Using similarity variables, the simulated non-linear PDEs were
transformed into a two-point boundary value problem. There is
no closed-form analytical solution for the non-linear boundary
value problem given by Egs. (17) to (20) and boundary
conditions given by Eq. (21), and so numerically solved the
systems of ODEs using bvp4c via MATLAB algorithm by
Shampine et al. [21]. The behaviour of the solutions is precisely
captured by this solver, which applies the finite difference
approach that was widely analysed by Das and Ahmed [13] in
conjunction with adaptive mesh refinement techniques. To
utilize bvpdc, we need to specify the system of ODEs, the
boundary conditions, and an initial guess for the solution. It then
iteratively refines the solution by adjusting the mesh until the
desired accuracy is achieved. For purposes of computation, a
step length of An = 0.0001 is used, and a relative tolerance of
107 is taken into account.

Eqgs. (17)-(20) have to be transformed into the order-one
ODE’s with help of the substitutions:

fzyl’flzyz’fan’}’

0=y, 0'=y.,
Vs , Vs 29)
¢ =Ye>» ¢ =V
X=Ve X' =D,
Now, the transformed system of equations is:
| ~»y; +Msin®(y)y,
"= ——— || +K —(F. +1)? 30
Vs (5(1"‘,3}/32)} r)2 ( , )yz (30)
_W()’4 =N,y _Rbys)cos(a)
s = Pr(y,=yys=N,yy, = Nyi) =M Ecy3, E€))
y7' = Sc(yzy(s +y1y7)
N (32)
——LPr(yy =3y = N, yuy, — Ny3),
Nb
J’9, =Ly, ys—Lyy,
V7)o
Sc(yZy() +y1y7)
_ 33
o UV Nt (33)
——=Pr| =N, y,»,
b
_Nry52
(2 +9Q)
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Table 1. Velocity distribution for S.

S Present Wang Das and
study et al. [5] Ahmed [13]

2 3.3143 3.3142 3.3141

3 4.2028 4.2027 4.2026

4 5.3461 5.3460 5.3459

The Boundary conditions are:

nO0) =S, »,0)=¢, y,(0)=1-5,,
Ys(0)=1-S5,, (0)=1-5;, (34)
12(0) =0, y,(0) >0, y3(0) >0,

5. Validity and stability analysis

To demonstrate the validity of the present inquiry, a
comparison of the velocity distribution has been conducted
and found excellent agreement with the available results
attained by Wang et al. [5] and Das and Ahmed [13]. Here,
the numerical values for Table 1 are taken to be § = 0.5,

Pr=071, M=05, y= %’ e =—1.5, and the other

parameters are assumed as zero.

According to Table 2, it can inferred that taking A =
0.001 and 4 =0.0001, the solutions of velocity,
temperature, concentration, and bio-convection’s density are
stable and convergent, as the boundary conditions are also
satisfied. That is from Tables 1 and 2, it is concluded that our
proposed model is validated and the chosen numerical
scheme is stable and convergent.

6. Results and discussion

It has been discussed in this section how several significant
parameters effect onf '(n), 8(n), ¢(n) and y(n), taking the
numerical values of the prime parameters as § = 0.5, Pr =
071, M =05, y = g e=02a= g R, =05, 2 =0.5,
F. =15.

In this study, the flow is more likely to remain laminar
when taking into account lower nanoparticle concentrations,
where the nanoparticles have a limited impact on fluid
viscosity and flow behaviour. Several factors, including the
concentration of nanoparticles, flow velocity, and the
existence of the microorganisms driving the bioconvection,
determine whether the flow of bioconvection in a nanofluid
maintains laminar or transitions to turbulent behaviour. Low
nanoparticle concentrations and diluted nanofluids are more
likely to have laminar flow than high concentrations or
severe bioconvection effects.

6.1. The novel physical variables of this study are
summarized as Pr-nanofluid ()

The Prandtl number nanofluid, also known as Pr-nanofluid
or the Prandtl number nanofluid, is a particular kind of
nanofluid with exceptional thermal and heat transmission.
characteristics. Its importance comes from its superiority
over conventional fluids in terms of improving heat transfer
in a variety of applications.

6.2. Forchheimer drag (F,)

It is known as Forchheimer inertial resistance, is the
additional resistance that fluid flow experiences when it
passes through a porous media, as a result of the presence of
solid particles or barriers inside the medium. It is a non-
Darcy flow effect and is often defined by a quadratic
relationship between the velocity of the fluid and the
pressure drop across the porous media. It comprises both
viscous resistance (Darcy's law) and inertial resistance
(Forchheimer's law).

6.3. Bio-convection Rayleigh number (Ry,)

In the study of biological convection, where fluid velocity is
influenced by the presence of microorganisms, it is a
dimensionless parameter that is used. It is referred to as the
Grashof-Péclet product and is used to assess the relative
importance of buoyancy forces brought on by density
differences as well as the impacts of biological activity on
fluid motion within a system.

6.4. Density ratio of motile microorganism (12)

It characterizes the relative density of the microorganisms in
relation to the density of the fluid in which they are
suspended. By calculating the buoyant forces that these
microorganisms exert on the fluid, this parameter is essential
for comprehending how they affect fluid flow and buoyancy-
driven phenomena, such bio-convection.

Figures 2(a)-(d) depict the impact of 22 and R, on f'(1),

6(m), $(n) and y(n). When considering the bio-convection
Rayleigh number (R,) and the density ratio of motile
microorganism parameter (£2), the behaviour of velocity,
temperature, concentration, and microorganism’s density
can differ depending on the specific parameter values. When
) =5, and the bio-convection Rayleigh number is high, it
suggests that motile microorganisms’ density is relatively
higher compared to the surrounding fluid. In this case, the
motile microorganisms contribute significantly to the
convective motion and fluid flow. As a result, the velocity is
heightened, indicating a more vigorous and pronounced fluid
motion due to the active movement and behaviour of the
microorganisms. On the contrary, motile microorganisms
have less influence on convective heat transfer. The
enhanced temperature indicates that the convective heat
transfer due to fluid motion dominates over the heat
generated by the microorganisms. This can lead to an
increase in temperature in the system. Furthermore, the
profiles of y(n) is elevated, which means that there is a
higher concentration of microorganisms present in the
system. The density of motile microorganisms rises due to
the greater concentration, resulting in a more significant
impact on the bio-convection dynamics. On the other hand,
when 2 = 0.5 and the bio-convection Rayleigh number is
high, it implies that the density of the motile microorganisms
is relatively lower compared to the surrounding fluid. In this
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Table 2. Grid point stability and convergence analysis.

h=0.001 h=0.0001
n_ fa ém oém xm) n  f@m 6 ¢ x(m)
0 0.5000 0.8000 0.7000  0.8000 0 0.4000 0.2000 0.7000  0.8000
0.4990 0.0714 0.5409 0.4621 0.4004 0.4999 0.0291 0.1291 0.4929 0.4530
0.8990 0.0181 0.3651 03099 02192 0.8999 -0.0068 0.0847 0.3457 0.2720
1.4990 0.0029 0.1462 0.1265 0.0680 1.4999 -0.0044 0.0328 0.1482 0.0947
1.7990 0.0007 0.0550 0.0487 0.0232 1.7999 -0.0013 0.0121 0.0578 0.0336
1.9000 0.0003 0.0268 0.0239 0.0110 1.9000 -0.0006 0.0059 0.0286 0.0162
1.9790 0.0001 0.0055 0.0050 0.0022 1.9799 -0.0001 0.0012 0.0057 0.0032
1.9830 0.0000 0.0045 0.0040 0.0018 1.9839 -0.0001 0.0009 0.0046 0.0025
1.9850 0.0000 0.0039 0.0035 0.0016 1.9859 -0.0001 0.0008 0.0040 0.0022
1.9870  0.0000 0.0034 0.0031 0.0014 1.9879 -0.0001 0.0007 0.0034 0.0019
1.9880 0.0000 0.0032 0.0028 0.0013 1.9889 -0.0001 0.0006 0.0032 0.0017
2.0000 0 0 0 0 2.0000 0 0 0 0
14-
----- Q=05
1.2
— Q=150
1
— 08} §
= S
S 0.6}
0.4+ '
Rb=0.2,0.4,0.6
0.2} T
Of “\ Z P T
0.2 ‘/"V:.-:j”f ,
0 2 4 6 8 10
n
(a)

10

=
Nt
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(d)

Figures 2. Distribution of '(17), 8(17), #(17) and y(n7) for Q and R, .

scenario, the motile microorganisms have less influence on
the convective motion and fluid flow. Consequently, the
velocity may exhibit an opposite behaviour, potentially
showing a decrease or a different pattern of fluid motion
compared to the case with a higher density ratio. In addition,
microorganisms’ density is relatively extreme compared to
the surrounding fluid, and the motile microorganisms
contribute significantly to convective heat transfer. The

opposite behaviour of temperature recommends that the heat
generated by the microorganisms dominate over the
convective heat transfer due to fluid motion. This can lead to
a drop in temperature or a different pattern of temperature
distribution compared to the case with a lower density ratio.
Furthermore, the concentration of microorganisms in this
system is reduced, resulting in a lower density of motile
microorganisms. These observations endorse that {2 influences
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Figures 3. Distribution of f'(17), 6(77),¢(17) and y(n7)for § and F,.

the concentration and density of motile microorganisms within
the bio-convection system. Depending on whether the density
of the microorganisms is higher or lower than the surrounding
fluid, the impact of the density and concentration can vary.
These variations in the density and concentration of motile
microorganisms can have implications for the bio-convection
dynamics, nutrient transport, and overall behaviour of the
system. Bio-convection Rayleigh number (R, < 1) suggests
that buoyancy-driven convection is not a dominant factor in the
system of microorganisms of nanofluid that depends on the
higher and lower and higher motile microorganism parameter
(). The fluid velocity f'(17) enhanced by the action of R, < 1
when ) =5, which indicates that the microorganisms'
buoyancy forces are becoming more pronounced, strengthening
bio-convection and raising the system's fluid velocity. This
behaviour of f'(n) is reversed when Q = 0.5 and it means that
a decrease in fluid velocity can result from the suppression of
buoyancy-driven convection caused by the density contrast
between the microorganisms and the surrounding fluid. A
reversed trend has been observed for the profiles of (), ¢ (1)
and y (1) in comparison to f () for the effects of R, <1when

Q=0.5and 2 = 5.

The behaviour of velocity, temperature, concentration,
and density of microorganism with respect to the Prandtl
fluid parameter (&) and the Forchheimer drag parameter (£,.)
are displayed in Figure 3(a)-(d) respectively. In Figure 3 (a),
when the Forchheimer drag parameter (F,) is taken as 0.1,
the velocity is boosted. This means that the fluid exhibits a
higher velocity under these conditions. On the other hand,
when F. = 1.5, the velocity declines. The interaction
between momentum and thermal diffusion is the cause of
these observations. It is implied by a smaller Forchheimer
drag parameter (0.1) that the fluid has greater momentum
diffusivity than heat diffusivity. Due to the dominance of
momentum transport, augmented velocity is noticed. In
contrast, a higher Forchheimer drag parameter (F. = 1.5)
results in greater thermal diffusivity, which causes a
reduction in velocity. Furthermore, the Forchheimer drag
parameter (F,.) reduces the velocity. This shows that the
Forchheimer drag causes an increase in flow resistance,
which causes a drop in velocity. The existence of
impediments or porous structures that obstruct the flow and
raise drag forcesis often related to the Forchheimer drag.
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1 1 1

1
Table 3. Influence of some noteworthy parameters on Re; Csy, Re, *Nu,, Re, *Shyand Re *Nn,.

1 1 1 1
6 F. R, @  pRe?c,  Re?Nu,  Re?Sh,  Re>Nn,
02 05 02 05
0.2 23270 0.5377 0.8132 1.9897
0.4 1.9700 0.5437 0.8238 2.0166
0.6 1.5547 0.5479 0.8325 2.0383
0.5 13202 0.0937 0.7793 19897
1.0 1.4050 0.0842 0.7792 1.9896
1.5 1.5703 0.0709 0.7791 1.9894
0.2 1.0393 0.0734 0.2265 0.4596
0.4 1.0230 0.0804 0.2362 0.4804
0.6 1.0205 0.0924 0.2382 0.5059
0.5 1.0230 0.1052 0.2253 1.7297
0.7 1.0159 0.1055 0.2302 1.9093
0.9 1.0061 0.1059 0.2369 2.0890

These drag forces act against the motion of the fluid, leading
to a drop in velocity.

The temperature, concentration, and microorganism’s
density are enhanced when the Forchheimer drag parameter
is taken as 1.5, but decreased when it is taken as 0.1. When
F. = 1.5, the momentum diffusivity and thermal diffusivity
of the fluid behave alike, which asserts that an improvement
has occurred in the temperature, concentration, and
microorganisms’ density. This implies that heat and mass are
transmitted more effectively, leading to enhanced profiles of
temperature, concentration, and microorganism density. On
the contrary, when F. = 0.1, it infers that momentum
diffusivity surpasses heat diffusivity. As a result, the
efficiency of the movement of heat, mass, and
microorganisms’ density declines, which diminishes
temperature, concentration, and the microorganism’s
density. The presence of [ indicates increase in flow

resistance due to obstacles or porous structures. This
enhances flow resistance and causes the fluid to experience
more convective mixing, which leads to improved
transmission of heat and mass. Consequently, temperature,
concentration, and microorganism density are enhanced.
Additionally, the augmented concentration leads to
improved mass transfer, which raises the concentration of the
transported species. In addition, the amplified density of the
microorganisms suggests stronger convective mixing,
enabling the microorganisms to be more evenly dispersed
and densely packed throughout the fluid. When a fluid's
Prandtl fluid parameter () is less than one, it means that it
resists flow more effectively than it conducts heat (high
viscosity). This results in slower heat transfer and is a
property of some substances, such as excessively viscous oils
or polymers. Significantly, the Prandtl fluid parameter,
declines all the profiles 8(n), ¢(n) and y(n) in bio-
convection motion.

In Table 3, we have portrayed the effects of some of the

significant parameters on Effect of various governing
1 1

1 1
parameters on Re2Cry, Re, *Nu,, Re, ?Sh, and Re, *Nn,.

1 1

1
6.5. Impact of & on Re.Cs, Re,/’Nu,, Re,*Sh,and

1
Re *Nn,
A lower skin friction due to § indicates that the fluid is
undergoing less drag or resistance as it flows over the
stretching surface. A non-dimensional parameter known as

1
the Nusselt number (R e; zN u,) connects the convective rate
of change of heat to the conductive rate of change of heat at
a boundary surface. An increased Nusselt number designates
that the convective heat transmute is more efficient, leading
to enhanced heat dissipation or transfer from the surface to
the fluid. The enhancement of the Sherwood number
suggests an improvement in the mass transfer characteristics

1

of the system. The Sherwood number (Re; Eth) is a non-
dimensional parameter that narrates the convective rate of
mass transfer to the diffusive rate of mass transfer at a
boundary surface. An increased Sherwood number indicates
that the mass transfer from the surface to the fluid is more
efficient, i.e., there is an amplified rate of mass transfer,
which could be important in applications where the transport
of chemical species or nutrients is crucial, such as in biofilm
growth or biological reactors. The rise in rate of change of
microorganism’s density intends that the concentration of
motile microorganisms in the fluid is higher. This higher
density could be influenced by the Prandtl fluid parameter,
which may provide more favourable conditions for the
growth and movement of microorganisms.

1 1 1
6.6. Impact of F, on Re:Cy,, Re ,*Nu,, Re,’Sh, and
1
Re *Nn,
The increase in skin friction acclaims the resistance to the
flow of the fluid over the inclined, stretching flat surface is
heightened due to the Forchheimer drag parameter. The
reduction in the Nusselt number signifies a reduction in
convective heat transfer efficiency. A lower Nusselt number

indicates less efficient convective heat transfer, which may
be accredited to the increased skin friction and altered flow
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patterns caused by the Forchheimer drag parameter. The
decrease in the Sherwood number indicates a decline in mass
transfer efficiency. A lower Sherwood number suggests
reduced mass transfer from the surface to the fluid. The
increased skin friction and altered flow patterns caused by
the Forchheimer drag parameter could potentially hinder the
transport of species or nutrients, leading to a decrease in
mass transfer efficiency. The decrease in the rate of change
of the microorganism’s density suggests a lower
concentration of motile microorganisms in the fluid. This
reduction could be influenced by the altered flow patterns
and reduced mass transfer efficiency associated with the
Forchheimer drag parameter.

1 1 1
6.7. Impact of R, on ReCs,, Re,*Nu,, Re *Sh,and
1
Re *Nn,

1 1 1
The reduced Re2Cy, and enhancedRe, *Nu,, Re, ?Sh, and
1

Re;ENnx due to the Bio-convection Rayleigh number
suggest favourable outcomes in terms of reduced flow
resistance, improved convective heat transfer, and enhanced
mass transfer efficiency. These findings highlight the
significant role of bio-convection and motile microorganisms in
influencing the system behaviour and optimizing heat and mass
transfer processes. Understanding these effects is crucial in
various applications, such as in biological systems,
environmental engineering, where convective transport and
microorganism dynamics play essential roles.
1 1 1
6.8. Impact of 2 on ReiC fFxo Re;ENux, Re;Eth and
1
Re;ENnx

The presence of motile microorganisms and their influence
on fluid flow can alter the flow behaviour and reduce the skin
friction experienced by the fluid. This declination indicates
a more efficient flow with reduced drag or resistance. The
increase in the Nusselt number due to the density ratio of
motile microorganisms signifies improved convective heat
transfer efficiency, i.e., enhanced convective heat transfer.
The presence of motile microorganisms can enhance
convection, leading to improved heat transmutation or
dissipation from the surface to the fluid. An augmented
Sherwood number designates improved transmission of
mass from the surface to the fluid, which can be influenced
by the presence of motile microorganisms and their role in
promoting fluid mixing and enhancing mass transport. The
increase in rate of change of density directs a higher
concentration of motile microorganisms in the fluid, which
can lead to more intense bio-convection, alter flow patterns,
and promote convective heat and mass transfer.

7. Conclusions

The physical situation being modelled involves understanding
how microorganisms interact with nanoparticles under the

implications of Prandtl fluid parameter, Forchheimer drag force,
density ratio of motile microorganism, and bio-convection
Rayleigh number in the nanofluid and how these interactions
influence the flow patterns. In these contexts, the major findings
of this investigation on bio-convection heat diffusion along a
stretching flat surface are summarised as:

e In this study, the behaviour of moving
microorganisms that are added in a nanofluid via bio
convection has been analysed. Bio-convection is a
natural process that occurs as microorganisms move
randomly in single-celled or colony-like formation.
The directional motion of various forms of
microorganisms is the basis for various bio-
convection systems;

e This investigation emphasises the significant role
played by mobile microorganisms in shaping the
behaviour of the system and enhancing mass and
heat transfer operations;

e  The incorporation of the Prandtl fluid parameter and
elastic parameter in this numerical investigation of
bio-convection and heat transfer analysis
significantly affects the system behaviour. These
parameters have notable impacts on momentum,
transmission of heat and mass, and microorganism’s
density;

e The presence of Forchheimer drag increases flow
resistance and hinders convective heat transfer, mass
transfer efficiency, and the concentration of motile

microorganisms;
1

e The elastic parameter has led to enhance Re; 2N Uy,

1 1 1
Re, ?Sh,and Re, ?Nn,, and reduced ReZCs,. The
elasticity in the system improves convective heat
transfer, mass transfer efficiency, and promotes a
higher concentration of motile microorganisms;

e A higher Nusselt number indicates a more effective
convective heat transfer process, which improves
heat transmission from the surface to the fluid. The
improvement in the Sherwood number shows that
the system's mass transport properties have
improved;

e The Prandtl fluid parameter may have an impact on
this greater density, which might result in more
hospitable conditions for the growth and movement
of microorganisms;

e Since the mobility of nanoparticles has no effect on
the movement of microorganisms, the interface
between bio convection and nanofluids arises for
microfluid appliances;

e Some of the limitations of magnetic nanoparticles in
drug delivery is that they cannot be concentrated into
a three-dimensional space, since the application of
an external magnetic field organizes the magnetic
nanoparticles into a two-dimensional area;

e Tiny microorganisms that float in a fluid's upper
layer cause irregular development and instability
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through a process known as bioconvection. Because
they swim so quickly, gyrotactic microorganisms
like algae are likely to collect in the fluid's upper
layer, creating an unstable peak that leads to heavy
density stabilisation;

e Convective transport and microorganism’s dynamics
play crucial roles in many applications, including
biological systems, environmental engineering, and
bioreactors, therefore understanding these impacts is
important in future projects.

It is expected that a combination of scientific, technological, and
interdisciplinary efforts will be necessary to overcome the re-
strictions in the research of magnetohydrodynamic bioconvection
in nanofluids. These restrictions might be overcome in the near
future by appropriate computer simulations, nanoparticle
engineering, real-world applications, and interdisciplinary
research.

Nomenclature
M Magnetic parameter
Pr Prandtl number
w Mixed convection
F, Forchheimer drag
K, Permeability
N, Buoyancy parameter
Sc Schimdt number
R, Bio-convection Rayleigh number
9 Mean swimming velocity vector of the

gyrotactic micro-organisms

W Maximum cell swimming speed

aw, Constant

N, Brownian parameter

N, Thermophoresis parameter

L, Lewis number

P Peclet number

Ec Eckert number

S Suction/ Injection

S.,S,,S, Thermal stratification parameters

u,v Velocity component along x and y
directions respectively (m/s)

X,y Chosen co-ordinate system

A4,C Material constants for the Prandtl fluid

T,C,N Dimensional temperature (K),
concentration (mol/ m*), microorganisms'
density (kg/m?)

T.,N_,C, Dimensional temperature (K),
concentration (mol/ m3), microorganisms'
density (kg/m?) at free stream.

1.0, % Non-dimensional velocity, Temperature,
Concentration, Microorganisms density.

D, Mass diffusivity, (m?s™)

D, Co-efficient of mass flux, through
temperature gradient, (Kgm2s™)

d Chemotaxis constant

D Diffusivity of micro-organisms

C,—-C,=AC Characteristic ~ nanoparticle  volume
' fraction
Prandtl fluid parameter

Elastic parameter

Angle of inclination of magnetic field
Angle of inclination of the sheet
Density ratio of motile microorganism
Stretching parameter

Similarity variable

IO R, ™
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