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Medical devices are critical in the healthcare system and their failures can significantly impress the 
safety of patients, medical staff, and clinical engineers. With increasing COVID-19 pandemic in 
recent months, it is more necessary to assess the risks of the devices to avoid infection for patients, 
death, and severe hurts due to inactive and breakdown devices. The aim of this study is to assess 
medical device risks in general and pandemic situations with three main factors of the failure model 
analysis effect include occurrence, detection, and severity. Some sub-factors are defined and 
weighted using the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) and fuzzy 
Best-Worst Method (BWM). Consequently, the Weighted Failure Mode and Effects Analysis 
(WFMEA) score of each failure is calculated as the Weighted Risk Priority Number (WRPN). 
Finally, steady-state probabilities of very low and low failures are calculated to consider the changes 
during the time. Results show that near half of the failures are scored in very low and low levels but 
in the long term, most of them transfer to medium level risk. It can be concluded that some preventive 
maintenance plans for these kinds of failures to avoid occurring the higher risk level for them in the 
future is necessary and the results can help medical device managers. 

1. Introduction
Medical devices play a critical role in the healthcare system 
to diagnose and treat. The failures of medical devices can 
significantly affect the safety of patients, medical staff, and 
clinical engineers in the clinical use of medical devices. The 
prioritization of medical devices is a crucial issue for 
healthcare systems. The Joint Commission on Accreditation 
of Healthcare Organizations (JCAHO) published a standard 
for medical devices which make hospitals in the United 
stated to use different risk management approaches for their 
medical equipment management programs [1].  

As these medical devices affect patient life immediately 
and directly,   risk evaluation and  management for  them  is  

critical [2]. With the increasing COVID-19 pandemic in 
recent months, it is more necessary to assess the risks of the 
devices used for patients to avoid infection. Also, infectious  
diseases have severe results in public physical and mental 
health [3]. In this regard, different failures of these devices 
include general failures, and also those related to this 
pandemic should be considered and prioritized. Actually. 
Some failures will change over time. For example, some 
failures may be at a low level of risk now but they can be at 
higher levels within some period later. It is necessary to pay 
attention to these kinds of risks and predict them, in order to 
be ready for facing and controlling them [4,5]. Markov chain 
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can help us to forecast later levels of failures during the time 
[6].  

The Failure Mode and Effects Analysis (FMEA) is a tool 
for assessing the risks, failures, faults, or errors of different 
devices or services [7]. This tool is used for the risk 
assessment of identified failure modes. In the classical 
FMEA, there are three main factors for scoring Detection, 
Severity, and Occurrence and results in the Risk Priority 
Number (RPN) that can score each device or service by that 
[8]. Some researchers use other criteria as sub-factors for 
FMEA to cope with its shortage and use the Multi-Criteria 
Decision Making (MCDM) for the factors or sub-factors 
weighting.  

This paper presents a Markov chain-based weighted 
failure mode analysis approach to the medical device 
prioritization risks. In this study, all functional devices used 
for COVID-19 devices are described with their general and 
pandemic failures. Then they will assess based on three main 
factors of FMEA such as occurrence, detection, and severity. 
But due to coming up with FMEA shortcomings, some sub-
factors will define each of the three main factors. Sometimes, 
the only three risk factors are difficult to be evaluated 
accurately, but some relative sub-factors can make the 
scoring easier. These sub-factors may have different impact 
levels on the main factor so they need to be weighted. Also, 
the weighting of sub-factors is calculated using the fuzzy 
Best-Worth Method (BWM) based on their internal 
relationship using fuzzy Decision-Making Trial and 
Evaluation Laboratory (DEMATEL). Consequently, the 
Weighted Failure Mode and Effects Analysis (WFMEA) 
score of each failure is concluded as Weighted Risk Priority 
Number (WRPN). Finally, steady-state probabilities of very 
low and low failures are calculated to update their WRPN 
during the time and some corrective actions will propose. 
The main advantages of this study over the previous papers 
are: (1) Risk assessment for medical devices related to 
COVID-19 which have critical risks over the pandemic 
period and they are critical for the patient treatment; (2) 
Using WFMEA with considering different sub-criteria based 
on general and pandemic situation; (3) Markov chain using 
for considering long term effect of RPN scores for very low 
and low-risk devices. Also, the main research questions of 
this study are as follows: 

• What are the main failures (in general and in a pandemic)
of medical devices related to COVID-19 patients?

• Which sub-factors are the most influential ones in the
three main criteria of FMEA?

• How the medical device failures could be prioritized using 
WFMEA?

• How the medical device failures could be updated base on
Markovian-based rescoring of WFMEA?

The rest of the paper is organized as follows: Section 2 
presents a review of the literature around the field of this 
study. Different methods used with their explanation are 
described in Section 3. In Section 4, the case study and the 
results are discussed. Discussion is provided in Section 5, 
while some managerial implications are suggested in Section 
6. Finally, the conclusion and future studies suggestions are
expressed in Section 7. 

2. Literature review
The prioritization of medical devices risk scores has become 
a necessary task for all healthcare organizations to provide 
maintenance programming. Furthermore, researchers 
focused on the risk assessment problem for medical devices 
in the recent decade. Therefore, this study is related to 
medical device risk assessment research streams. Some 
important and recent papers are discussed in this section. 

Taghipour et al. [9] proposed a new medical device 
classification model rather than previous studies based on the 
complexity of medical devices. Their model includes two 
phases: Technical complexity of the medical device and use 
of the complexity of medical devices. The technical 
complexity of medical devices includes four criteria about 
the technical perspective of medical devices such as 
equipment maintainability and deterioration, while the use 
complexity of medical devices consists of nine criteria based 
on How difficult is the use of medical devices at the 
operation use and operational level such as data entry, setup 
process, retrieve, receive and send data, Integration of patient 
data and self-test. Corciovă et al. [10] used an Analytical 
Hierarchy Process (AHP) for medical devices ranking 
through their criticality level. They considered six criteria for 
pairwise comparison of medical devices. These criteria 
include recalls, age, risk, mission criticality, equipment 
function, and maintenance requirements.  Tawfik et al. [11] 
determined and developed guidelines to have a program for 
medical devices quality assurance. They also suggested 
periodic inspection processes, maintenance guidelines and 
solutions, evaluation, and performance assessment for 
medical equipment. In their paper, they described a method 
that has five risk criteria in their scoring system concerning 
the patient, medical staff, and biomedical engineers in the 
healthcare system. Cheng et al. [12] developed a fuzzy logic 
model for medical equipment classification. They 
recognized four criteria such as: (1) The status of mission 
criticality; (2) Equipment function; (3) Maintenance needs; 
and (4) Physical risks, to obtain and calculate  the risk level 
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for each medical device. Their outcome shows that, in some 
medical devices in the healthcare system, the same medical 
device class may acquire different risk scores. furthermore, 
they compared their classification schemes rather than other 
schemes in previous studies. Onofrio et al. [13] tried to 
evaluate the flight operation risks. They considered several 
sub components for each risk and used fuzzy inference 
system for scoring them.  

Jamshidia et al. [14] also evaluated the risks related to the 
design process of new devices in a medical device 
development company. They defined some medical devices, 
potential failure modes, functional effects, clinical harms, 
and causes of failure modes and ranked them based on 
FMEA to assess every medical device.  Kirkire et al. [15] 
Developed a new fuzzy FMEA approach. They defined some 
new criteria rather than previous studies include age, 
utilization, and use-related hazards. Then, they proposed a 
framework for medical devices prioritization which 
considered risks. So, they could help to avoid the high-risk 
failures. Cicotti and Coronato [16] investigate risk 
management in the process of medical devices. Their 
research aimed to explore risks in a dental product 
manufacturing company for minimizing failure events. 
These risks were analyzed using traditional FMEA and fuzzy 
FMEA and categorized into different levels include critical, 
moderate, low, and negligible. Finally, a systematic approach 
for risk management was developed.  Ardeshir et al. [17] 
proposed a dynamic probabilistic risk assessment for 
medical devices. They combined the Event Sequence 
Diagram (ESD) and Markov decision process for 
considering risk scenario dynamics and stochastic manner. 
Finally, they implemented their approach in a case study. 
Ardeshir et al. [18] used FMEA for construction safety risk 
evaluation. They also used AHP and DEA for their analysis 
and prioritized the potential risks. Their results showed that 
falling from high locations was the most important risk in 
construction projects. Vazdani et al. [19] also used FMEA for 
environmental risk assessment. They first identified the risk 
in projects and then evaluated them by FMEA and classified 
them in three different categories including low-risk level, 
medium risk, and high-risk. Finally, they suggested some 
corrective actions to reduce the probabilities if the risks. Wei 
Lo and Liou [20] focused on risk assessment by using 
MCDM based FMEA. They weighted the FMEA factors by 
best-worst-method with gray variables. Then, the risks in an 
international electronics company as a case study. 

Brun and Savino [7] focused on risk assessment using 
integrated FMEA with pairwise comparison matrix and 
Markov chains in the construction industry. They aimed to 
assess potential risks to avoid or decrease work-related 

injuries and casualties. They listed different components of 
the system and calculated a WRPN for each component. 
Then, they used the Markov chain for low risk to consider 
the long term run due to tune the expert’s opinion. They also 
considered the interdependence correction factor for 
calculating the corrected RPN. Abdel-Basset et al. [21] 
proposed a group decision-making framework for selecting 
medical devices. They used neutrosophic echnique for 
TOPSIS for ranking seven medical devices related to 
diabetics’ patients based on seven criteria including: safety, 
cost, flexibility, quality, ease of use, maintenance 
requirements, and service life. Mangeli et al. [22] improved 
the FMEA analysis using the TOPSIS method and either 
Support Vector Machine (SVM). They first weighted the 
FMEA risk factors using TOPSIS (severity:0.479, 
occurrence: 0.335, and detection: 0.186) and then predicted 
the severity and occurrence of every failure mode by SVM 
with the accuracy of 87% and 95%. Kim et al. [22] provided 
a risk-based model for telemedicine systems security. They 
used the attack tree for identifying the telemedicine system's 
potential risks. Finally, they investigated these risks and 
threats to remote healthcare quality. Song et al. [23] 
developed a model aiming identification and also evaluation 
of human-related failures while medical devices are being 
used. They used the Swiss cheese model for identifying the 
potential failures and a new FMEA approach based on rough 
set and grey relational analysis for assessing the risks of the 
failure.  Parand et al. [24] also assessed medical device risks. 
They tried to obtain the risk value for each of the medical 
devices to know to which device they should allocate the 
budget for maintenance operations based on the ordered 
weighted averaging aggregation operator. This method is one 
of the fuzzy multi-criteria decision-making approaches. 
Ostadi and Abbasi Harofteh, [25] assessed the risks in a 
petrochemical plant construction using Monte Carlo 
simulation. First, they listed the risks and then identified the 
relation among these risks using system dynamic approach. 
Their results showed that the risks such as inflation, cost, 
temperature, rain, and labor are the most important risks.  

Subriadi and Najwa [26] used an improved FMEA and 
either traditional one for risk assessment of information 
technology and compared the results in the same case study. 
They listed the event risks for information technologies and 
calculated the RPN in two ways. Results showed that the 
consistency for traditional FMEA was 0.848 and for 
improved FMEA was 0.937 between different teams as an 
expert. Moheimani et al. [27] assessed the hospital agility 
based on a type-2 fuzzy flow sort inference system. Their 
results showed that 40% of 30 case studies hospitals are 
agile.   Qin et al.  [28]  evaluated  the  risk  using   integrated 
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Table 1. Literature review summarization. 

Paper Method Markov 
chain 

Pandemic 
situation 

Onofrio et al. (2015) [14] FMEA × × 

Jamshidi et al. (2015) [15] 
New FFMEA with more criteria 

definition × × 

Kirkire et al. (2015) [16] Traditional and FFMEA × × 

Cicotti and Coronato (2015) [17] Event Sequence Diagram (ESD)  × 

Vazdani et al. (2017) [19] FMEA × × 

Lo and Liou (2018) [20] Gray BWM based FMEA × × 

Brun and Savio (2018) [6] WFMEA × 
Mangeli et al. (2019) [21] FMEA and TOPSIS × × 
Kim et al. (2020) [22] Attack tree × × 

Bhattacharjee et al. (2020) [29] 
FMEA and Logistic regression 

model × × 

Parand et al. (2020) [24] 
Ordered weighted averaging 

aggregation operator × × 

Martinez-Licona and Perez-
Ramos  (2021) [30] FMEA × × 

This study 

WFMEA with more criteria 
definition using integrated 
FDEMATEL and FBWM 

methods 

  

FMEA and interval type-2 fuzzy evidential reasoning 
method. They weighted the FMEA risk factors by evidential 
reasoning and then calculated the RPN for each risk. 
Bhattacharjee et al. [29] compared the FMEA result and 
logistic regression model. They first calculated the RPN 
scores but believed that the equal weights of three factors of 
severity, occurrence, and detection are not appropriate for 
reality. So, they tried to predict the risk probability of every 
failure using interval number based logistic regression with 
77.47% accuracy rate, 81.98 receiver operating 
characteristic, and optimal cut-off of 0.56. Martinez-Licona 
and Perez-Ramos [30] evaluated the risk of medical devices 
related to a hospital ICU as a case study using FMEA. These 
devices included a defibrillator, vital sign monitor, and 
volumetric ventilator and most of the devices had medium 
and high-level of risk probability [30]. Chen and Wang [31] 
evaluated the risks in public-private partnership projects. 
They used intuitionistic fuzzy AHP for prioritizing the 
criteria and then, Interval-Valued Hesitant Fuzzy Sets 
(IVHFSs) for calculating the risk level score. Table 1 
summarizes the researches reviewed.  

As can be seen in Table 1, there are rare researches in the 
risk assessment field which is considered risk level alteration 
using Markov transition matrix while this issue is one of  the 

most important issues in preventive maintenance planning is 
essential for the decision-making process. On the other hand, 
defining the sub-factors for FMEA and weight them for 
calculating the WFMEA score can improve the traditional 
FMEA shortage which was rare in literature. Although 
several papers weighted the three factors of FMEA, a few of 
them had defined sub-factors and weight them either. this is 
the first research the developed the Markovian-based 
WFMEA framework to study the medical devices risk 
assessment in a pandemic situation. This study can make 
insight into hospitals that serve COVID-19 patients to focus 
better on their devices and preventive maintenance plans 
using Markov chain which has been rarely addressed in the 
literature. So, the main contributions of this research 
comparing to previous studies are as follow: 

(i) Assessing the risk level for medical devices related 
to COVID-19 patients in the pandemic; 

(ii) Defining pandemic-related and general subfactors 
for FMEA three risk factors and validate them toward 
Structural Equation Model (SEM); 

(iii) Developing the WFMEA approach for weighting 
the sub-factors using fuzzy Best–Worst Method (BWM); 

(iv) Using Markov transition matrix as the 
Reprioritization Correction Factor (RCF) for calculating 
long-term changes in risk levels; 
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To the best of our knowledge, this is the first study that 
investigates the medical devices risk (general and pandemic-
related) with identifying more risk factors for the main one 
(i.e., occurrence, severity, and detection) which are 
confirming by SEM. Then, WFMEA using FBWM is used. 
Finally, the prediction of each risk score is done using 
Markov chain. 

3. Methods

In this section, the methodology of the current research is 
presented. This research applies the combination of 
WFMEA, SEM, fuzzy DEMATEL, fuzzy BWM, and 
Markov chain to investigate the medical device's risks. 
Figure 1 shows the study steps. In the first step, we identify 
the different equipment used for COVID-19 patients. Then 
four failure types for each of them were listed by tan experts 
working them daily in the hospital. Remained steps are listed 
in Figure 1 and the approaches are explained in the following 
sections. 

3.1. SEM 

The SEM method is a generalized linear regression. Linear 
regression is one of the most complex statistical techniques 

for data that is usually at the level of distance measurement. 
Linear regression is presented in two forms: Simple 
regression and multivariate linear regression. In regression, 
the effect of independent variables on dependent variables is 
determined. SEM is an approach for hypotheses test about 
the interrelationships of the observed and latent variables. In 
this research, SEM with the help of the Partial Least Square 
(PLS) method and software is used to test the hypotheses and 
accuracy of the model. SEM techniques have become an 
integral part of the validation process and testing of links and 
relationships between structures. These relations can be 
investigated with variance or even covariance. The variance-
based relations are calculated through PLS while the 
covariance-based relations are attained by LISREL. In this 
study PLS regression is considered. This technique was 
developed by Weld for analyzing multidimensional data in 
less structured environments.  

PLS is a variance-based approach that requires fewer 
conditions than similar structural equation techniques such 
as LISREL. PLS has no sample size limit and the selected 
sample can be equal to or less than 30, in which case the 
results are also valid. When there are not many samples and 
measurement items or the distributions  of  the variables  are 

Figure 1. This study steps. 
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Table 2. Transformation table of linguistic variables of fuzzy 
DEMATEL [34]. 

Linguistic terms Linguistic 
values 

Triangular 
fuzzy 

numbers 
No influence (No) (1, 1, 1) 1�  

Very low influence (VL) (2, 3, 4) 3�  

Low influence (L) (4, 5, 6) 5�  

High influence (H) (6, 7,8) 7�  

Very high influence (VH) (8, 9,9) 9�  

not specified, PLS is more powerful. PLS modeling has two 
steps; In the first stage, the measurement model is examined 
by validity and reliability analysis and also confirmatory 
factor analysis, and in the second stage, the structural model 
is examined through the path between variables and 
identifying the model fit indices. 

Model analysis in SEM with PLS-SEM approach 
consists of two main steps: 

• Check the model fit;
• Test the relationships between structures [32].

3.2. Fuzzy DEMATEL 

Fuzzy DEMATEL examines the relationships between 
criteria and sub-criteria and identifies all the influential and 
influential criteria (or in other words, causal criteria) by the 
relationship matrix [33]. This method is one of the multi-
criteria decision-making methods. As the name implies, all 
calculations are performed in a fuzzy environment. 
However, assume 𝑎𝑎� = (𝑙𝑙,𝑚𝑚, 𝑢𝑢) is a triangular fuzzy number. 
The Graded Mean Integration Representation (GMIR), 
which is shown by 𝑅𝑅(𝑎𝑎�), is defined using Eq. (1) [34]: 

4( ) .
6

l m uR a + +
=  (1) 

The steps of fuzzy DEMATEL are as follows: 

Step 1: Form a group of experts to gather their group 
knowledge to solve the problem. However, determining the 
criteria to be evaluated as well as the design of linguistic 
scales is in this step. In this research, we use linguistic scales 
which are given in Table 2. 

Step 2: Create a fuzzy matrix with the initial direct relations 
by gathering expert opinions. To measure the relationships 
between criteria/sub-criteria, we need to put them in a matrix 
and ask experts to compare them in pairs based on how much 
they influence each other. In this survey, experts will express 
their views based on Table 2. Assuming we have n criteria 
and p expertise; we have P numbers of the fuzzy matrix 

(𝑛𝑛 × 𝑛𝑛), each corresponding to the opinions of an expert with 
triangular fuzzy numbers. Finally, the average of these 
matrices is applied to calculations. 

Step 3: Normalize fuzzy matrix of direct relations. To this, 
linear scale conversion is used as a normalization formula to 
convert scale to comparable scales using Eqs. (2) and (3): 

11 1 1 1 1
, ,  and max

n n n n n

ij ij ij ij ij ij
i nj j j j j

a z l m r r r
≤ ≤= = = = =

   
= = =   

   
∑ ∑ ∑ ∑ ∑  , (2) 

11 1

1

 and , ,
n

ij ij ij ij
ij

m mn

X X
Z l m r

X X
r r r r

X X

 
  

= = =   
  

 

 





 

  

 



. (3) 

Step 4: Calculate the fuzzy matrix of total relations. In this 
step, we first calculate the inverse of the normal matrix and 
then subtract it from the matrix I, and finally multiply the 
normal matrix by the resulting matrix as Eqs. (4)-(6): 

( ) 1''
1 11 ,ijl X X −  = × −  (4) 

( ) 1'' 1 ,ij m mm X X −  = × −   (5) 

( ) 1'' 1 .ij r rr X X −  = × −   (6) 

Step 5: Creation and analysis of causal diagram. To do this, 
we first calculate the sum of the elements of each row (𝐷𝐷𝑖𝑖) 
and the sum of the elements of each column (𝑅𝑅𝑖𝑖) of the fuzzy 
matrix above. 𝐷𝐷𝑖𝑖 indicates the level that each factor affects 
the other factors in the system. Also, 𝑅𝑅𝑖𝑖 indicates the 
effectiveness of each factor from the other factors. 
Consequently, 𝐷𝐷 + 𝑅𝑅 and 𝐷𝐷 − 𝑅𝑅 are calculated. More value 
of 𝐷𝐷 + 𝑅𝑅 results that this factor is more interactive with other 
system factors. On the other hand, if 𝐷𝐷 − 𝑅𝑅 is positive, the 
variable is causal, and if it is negative, it is not a cause. The 
causal diagram can be plot based on 𝐷𝐷 + 𝑅𝑅 and 𝐷𝐷 − 𝑅𝑅. 
Interested readers can gain more detail about the steps of 
fuzzy DEMATEL from the paper of [35].  

3.3. Fuzzy BWM 

Fuzzy BWM is one of the new multi-criteria decision-making 
methods. The basis of this method is to measure the criteria by 
comparing pairs. In the fuzzy BWM, the weight of the criteria 
is determined by determining the priority of the best criterion 
over other criteria and the preference of all criteria over the 
worst criterion. Advantages of this method compared to other 
multi-criteria decision-making methods are: 

• Requires fewer comparative data;
• This method leads to more stable comparisons and

provides more reliable answers;
• This approach can easily combine with other MADM

methods [36].

The steps of fuzzy BWM are as follows [37]: 
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Table 3. Transformation table of linguistic variables of fuzzy BWM [37]. 
Linguistic terms Membership function 

Equally Important (EI) (1, 1, 1) 
Weakly Important (WI) (0.667, 1, 1.5) 
Fairly Important (FI) (1.5, 2, 2.5) 
Very Important (VI) (2.5, 3, 3.5) 
Absolutely Important(AI) (3.5, 4, 4.5) 

Step 1: Determining the best and worst (most important and 
less important): This step can be determined using expert 
opinions or a fuzzy Delphi method; 

Step 2: Pair comparison of the best criterion with other 
criteria and other criteria with the worst criterion: In this step, 
pairwise comparison vectors with the following 
transformation in Table 3. 
Considering 𝐴̃𝐴𝑊𝑊 and 𝐴̃𝐴𝐵𝐵  are the comparison vectors of other-
to-worst and best-to-other as Eqs. (7) and (8). 

( )1 2, ,..., ,W w w nwA a a a=

   (7) 

( )1 2, ,..., .B B B BnA a a a=

    (8) 

Step 3: Creating a fuzzy BWM model: In this step, you can 
calculate the factors using the nonlinear under-weight 
planning model based on Eq. (9): 

        min  𝜉𝜉∗ 

( )

* * *

* * *

1

( , , ) ( , , ) ( , , )
( , , )

( , , )
( , , ) ( , , )

( , , )
s.t. :

1

0

w w w
B B B

Bj Bj Bjw w w
j j j

w w w
j j j

jW jW jWw w w
W W W

n

j
j

w w w
j j j

w
j

l m u l m u k k k j
l m u

l m u
l m u k k k j

l m u

R w j

l m u j

l j

=


− ≤ ∀



 − ≤ ∀

 = ∀

 ≤ ≤ ∀

 ≥ ∀

∑ 

(9) 

Step 4:  In this method, after solving the model in Eq. (9), a 
formula is used to calculate the Consistency Ratio (CR) to 
check the validity of the comparisons. First, based on the 
comparison vector of best-to-worst criteria, the Consistency 
Index (CI) is determined (according to Table 4). Then, the 
CR calculated applying Eq. (10) [37]. The smaller value for 
CR (close to zero) is better. 

*

.CR
CI
ξ

=  (10) 

3.4. WFMEA 

Risk assessment is a logical method for determining the 
quantitative and qualitative score of hazards and examining 
the potential consequences of potential accidents on people, 
materials, equipment, and the environment. The FMEA 
method is one of the most common methods of risk 
assessment in industries in which possible failures and risks 
during the project are identified and the amount of risk is 
calculated. FMEA was first used by the aerospace industry 
in the 1960s and rapidly was used in the automobile industry 
and other industries gradually. FMEA is a systematic tool 
used to identify, evaluate, prevent, eliminate or control 
failures and their potential effects on a system, design 
process, or service. Furthermore, the defects can be rooted 
out and prevented from occurring [38].  

The main factors in FMEA which should be scored are 
Severity (S), Occurrence (O), and Detection (D). Severity 
means the severity of the risk or the degree to which it is new 
is the potential risk effect on individuals. There are four 
scores for severity that are expressed on a scale of 1 (minor 
effects) to 4 (dangerous). Occurrence determines how often 
a potential cause or mechanism of danger occurs. The 
probability of occurrence is measured on a scale of 
1(unlikely) to 4 (very often). Finally, detection is the 
possibility of discovering the occurrence of a hazard that has 
scored from 1 (almost certain) to 4 (rarely) [39].  

3.5. Markov chain 

A Markov chain is a stochastic model depicting possible 
events sequence in which the probability of each event 
depends on the previous event only [40]. Based on this, in 
this study, we define a matrix P which shows  the  probability 
of being in a special risk level and transfer to other levels in 
one period later as Eq. (11): 

Table 4. Consistency Index n(CI) based on [31]. 
(EI)a (WI)b (FI)c (VI)d (AI)e

𝑎𝑎�𝐵𝐵𝐵𝐵 (1, 1, 1) (0.667, 1, 1.5) (1.5, 2, 2.5) (2.5, 3, 3.5) (3.5, 4, 4.5) 
CI 3.00 3.80 5.29 6.69 8.04 

a: Equally Important; b: Weakly Important; c: Fairly Important; d: Very Important; e: Absolutely 
Important. 
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Table 5. Different levels of occurrence risk factor. 
O1 O2 O3 O4 O5 

Level Numbe
r Visibility 

Mean time 
between failures 

in normal 
situation 

Mean time 
between 

failures in 
pandemic 

Repeatability in 
normal situation 

Repeatability 
in pandemic 

Not visible at all <1 months <3 days Same failures 
in 1 months 

Same failures 
 in 3 days 

Very High 
(VH) 5 

Visible while 
using the device 1-6 months <3-6 days Same failures 

in 1-6 months 
Same failures 
 in 3-6 days 

High 
(H) 4 

Visible between 
two inspection 
intervals 6 months to 1 year A week to a 

month 
Same failures in  

6 months to 1 year 
Same failures in 
a week- a month 

Moderate 
(M) 3 

Visible while 
inspecting 1 year -2 years 1-2 months Same failures 

in 1-2 years 
Same failures 
1-2 months 

Low 
(L) 2 

Visible before an 
inspection >2 years >2 months Failure is unlikely 

>2 years 

Failure is 
unlikely 

 >2 months 

Remote 
(R) 1 

13 1511 12 14

1 1 1 1 1

23 2521 22 24

2 2 2 2 2

31 32 33 34 35

3 3 3 3 3

43 4541 42 44

4 4 4 4 4

51 52 53 54 55

5 5 5 5 5

T T T T T

T T T T T

T T T T T

T T T T T

T T T T T

p pp p p
p p p p p

p pp p p
p p p p p
p p p p p

P
p p p p p

p pp p p
p p p p p
p p p p p
p p p p p

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  

(11) 

The second phase supposes that this matrix will remain 
constant after a long time. This is called a steady-state 
probability. It is calculated by multiplying the matrix P more 
and more until it converges. So that the risk distribution at 
the steady-state is as vector V in Eq. (12) [5]: 

( )1 2 3 4 5, , , ,V V V V V V= . (12) 

4. Results

4.1. Identifying devices for COVID-19 patients and their 
failures in the case study 

The effective way to deploy the methodology is to select a 
real case study. For this purpose, we used a private hospital 
in Iran which services COVID-19 patients in the pandemic 
period and has ten active departments dedicated to COVID-
19 patients includes three ICU departments, two CCU 
departments, and five inpatients departments. The devices 
used include a digital X-ray machine, CT scan 16Slice, 
ventilator, patient monitor, echo cardiograph, syringe pump, 
ECG, real-time PCR, cell counter, elisa reader. 

These important and functional devices which are used 
for COVID-19 patients are listed. Table A.1 in Appendix A 
(in the supplementary data) shows these devices and their 
probable failures in Supplementary Material. 

4.2. Define factors and sub-factors of FMEA and 
validating them using SEM 

In FMEA, the risk priority orders of the identified failure modes 
are scored by a RPN. The RPN is calculated from the 
multiplication of the three risk factors Occurrence (O), Severity 
(S), and Detection (D). but in this study, we considered some 
sub-factors with related ranges for each of three factors due to 
focus on more parameters for calculating each factor score. 
These are extracted from the literature or some from expert 
opinion. The sub-factors are described as follows: 

Occurrence 

O1: Visibility: The failure occurrence probability 
especially hidden ones [14]; 

O2: Mean time between failures in the normal situation: 
The interval between two consecutive failures in a 
normal period [41]; 

O3: Mean time between failures in a pandemic: The 
interval between two consecutive failures in the 
pandemic period; 

O4: Repeatability in the normal situation: Frequency of a 
failure occurrence with the same cause during the 
same period in the normal situation [42]; 

O5: Repeatability in Pandemic: Frequency of a failure 
occurrence with the same cause during the same 
period in the pandemic situation. 

Also, Table 5 shows the different ranges and related levels of 
O1-O5. 
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Table 6. Different levels of detection risk factor. 
D1 D2 D3 D4 D5 

Level Number Probability of 
non-detection Detection method Detection costs Detection 

speed 
Detection 
accuracy 

Low or no 
detectability 

No failure detection 
method 750-1000$ 5-10 working 

days <20% Very High (VH) 5 

Fair detectability 

No failure detection 
method but the failure can 
fairly be detected without 

method 

500-750$ 3-5 working 
days 20%-40% High (H) 4 

Likely to detect The failure detection 
method usually is used 200–500$ 1-3 working 

days 40%-60% Moderate (M) 3 

Good degree of 
detectability There is a not-automated 

failure detection method 100–200$ 1 h to 1 working 
days 60%-80% Low (L) 2 

High degree of 
detectability 

There is an automatic 
failure detection method 0–100$ Less than 1 h 80%- 00% Remote (R) 1 

Table 7. Different levels of severity risk factor. 
S1 and S2 S3 and S4 S5 S6 

Level Number Patient general 
safety 

Potential risk 
for the device 

operator 

Mean time to 
repair Economic loss 

Death Serious infected Order a new device ≥ 60 % of the device price Very High (VH) 5 

Severe injury Infected Several days for 
repair 

30% ≤ 𝑆𝑆6 < 50% 
of the device price 

High 
(H) 4 

Moderate injury Moderate infected 1 day- 4 days 20% ≤ 𝑆𝑆6 < 30% 
of the device price Moderate (M) 3 

Minor injury Minor infected 1 h-1 day 10%  ≤ 𝑆𝑆6 < 20% 
of the device price 

Low 
 (L) 2 

Less or no effect No infection < 1 h 0 ≤ 𝑆𝑆6 < 10% 
of the device price 

Remote 
(R) 1 

Detection 

D1: Probability of non-detection: The probability of when 
a failure will not be detected [43]; 

D2: Detection method: The degree of automation for a 
medical device failure detection method [14]; 

D3: Detection costs: The average cost of failure detection; 
D4: Detection speed: The average time to detect the failure; 
D5: Detection accuracy: How much the detection is valid. 

Table 6 shows the different ranges and related levels of D1-
D5.  

Severity 

S1: Patient general Safety: General safety level of the 
patient during failure occurrence [44]; 

S2: patient safety from Infection risk: Infection risk level 
of the patient During and after failure occurrence; 

S3: The potential risks for patients, operators, and nurses 
in the normal situation; 

S4: The potential risks for patients, operators, and nurses 
in the pandemic situations;  

S5: Repair meantime: The average time for repairing a 
medical device [45]; 

S6: Economic loss: Includes maintenance cost and the cost 
related to delayed treatment [46]. 

Table 7 shows the different ranges and related level of S1-
S6.  

To check the validity of the sub-factors selecting, the 
measurement and structural models should be fitted: 

Fitting of measurement models 

The model drawn in SmartPLS software is as shown in 
Figure 2. It shows the strengths of the relations between each 
level of the model both the main factors and FMEA analysis 
and the sub-factors with related factors.  

One of the study indicators in fitting the measurement 
model is the factor load. The strength of the relationship 
between the factor (hidden variable) and the visible variable 
is indicated by the factor load. The factor load is a value 
between zero and one. If the factor load is less than 0.3, a 
weak relationship is considered and ignored. The factor-load 
of between 0.3 and 0.6 is acceptable, and if greater than 0.6 
it is highly desirable. Therefore, relationships with a factor 
load of less than 0.3 will exclude from the model. 
Fortunately, Table 8 shows the factor loads which were 
depicted in Figure 2. Based on this, all variables have a factor 
load of more than 0.3 and all of the, are acceptable.  
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Figure 2. FMEA risk factors and sub-factors SEM model. 

Table 8. Variables factor loads of SEM. 

Hidden variable Obvious 
variable Factor load 

Occurrence 

O1 0.847 

O2 0.897 

O3 0.932 

O4 0.959 

O5 0.883 

Detection 

D1 0.960 

D2 0.861 

D3 0.623 

D4 0.879 

D5 0.960 

Severity 

S1 0.741 

S2 0.593 

S3 0.690 

S4 0.893 

S5 0.889 

S6 0.849 

Cronbach's alpha rate and hybrid reliability coefficient 
are also used to measure the combined reliability of the 
model. Also, to derive convergent validity in the model, the 
mean of extracted variance (AVE) index is used.  These 
values are shown in Table 9 which are the software outputs. 

Therefore, according to the stated values, it can be seen 
that the validity and reliability and in general the fit of the 
measurement model are proved.  

Fitting the structural model 

T-test and R2 criterion are used to check the structural model 
fit. Table 10 shows the software outputs for the z significance 
test. It should be noted that the test in the model of this 
research has been tested at 95% confidence level. In the t-
values test, the values must be greater than 1.96, otherwise, 
the test will be rejected. As can be seen in Table 10, the value 
of the z statistic for all variables is greater than 1.96.  

In SEM, the R2 criterion is related to the endogenous 
(dependent) variables of the model. R2 is a criterion that 
indicates the effect of an exogenous variable on an 
endogenous variable and three values of 0.19, 0.33, and 0.67 
are considered as the criterion values for weak, medium, and 
strong values of R2. Table 11 shows the R2 values for the 
model-dependent variables.  

In this section, it can be seen that the stated criterion R2 
has the standard limit and the desired value and as a result, is 
valid. 

The overall fit of the model 

To test the overall fit of the model, two basic hypothesis tests 
have been used. T-test hypothesis test and path coefficient 
test, which were examined separately during the fit of the 
measurement model and the structural model. In this model, 
several statistical hypotheses have been examined that the 
effect of occurrence, severity, and detection on FMEA 
results. In Table 12, according to the Z test statistics as well 
as the path coefficient, the hypothetical tests are examined. 
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Table 9. Validation of SEM outputs. 
Mean extraction 

variance 
𝑨𝑨𝑨𝑨𝑨𝑨 ≥ 𝟎𝟎. 𝟓𝟓 

Combined 
 reliability  

coefficient 𝛂𝛂 ≥ 𝟎𝟎. 𝟕𝟕 

Cronbach's 
 alpha  

coefficients 𝛂𝛂 ≥ 𝟎𝟎. 𝟕𝟕 

Hidden 
 variable 

0.818 0.957 0.946 Occurrence 

0.749 0.936 0.910 Detection 

0.614 0.903 0.873 Severity 

Table 10. Z significant test. 
Hidden 
variable 

Obvious 
variable 𝑻𝑻𝟎𝟎 

Occurrence 

O1 31.048 

O2 43.277 

O3 60.075 

O4 133.903 

O5 70.342 

Detection 

D1 158.604 

D2 30.476 

D3 12.550 

D4 53.984 

D5 161.461 

Severity 

S1 17.241 

S2 9.562 

S3 14.570 

S4 83.124 

S5 69.420 

S6 41.141 

Table 11. R2 values for dependent variables. 
Hidden variable R2 value 

Occurrence 0.655 
Detection 0.425 
Severity 0.898 

Table 12. Hypothetical tests results. 
Hidden 
variable 

Path 
coefficient 𝑻𝑻𝟎𝟎 Result 

Occurrence 0.652 27.043 Acceptance 
Detection 0.809 42.056 Acceptance 
Severity 0.948 196.148 Acceptance 

As can be seen, according to software outputs and 
hypothetical tests, all the risk factors and their sub-factors 
affect the FMEA score and thus the factors and sub-factors 
of the research are proven. 

4.3. The interrelationship between sub-factors using fuzzy 
DEMATEL 

In this section, the interrelationships among the sub-factors 
of O, D, and S are identified by the fuzzy DEMATEL 
method. Moreover, since determining the best and the worst  

Table 13. Determining the best and the worst 
sub-factors of occurrence. 

Criteria D+R The best The 
worst 

O1 2.866 

O1 O2 
O2 2.210 
O3 2.571 
O4 2.797 
O5 2.661 

Table 14. Determining the best and the worst sub-factors of 
detection. 

Criteria D+R The best The worst 
D1 7.874 

D2 D5 
D2 9.127 
D3 7.093 
D4 8.169 
D5 6.99 

Table 15. Determining the best and the worst sub-factors of 
severity. 

Criteria D+R The best The worst 
S1 2.522 

S5 S1 

S2 2.695 
S3 2.5651 

S4 3.828 
S5 6.571 
S6 4.780 

criteria is hard work especially when the decision-makers 
have different points of view, in this research, we apply the 
output of the fuzzy DEMATEL to specify the best and the 
worst criteria. In this way, the criteria with the highest D+R 
are considered as the best, and the criteria with the lowest 
D+R are defined as the worst. Table B.1-B.3 in Appendix B 
(in the supplementary data) shows the average of experts’ 
opinions based on fuzzy numbers. Also, the crisp counterpart 
of the relation matrix is presented in Table B.4-B.6 in 
Appendices. Finally, the best and the worst criteria have been 
determined in Tables 13-15.  

4.4. Weighting sub-factors based on the output of 
FDEMATEL output and FBWM 

In this section, we report the obtained results from the 
implementation of the FBWM for each risk factor. It should 
be noted that the pairwise comparison is a collection using 
questionnaires that are distributed to five experts  who  were 



M. Tavakoli et al./ Scientia Iranica (2025) 32(8): 5266 12 

managers and experts of medical devices. The average 
opinions of three groups of experts are given in Tables C.1-
C.6 in Appendix C (in the supplementary data). For the 
occurrence factor, based on expert’s opinions, O1 is the best, 
and O2 is the worst. The achieved results are given in Table 
16. The results of FBWM for sub-factors of detection are
given in Table 17. For this mode, as DEMATEL results 
shown, select D2 as the best and D5 as the worst sub-factor. 
Table 18 shows the results of FBWM for the sub-criteria of 
severity risk factors. In this mode, S5 and S1 as the best and 
worst criteria.  

Based on the sub-factor weights obtained above, the 
score of each failure will calculate in the next section. 

4.5. WRPN for failures 
In this step, a WRPN can be calculated using the sub-factors 
weights through Eq. (13): 

5 5 6

1 1 1
,i i i i i i

i i i
WRPN O D Sα β γ

= = =

     = × × × × ×     
     
∑ ∑ ∑ (13) 

where 𝑂𝑂𝑖𝑖  is occurrence of failures; 𝛼𝛼𝑖𝑖 the occurrence sub-
factors weights; 𝐷𝐷𝑖𝑖 the detection of failures; 𝛽𝛽𝑖𝑖 the detection 
sub-factors weights; 𝑆𝑆𝑖𝑖 the severity of failures; 𝛾𝛾𝑖𝑖 the severity 
of sub-factors weights. 
     Based on Eq. (13), Table 19, shows the results of 
WFMEA for failures of the devices. After analyzing the 
results obtained in Table 19, the experts specified different 
ranges to categorize the failures into five categories of risk 
failures such as very low, low, medium, high, and very high. 
In Table 20, different levels of risk failures and their related 
WRPN ranges are described. 

4.6. Estimating very low/ low/ risks failures in the long 
term 

Based on Table 20, there are seventeen failures that are very 
low and low risks. Experts decided to update their WRPN 
scores during the time to consider some inadequate 
information for these types of failures. This correction factor 
involves the long-term possible effect of these failures. It 
means that it can estimate whether a failure remains in its 
current level or increase in next periods.  

However, the probability of each very low and low failure 
risk is evaluated in long term. To do this, the one-step 
transition probability will be defined as Matrix P explained 
in Subsection 3.5. the one-step transition matrix of all very 
low and low failures is shown in Tables D.1-D.17 in 
Appendix D (in the supplementary data). The probabilities 
of remaining the failures in a unique risk level in the next 
periods are described as a steady-state vector of 𝑉𝑉𝑖𝑖 , which is 
shown in Table 21 for very low and low failures.   

By calculating the steady-state, a RCF can be defined for 
recalculating the WRPN for very low and low failures. This 

correction factor relates to the sum of the probabilities of 
high and very high probabilities at the steady-state of each 
failure based on (Brun & Savino, 2018 [7]). So, we calculate 
𝑃𝑃ℎ,𝑉𝑉ℎ as Eq. (14) in Table 22:  

, 4 5.h vhP V V= +  (14) 

Besides, the RCF factor is specified based on different ranges 
of 𝐶𝐶 as Table 23. Updated WRP are calculated in Table 24.  

5. Discussion
The medical devices risk assessment problem aims to score 
different failures of devices and it includes a failure modes 
evaluation process that considers qualitative and quantitative 
criteria. Dealing with this problem, there are many different 
tools and techniques which are useful.  

Since FMEA is a popular method for evaluating the risks, 
it is important to use it but in a way that its shortage cover by 
defining more factors besides Occurrence, Detection, and 
Severity. However, the least important of failures initially is 
maybe at a higher risk level over time. So, a pattern that 
shows dynamics of risk levels priority is necessary especially 
for very low and low-risk failures, which can be attained 
through Markov chains. These chains can suggest tracing 
and predicting the pattern of constantly changing processes. 
For example, now when we are in the initial months of the 
pandemic, some failures like the display screen of the 
ventilator or the slip rings of CT scan are in very low and 
low-risk levels, but when the times they are disinfected 
become more and more, it is the probability that their risk 
levels increase. It is obvious that as the COVID-19 continues 
and the infected patients increase, the risk levels of the 
failures which are not that important today are changing. So, 
if the changes in risk levels are not considered, sudden 
serious failures are probable to lead to death on severe 
injuries to patients or either device operators. But using the 
Markov chains, the risk level scores can be calculated more 
accurately. 

Also, there are some factors when decision-makers try to 
use FMEA such as Occurrence, Detection, and Severity. In 
this study, we defined some sub-factors for each of them 
when some of them imply the general situation, and some of 
them are especially related to the pandemic situation.  

Based on Table 16, visibility of failure occurrence has 
the most weight, and also mean time between failures in 
the general situation has the least weight between the sub-
factors of occurrence based on the expert opinion. It 
means that when a failure occurred it is more critical to be 
visible for operators to react through its repairing or 
avoiding more hurt. 

However, based on Table 17, the method of failure 
detection has the most weight,  and also  detection  accuracy 
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Table 16. The results of FBWM for the sub-factors of the occurrence risk factor. 
Criteria O1 O2 O3 O4 O5 
Optimal weights 0.3148588 0.09515465 0.2917890 0.1441147 0.1540829 
 𝜉𝜉∗=0.50000   CI=6.69   CR=0.50000

6.69  
= 0.0747 

Table 17. The results of FBWM for the sub-factors of the detection risk factor. 
Criteria D1 D2 D3 D4 D5 
Optimal weights 0.2292430 0.3460532 0.2265062 0.1115224 0.08667522  
 𝜉𝜉∗=0.3594849   CI=8.04   CR=0.3594849

8.04  
= 0.0447 

Table 18. The results of fuzzy BWM for the sub-factors of the severity risk factor. 
Criteria S1 S2 S3 S4 S5 S6 
Optimal weights 0.09662019 0.1029543 0.2250613 0.1232335 0.3187820 0.1333488 

 𝜉𝜉∗=0.7948322   CI=8.04   CR=0.7948322
8.04  

= 0.0988 

Table 19. The results of weighted FMEA for failures. 
Failure 

no. 
Occurrence Detection Severity 

WRPN Category O1 O2 O3 O4 O5 D1 D2 D3 D4 D5 S1 S2 S3 S4 S5 S6 
Weights 0.314 0.095 0.291 0.144 0.154 0.229 0.346 0.226 0.111 0.866 0.096 0.102 0.225 0.123 0.318 0.133 

1-1 2 2 3 2 4 4 2 3 4 2 1 1 1 3 3 3 16.2 High 
1-2 3 2 3 3 4 2 3 2 2 2 2 2 1 4 3 3 17.7 High 
1-3 1 3 5 3 4 3 1 1 1 1 1 2 1 4 2 2 12.9 Medium 
1-4 2 3 3 4 3 2 3 1 2 1 1 1 1 3 2 1 15.6 High 

2-1 1 2 1 2 2 1 2 2 2 1 2 2 1 3 2 3 4.7 Very low 
2-2 4 4 4 4 1 2 2 1 2 2 1 1 1 1 2 1 8.2 Low 
2-3 1 2 1 3 4 3 2 2 2 1 1 1 1 1 2 2 5.7 Low 
2-4 1 3 2 5 1 4 4 2 3 3 1 1 1 2 3 1 13.8 Medium 

3-1 2 1 2 1 2 2 3 1 3 3 5 5 1 3 3 4 12.5 Medium 
3-2 2 3 2 3 5 5 5 1 1 1 3 1 1 4 1 1 13.9 Medium 
3-3 1 2 1 2 1 2 2 1 1 1 1 1 1 2 2 1 3.3 Very low 
3-4 1 2 1 2 2 4 5 3 3 3 4 3 1 3 3 4 17.6 High 

4-1 3 1 3 1 4 3 3 1 2 2 2 1 1 2 2 1 9.6 Low 
4-2 4 1 3 1 5 3 2 1 1 1 1 1 2 2 1 1 7.6 Low 
4-3 4 4 4 5 5 4 3 1 1 2 4 1 1 3 2 2 21.0 Very high 
4-4 2 3 2 3 2 3 3 1 1 1 1 1 1 3 2 2 13.8 Medium 

5-1 1 1 1 1 5 4 4 3 3 3 1 1 1 2 2 3 9.8 Low 
5-2 2 2 1 2 1 3 3 1 1 2 1 1 1 3 4 3 8.5 Low 
5-3 2 3 2 3 2 2 4 2 2 1 1 1 1 3 2 2 19.7 High 
5-4 1 1 1 1 2 5 3 3 3 3 1 1 1 3 4 3 11.5 Medium 

6-1 1 1 1 1 4 1 1 1 2 1 3 1 1 2 2 2 2.8 Very low 
6-2 1 1 1 1 4 2 2 1 2 2 5 1 1 2 2 1 4.7 Very low 
6-3 2 2 1 2 4 3 3 1 2 1 1 1 1 2 2 3 7.7 Low 
6-4 1 2 1 3 4 4 2 2 1 1 1 1 1 2 2 2 6.5 Low 

7-1 2 1 2 1 4 4 3 2 2 2 3 1 1 2 5 5 18.1 High 
7-2 3 2 2 2 1 3 2 1 1 1 1 1 1 2 5 5 11.4 Medium 
7-3 4 3 4 3 4 3 2 1 2 1 1 1 1 2 2 2 16.2 High 
7-4 3 3 3 4 4 4 2 3 1 1 1 1 1 2 5 2 20.7 Very High 

8-1 2 1 1 1 3 1 1 3 2 1 1 1 1 1 4 3 5.6 Low 
8-2 1 1 1 1 1 1 1 2 2 1 1 1 1 3 2 2 2.2 Very low 
8-3 2 4 2 4 5 2 1 3 4 3 1 1 1 3 3 2 12.9 Medium 
8-4 1 2 1 2 4 2 2 2 2 2 1 1 1 4 4 4 13.6 Medium 

9-1 2 1 3 3 5 4 4 3 3 4 1 1 1 4 3 2 21.9 Very high 
9-2 1 1 2 1 4 4 3 3 2 1 1 1 1 3 2 3 9.4 Low 
9-3 2 2 2 4 4 2 2 2 2 1 1 1 1 3 2 3 17.3 High 
9-4 1 3 2 2 4 2 2 2 2 1 1 1 1 3 2 3 14 Medium 

10-1 3 3 2 4 4 1 1 3 2 1 1 1 1 3 3 4 10.7 Medium 
10-2 1 1 1 2 3 1 1 2 1 1 1 1 1 3 1 2 2.4 Very low 
10-3 1 5 1 4 5 5 5 3 3 4 1 1 1 3 2 3 18.8 High 
10-4 2 2 1 3 4 1 1 1 1 1 1 1 1 3 2 2 9.2 Low 
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Table 20. Failure modes categorizing. 
WRPN Category 

0<WRPN< 5 Very low risk 
5<WRPN< 10 Low risk 

10<WRPN< 15 Medium risk 
15<WRPN< 20 High risk 

WRPN> 20 Very high risk 

Table 21. Risk distribution at steady-state. 

Failure 
The probability at steady-sate 

Total Very 
low Low Medium High Very 

high 
2-1 0.004 0.002 0.004 0.02 0.97 1 
2-2 0.002 0.001 0.037 0.24 0.72 1 
2-3 0 0.006 0.014 0.16 0.82 1 
3-3 0.005 0.005 0.005 0.015 0.97 1 
4-1 0.014 0.023 0.074 0.22 0.669 1 
4-2 0 0.02 0.33 0.15 0.5 1 
5-1 0 0.031 0.013 0.09 0.866 1 
5-2 0 0.01 0.17 0.12 0.7 1 
6-1 0.006 0.024 0.03 0.22 0.72 1 
6-2 0 0.04 0.08 0.06 0.82 1 
6-3 0 0.005 0.005 0.05 0.94 1 
6-4 0 0 0.01 0.24 0.75 1 
8-1 0 0.07 0.13 0.25 0.55 1 
8-2 0 0.01 0.03 0.1 0.86 1 
9-2 0 0 0.08 0.08 0.84 1 
10-2 0 0.005 0.015 0.16 0.82 1 
10-4 0.002 0.003 0.005 0.05 0.94 1 

Table 22. Risk distribution at steady-state. 
Failure 𝑷𝑷𝒉𝒉,𝑽𝑽𝑽𝑽 

2-1 0.99 
2-2 0.96 
2-3 0.98 
3-3 0.985 
4-1 0.88 
4-2 0.65 
5-1 0.95 
5-2 0.82 
6-1 0.94 
6-2 0.88 
6-3 0.99 
6-4 0.99 
8-1 0.8 
8-2 0.96 
9-2 0.92 

10-2 0.98 
10-4 0.99 

has the least weight between the sub-factors of detection 
based on the expert opinion. It means that detecting the 
failure is very hard in most cases and is the most important 
sub-factors. Usually, if a failure can be detected it is accurate 
based on expert opinion and historical data. So, the detection 
accuracy is the least important sub-factor.  

Table 23. RCF ranges. 
𝑷𝑷𝒉𝒉,𝑽𝑽𝑽𝑽 RCF 

𝑃𝑃ℎ,𝑉𝑉ℎ < 0.30 1 
0.31 <𝑃𝑃ℎ,𝑉𝑉ℎ< 0.45 1.5 
0.46 <𝑃𝑃ℎ,𝑉𝑉ℎ < 0.60 2 
0.61<𝑃𝑃ℎ,𝑉𝑉ℎ < 0.85 2.5 
𝑃𝑃ℎ,𝑉𝑉ℎ > 0.86 3 

Table 24. Updated WRPN. 

Failure WRPN Risk  
level RCF Updated

 WRPN 

Updated 
 risk 
level 

2-1 4.7 
Very 
low 

3 14.1 Medium 

2-2 8.2 Low 3 24.6 Medium 
2-3 5.7 Low 3 17.1 Medium 

3-3 3.3 
Very 
low 

3 9.9 Low 

4-1 9.6 Low 3 28.8 Medium 
4-2 7.6 Low 2.5 19 Medium 
5-1 9.8 Low 3 29.4 Medium 
5-2 8.5 Low 2.5 21.25 Medium 

6-1 2.8 
Very 
low 

3 8.4 Low 

6-2 4.7 
Very 
low 

3 14.1 Medium 

6-3 7.7 Low 3 23.1 Medium 
6-4 6.5 Low 3 19.5 Medium 
8-1 5.6 Low 2.5 14 Medium 

8-2 2.2 
Very 
low 

3 6.6 Low 

9-2 9.4 Low 3 28.2 Medium 

10-2 2.4 
Very 
low 

3 7.2 Low 

10-4 9.2 Low 3 27.6 Medium 

Finally, as Table 18 shows in severity factor, mean time 
to repair is the most important sub-factor where the patient 
general safety is the least important one. it can be concluded 
that most of the time when a medical device faces failure, it 
doesn’t hurt the patients by itself directly, but the time last 
for repairing cause to more danger for patients need that 
device.  

Based on Table 19, most of the failures categorized in 
very low and low-risk levels (12 /17) are the general failures 
related to all medical devices except Digital X-ray machines 
and ECG.  For the medium, high, and very high category the 
pandemic-related failures are more than general ones. It 
shows that the expert and operators of these medical devices 
are aware of the pandemic-related failures and notice them 
as more important than general ones. Figure 3 shows the 
general and pandemic-related failures in each of the five risk 
categories. 
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Figure 3. Risk levels general or pandemic related failures. 

6. Managerial implication

In this section, we try to extract several managerial insights 
based on the results of the study as follow: 

• This paper proposed an integrated Markovian WFMEA 
model for risk evaluation for medical devices used for
positive COVID-19 patients in hospitals. It can provide 
an appropriate perspective to hospital medical device
managers for preventive maintenance plans based on
the results obtained;

• Figure 2 showed that there are several sub-factors
defined for the occurrence risk factor (visibility, mean
time between failures in the normal situation, mean
time between failures in a pandemic, repeatability in
the normal situation, repeatability in pandemic) had the 
highly desirable relationship with occurrence (factor
loads were more than 0.6). In addition, the sub-factors
of detection risk factors (probability of non-detection,
detection method, detection costs, detection speed,
detection accuracy) also had a highly desirable
relationship with detection (factor loads were more
than 0.6). Finally, for the severity risk factor, the
defined sub-factors were patient general safety, patient
safety from Infection risk, the potential risks in the
normal situation, the potential risks in a pandemic
situation, repair meantime, economic loss. All of them
had highly desirable relationships except patient safety
from Infection risk which had an acceptable
relationship (factor load of between 0.3 and 0.6). So,
the medical device managers could consider the sub-
factors for more accurate risk evaluation and not only
the three main risk factors;

• Based on Table 16, the most important sub-factor of
occurrence risk factor was visibility (optimal weight:
0.3148588), and the least important was a mean time
between failures in the normal situation (optimal
weight: 0.09515465). Based on Table 17, the most

important sub-factor of detection risk factor was the 
detection method (optimal weight: 0.3460532) and the 
least important was detection accuracy (optimal 
weight: 0.08667522). Based on Table 18, the most 
important sub-factor of severity risk factor was 
repaired meantime (optimal weight: 0.3187820) and 
the least important was patient general safety (optimal 
weight: 0.09662019). The managers should be certain 
about the more important sub-factors and then decide 
for their maintenance plans considering their 
prioritizations for higher risk management levels; 

• The failures with medium, high, and very high-risk
levels are important to be considered, too. Based on
Table 19, 23 failures of all 40 failures had a high or
very high score which is more than half of the failures.
Managers should focus on them seriously since they
can hurt patients directly;

• When medium, high, and very high-risk levels failures
are very important for a hospital, it is necessary to
predict the risk levels of very low and low-risk levels
in the future, too. Among 17 failures with very low and
low-risk levels, 13 of them transfer to medium risk
levels based on Table 24. Managers should plan for
preventive maintenance schedules, especially for these
failures.

7. Conclusion and future studies

This study tried to consider different devices related to 
COVID-19 patient failures and assess their risks as one of 
the important issues affecting hospital costs and more 
important patient safety. Therefore, risk assessment, 
especially for expensive equipment, can be important for 
hospitals. Also, due to the pandemic and high volume of 
COVID-19 patients, a device failure may result in death or 
severe injury to a patient. In this regard, we used Weighted 
Failure Mode and Effects Analysis (WFMEA) by describing 
more sub-factors and weighted the using fuzzy Decision-
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Making Trial and Evaluation Laboratory (DEMATEL) and 
fuzzy Best-Worst Method (BWM). Markov chain is also 
used for considering long-term impacts and reprioritize 
devices for facing the risk in the future. Considering a 
hospital serves the COVID-19 patients in Iran as a case 
study, the proposed approach was executed and results 
showed that near half of the device failures are scored 
medium risk level or more. Although the remained half is 
very low and low level, there are some probabilities for each 
of them during the time as the pandemic situation is going 
worse. So, based on the Reprioritization Correction Factor 
(RCF) based on the Markov transition matrix, most of these 
very low and low-risk failures may lead to a medium level, 
and planning for avoiding the serious problem is necessary. 
The limitations of the model proposed in this study are:  (i) 
Other hospitals should assess their medical devices risks and 
cannot use the same results of this study; (ii) Calculating the 
risk levels needs questionnaire and the expert and this is not 
an intelligence-based model. So, future researches can 
combine the Markov transition matrix with artificial 
intelligence methods and proposed a prediction artificial 
intelligence approach to investigate the device risks and 
comparing the results with the current study. Also, 
researchers can consider risk assessment for other medical 
devices for different patient categories, and also other risk 
assessment tools can be investigated. 
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