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Medical devices are critical in the healthcare system and their failures can significantly impress the
safety of patients, medical staff, and clinical engineers. With increasing COVID-19 pandemic in
recent months, it is more necessary to assess the risks of the devices to avoid infection for patients,
death, and severe hurts due to inactive and breakdown devices. The aim of this study is to assess
medical device risks in general and pandemic situations with three main factors of the failure model
analysis effect include occurrence, detection, and severity. Some sub-factors are defined and
weighted using the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) and fuzzy

(LADIARILAUEIL); Best-Worst Method (BWM). Consequently, the Weighted Failure Mode and Effects Analysis
Fuzzy Best-Worst Method (WFMEA) score of each failure is calculated as the Weighted Risk Priority Number (WRPN).
(FBWM); Finally, steady-state probabilities of very low and low failures are calculated to consider the changes

Markov chain. during the time. Results show that near half of the failures are scored in very low and low levels but

in the long term, most of them transfer to medium level risk. It can be concluded that some preventive
maintenance plans for these kinds of failures to avoid occurring the higher risk level for them in the
future is necessary and the results can help medical device managers.

1. Introduction

Medical devices play a critical role in the healthcare system critical [2]. With the increasing COVID-19 pandemic in

to diagnose and treat. The failures of medical devices can recent months, it is more necessary to assess the risks of the

significantly affect the safety of patients, medical staff, and devices used for patients to avoid infection. Also, infectious

clinical engineers in the clinical use of medical devices. The diseases have severe results in pubhc physical and mental

prioritization of medical devices is a crucial issue for
healthcare systems. The Joint Commission on Accreditation
of Healthcare Organizations (JCAHO) published a standard
for medical devices which make hospitals in the United
stated to use different risk management approaches for their
medical equipment management programs [1].

As these medical devices affect patient life immediately
and directly, risk evaluation and management for them is

health [3]. In this regard, different failures of these devices
include general failures, and also those related to this
pandemic should be considered and prioritized. Actually.
Some failures will change over time. For example, some
failures may be at a low level of risk now but they can be at
higher levels within some period later. It is necessary to pay
attention to these kinds of risks and predict them, in order to
be ready for facing and controlling them [4,5]. Markov chain
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can help us to forecast later levels of failures during the time
[6].

The Failure Mode and Effects Analysis (FMEA) is a tool
for assessing the risks, failures, faults, or errors of different
devices or services [7]. This tool is used for the risk
assessment of identified failure modes. In the classical
FMEA, there are three main factors for scoring Detection,
Severity, and Occurrence and results in the Risk Priority
Number (RPN) that can score each device or service by that
[8]. Some researchers use other criteria as sub-factors for
FMEA to cope with its shortage and use the Multi-Criteria
Decision Making (MCDM) for the factors or sub-factors
weighting.

This paper presents a Markov chain-based weighted
failure mode analysis approach to the medical device
prioritization risks. In this study, all functional devices used
for COVID-19 devices are described with their general and
pandemic failures. Then they will assess based on three main
factors of FMEA such as occurrence, detection, and severity.
But due to coming up with FMEA shortcomings, some sub-
factors will define each of the three main factors. Sometimes,
the only three risk factors are difficult to be evaluated
accurately, but some relative sub-factors can make the
scoring easier. These sub-factors may have different impact
levels on the main factor so they need to be weighted. Also,
the weighting of sub-factors is calculated using the fuzzy
Best-Worth Method (BWM) based on their internal
relationship using fuzzy Decision-Making Trial and
Evaluation Laboratory (DEMATEL). Consequently, the
Weighted Failure Mode and Effects Analysis (WFMEA)
score of each failure is concluded as Weighted Risk Priority
Number (WRPN). Finally, steady-state probabilities of very
low and low failures are calculated to update their WRPN
during the time and some corrective actions will propose.
The main advantages of this study over the previous papers
are: (1) Risk assessment for medical devices related to
COVID-19 which have critical risks over the pandemic
period and they are critical for the patient treatment; (2)
Using WFMEA with considering different sub-criteria based
on general and pandemic situation; (3) Markov chain using
for considering long term effect of RPN scores for very low
and low-risk devices. Also, the main research questions of
this study are as follows:

o What are the main failures (in general and in a pandemic)
of medical devices related to COVID-19 patients?

e Which sub-factors are the most influential ones in the
three main criteria of FMEA?

e How the medical device failures could be prioritized using
WFMEA?

e How the medical device failures could be updated base on
Markovian-based rescoring of WFMEA?

The rest of the paper is organized as follows: Section 2
presents a review of the literature around the field of this
study. Different methods used with their explanation are
described in Section 3. In Section 4, the case study and the
results are discussed. Discussion is provided in Section 5,
while some managerial implications are suggested in Section
6. Finally, the conclusion and future studies suggestions are
expressed in Section 7.

2. Literature review

The prioritization of medical devices risk scores has become
a necessary task for all healthcare organizations to provide
maintenance programming. Furthermore, researchers
focused on the risk assessment problem for medical devices
in the recent decade. Therefore, this study is related to
medical device risk assessment research streams. Some
important and recent papers are discussed in this section.
Taghipour et al. [9] proposed a new medical device
classification model rather than previous studies based on the
complexity of medical devices. Their model includes two
phases: Technical complexity of the medical device and use
of the complexity of medical devices. The technical
complexity of medical devices includes four criteria about
the technical perspective of medical devices such as
equipment maintainability and deterioration, while the use
complexity of medical devices consists of nine criteria based
on How difficult is the use of medical devices at the
operation use and operational level such as data entry, setup
process, retrieve, receive and send data, Integration of patient
data and self-test. Corciova et al. [10] used an Analytical
Hierarchy Process (AHP) for medical devices ranking
through their criticality level. They considered six criteria for
pairwise comparison of medical devices. These criteria
include recalls, age, risk, mission criticality, equipment
function, and maintenance requirements. Tawfik et al. [11]
determined and developed guidelines to have a program for
medical devices quality assurance. They also suggested
periodic inspection processes, maintenance guidelines and
solutions, evaluation, and performance assessment for
medical equipment. In their paper, they described a method
that has five risk criteria in their scoring system concerning
the patient, medical staff, and biomedical engineers in the
healthcare system. Cheng et al. [12] developed a fuzzy logic
model for medical equipment classification. They
recognized four criteria such as: (1) The status of mission
criticality; (2) Equipment function; (3) Maintenance needs;
and (4) Physical risks, to obtain and calculate the risk level
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for each medical device. Their outcome shows that, in some
medical devices in the healthcare system, the same medical
device class may acquire different risk scores. furthermore,
they compared their classification schemes rather than other
schemes in previous studies. Onofrio et al. [13] tried to
evaluate the flight operation risks. They considered several
sub components for each risk and used fuzzy inference
system for scoring them.

Jamshidia et al. [14] also evaluated the risks related to the
design process of new devices in a medical device
development company. They defined some medical devices,
potential failure modes, functional effects, clinical harms,
and causes of failure modes and ranked them based on
FMEA to assess every medical device. Kirkire et al. [15]
Developed a new fuzzy FMEA approach. They defined some
new criteria rather than previous studies include age,
utilization, and use-related hazards. Then, they proposed a
framework for medical devices prioritization which
considered risks. So, they could help to avoid the high-risk
failures. Cicotti and Coronato [16] investigate risk
management in the process of medical devices. Their
research aimed to explore risks in a dental product
manufacturing company for minimizing failure events.
These risks were analyzed using traditional FMEA and fuzzy
FMEA and categorized into different levels include critical,
moderate, low, and negligible. Finally, a systematic approach
for risk management was developed. Ardeshir et al. [17]
proposed a dynamic probabilistic risk assessment for
medical devices. They combined the Event Sequence
Diagram (ESD) and Markov decision process for
considering risk scenario dynamics and stochastic manner.
Finally, they implemented their approach in a case study.
Ardeshir et al. [18] used FMEA for construction safety risk
evaluation. They also used AHP and DEA for their analysis
and prioritized the potential risks. Their results showed that
falling from high locations was the most important risk in
construction projects. Vazdani et al. [19] also used FMEA for
environmental risk assessment. They first identified the risk
in projects and then evaluated them by FMEA and classified
them in three different categories including low-risk level,
medium risk, and high-risk. Finally, they suggested some
corrective actions to reduce the probabilities if the risks. Wei
Lo and Liou [20] focused on risk assessment by using
MCDM based FMEA. They weighted the FMEA factors by
best-worst-method with gray variables. Then, the risks in an
international electronics company as a case study.

Brun and Savino [7] focused on risk assessment using
integrated FMEA with pairwise comparison matrix and
Markov chains in the construction industry. They aimed to
assess potential risks to avoid or decrease work-related

injuries and casualties. They listed different components of
the system and calculated a WRPN for each component.
Then, they used the Markov chain for low risk to consider
the long term run due to tune the expert’s opinion. They also
considered the interdependence correction factor for
calculating the corrected RPN. Abdel-Basset et al. [21]
proposed a group decision-making framework for selecting
medical devices. They used neutrosophic echnique for
TOPSIS for ranking seven medical devices related to
diabetics’ patients based on seven criteria including: safety,
cost, flexibility, quality, ease of use, maintenance
requirements, and service life. Mangeli et al. [22] improved
the FMEA analysis using the TOPSIS method and either
Support Vector Machine (SVM). They first weighted the
FMEA risk factors using TOPSIS (severity:0.479,
occurrence: 0.335, and detection: 0.186) and then predicted
the severity and occurrence of every failure mode by SVM
with the accuracy of 87% and 95%. Kim et al. [22] provided
a risk-based model for telemedicine systems security. They
used the attack tree for identifying the telemedicine system's
potential risks. Finally, they investigated these risks and
threats to remote healthcare quality. Song et al. [23]
developed a model aiming identification and also evaluation
of human-related failures while medical devices are being
used. They used the Swiss cheese model for identifying the
potential failures and a new FMEA approach based on rough
set and grey relational analysis for assessing the risks of the
failure. Parand et al. [24] also assessed medical device risks.
They tried to obtain the risk value for each of the medical
devices to know to which device they should allocate the
budget for maintenance operations based on the ordered
weighted averaging aggregation operator. This method is one
of the fuzzy multi-criteria decision-making approaches.
Ostadi and Abbasi Harofteh, [25] assessed the risks in a
petrochemical plant construction using Monte Carlo
simulation. First, they listed the risks and then identified the
relation among these risks using system dynamic approach.
Their results showed that the risks such as inflation, cost,
temperature, rain, and labor are the most important risks.
Subriadi and Najwa [26] used an improved FMEA and
either traditional one for risk assessment of information
technology and compared the results in the same case study.
They listed the event risks for information technologies and
calculated the RPN in two ways. Results showed that the
consistency for traditional FMEA was 0.848 and for
improved FMEA was 0.937 between different teams as an
expert. Moheimani et al. [27] assessed the hospital agility
based on a type-2 fuzzy flow sort inference system. Their
results showed that 40% of 30 case studies hospitals are
agile. Qinetal. [28] evaluated the risk using integrated
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Table 1. Literature review summarization.

Paper Method Marl‘mv medefmc
chain situation
Onoffio et al. (2015) [14] FMEA x x
New FFMEA with iteri
Jamshidi et al. (2015) [15] v WIth more chiferia x x
definition
Kirkire et al. (2015) [16] Traditional and FFMEA x x
Cicotti and Coronato (2015) [17] Event Sequence Diagram (ESD) v X
Vazdani et al. (2017) [19] FMEA X x
Lo and Liou (2018) [20] Gray BWM based FMEA X X
Brun and Savio (2018) [6] WFMEA x
Mangeli et al. (2019) [21] FMEA and TOPSIS x X
Kim et al. (2020) [22] Attack tree X X
FMEA Logisti i
Bhattacharjee et al. (2020) [29] and Logistic regression X X
model
Ordered weighted i
Parand et al. (2020) [24] rdcred weighted averaging x x
aggregation operator
Martinez-Licona and Perez-
Ramos (2021) [30] FMEA x x
WFMEA with more criteria
definition using integrated

i v v

This study FDEMATEL and FBWM
methods

FMEA and interval type-2 fuzzy evidential reasoning
method. They weighted the FMEA risk factors by evidential
reasoning and then calculated the RPN for each risk.
Bhattacharjee et al. [29] compared the FMEA result and
logistic regression model. They first calculated the RPN
scores but believed that the equal weights of three factors of
severity, occurrence, and detection are not appropriate for
reality. So, they tried to predict the risk probability of every
failure using interval number based logistic regression with
77.47%
characteristic, and optimal cut-off of 0.56. Martinez-Licona

accuracy rate, 81.98 receiver operating
and Perez-Ramos [30] evaluated the risk of medical devices
related to a hospital ICU as a case study using FMEA. These
devices included a defibrillator, vital sign monitor, and
volumetric ventilator and most of the devices had medium
and high-level of risk probability [30]. Chen and Wang [31]
evaluated the risks in public-private partnership projects.
They used intuitionistic fuzzy AHP for prioritizing the
criteria and then, Interval-Valued Hesitant Fuzzy Sets
(IVHFSs) for calculating the risk level score. Table 1
summarizes the researches reviewed.

As can be seen in Table 1, there are rare researches in the
risk assessment field which is considered risk level alteration
using Markov transition matrix while this issue is one of the

most important issues in preventive maintenance planning is
essential for the decision-making process. On the other hand,
defining the sub-factors for FMEA and weight them for
calculating the WFMEA score can improve the traditional
FMEA shortage which was rare in literature. Although
several papers weighted the three factors of FMEA, a few of
them had defined sub-factors and weight them either. this is
the first research the developed the Markovian-based
WFMEA framework to study the medical devices risk
assessment in a pandemic situation. This study can make
insight into hospitals that serve COVID-19 patients to focus
better on their devices and preventive maintenance plans
using Markov chain which has been rarely addressed in the
literature. So, the main contributions of this research
comparing to previous studies are as follow:

(i) Assessing the risk level for medical devices related
to COVID-19 patients in the pandemic;

(i) Defining pandemic-related and general subfactors
for FMEA three risk factors and validate them toward
Structural Equation Model (SEM);

(iii) Developing the WFMEA approach for weighting
the sub-factors using fuzzy Best—Worst Method (BWM);

(iv) Using Markov transition matrix as the
Reprioritization Correction Factor (RCF) for calculating
long-term changes in risk levels;
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To the best of our knowledge, this is the first study that
investigates the medical devices risk (general and pandemic-
related) with identifying more risk factors for the main one
(i.e., occurrence, severity, and detection) which are
confirming by SEM. Then, WFMEA using FBWM is used.
Finally, the prediction of each risk score is done using
Markov chain.

3. Methods

In this section, the methodology of the current research is
presented. This research applies the combination of
WFMEA, SEM, fuzzy DEMATEL, fuzzy BWM, and
Markov chain to investigate the medical device's risks.
Figure 1 shows the study steps. In the first step, we identify
the different equipment used for COVID-19 patients. Then
four failure types for each of them were listed by tan experts
working them daily in the hospital. Remained steps are listed
in Figure 1 and the approaches are explained in the following
sections.

3.1. SEM

The SEM method is a generalized linear regression. Linear
regression is one of the most complex statistical techniques

© L EITPY V0 T8 Identify different equipment used for COVID-19
Boundary patients and their potential failures

for data that is usually at the level of distance measurement.
Linear regression is presented in two forms: Simple
regression and multivariate linear regression. In regression,
the effect of independent variables on dependent variables is
determined. SEM is an approach for hypotheses test about
the interrelationships of the observed and latent variables. In
this research, SEM with the help of the Partial Least Square
(PLS) method and software is used to test the hypotheses and
accuracy of the model. SEM techniques have become an
integral part of the validation process and testing of links and
relationships between structures. These relations can be
investigated with variance or even covariance. The variance-
based relations are calculated through PLS while the
covariance-based relations are attained by LISREL. In this
study PLS regression is considered. This technique was
developed by Weld for analyzing multidimensional data in
less structured environments.

PLS is a variance-based approach that requires fewer
conditions than similar structural equation techniques such
as LISREL. PLS has no sample size limit and the selected
sample can be equal to or less than 30, in which case the
results are also valid. When there are not many samples and

measurement items or the distributions of the variables are

s’ Define factors and sub-factors of FMEA and
validating them using SEM

Questionnaire
Design

e Data

Collection

Collect data for FMEA questionnaire and | | — «
interrelationship of sub factors

Weighting sub-factors using FDEMATEL and
FBWM

Calculate FWRPN for potential failures and
categorized them

Considering Markov chain for very low to
medium risk failures

Markov
chain

Updating WRPN for failures during long term

(I.\Propose corrective actions for high and very high Be/Io¥II 7 s 3
® Actions

o, risk failures

Figure 1. This study steps.
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Table 2. Transformation table of linguistic variables of fuzzy
DEMATEL [34].

R Triangular
S Linguistic
Linguistic terms fuzzy
values
numbers
No influence (No) 1,1,1) il
Very low influence (VL) 2,3,4) 3
Low influence (L) 4,5,6) 5
High influence (H) (6,7,8) 7
Very high influence (VH) (8,99 9

not specified, PLS is more powerful. PLS modeling has two
steps; In the first stage, the measurement model is examined
by validity and reliability analysis and also confirmatory
factor analysis, and in the second stage, the structural model
is examined through the path between variables and
identifying the model fit indices.

Model analysis in SEM with PLS-SEM approach
consists of two main steps:

e  Check the model fit;
e  Test the relationships between structures [32].

3.2. Fuzzy DEMATEL

Fuzzy DEMATEL examines the relationships between
criteria and sub-criteria and identifies all the influential and
influential criteria (or in other words, causal criteria) by the
relationship matrix [33]. This method is one of the multi-
criteria decision-making methods. As the name implies, all
calculations are performed in a fuzzy environment.
However, assume @ = (I, m, u) is a triangular fuzzy number.
The Graded Mean Integration Representation (GMIR),
which is shown by R (@), is defined using Eq. (1) [34]:

I+4m+u

R(@)=——

(1

The steps of fuzzy DEMATEL are as follows:

Step 1: Form a group of experts to gather their group
knowledge to solve the problem. However, determining the
criteria to be evaluated as well as the design of linguistic
scales is in this step. In this research, we use linguistic scales
which are given in Table 2.

Step 2: Create a fuzzy matrix with the initial direct relations
by gathering expert opinions. To measure the relationships
between criteria/sub-criteria, we need to put them in a matrix
and ask experts to compare them in pairs based on how much
they influence each other. In this survey, experts will express
their views based on Table 2. Assuming we have n criteria
and p expertise; we have P numbers of the fuzzy matrix

(n X n), each corresponding to the opinions of an expert with
triangular fuzzy numbers. Finally, the average of these
matrices is applied to calculations.

Step 3: Normalize fuzzy matrix of direct relations. To this,
linear scale conversion is used as a normalization formula to

convert scale to comparable scales using Egs. (2) and (3):
a; = Evz[zlif’zmwzrﬁj aﬂdr:max[zrff]a (2)
1 j j=1

noC 1n 5
X=| . and)?..:Z"’:(l’i,ﬂ’i]. 3)

ml mn

Step 4: Calculate the fuzzy matrix of total relations. In this
step, we first calculate the inverse of the normal matrix and
then subtract it from the matrix I, and finally multiply the
normal matrix by the resulting matrix as Egs. (4)-(6):

[ ]=%x(-x)", (4)
[, ]=x,x(1-x,)", 5)
[r,./'.’] =X, x(1-X,)". (6)

Step 5: Creation and analysis of causal diagram. To do this,
we first calculate the sum of the elements of each row (D;)
and the sum of the elements of each column (R;) of the fuzzy
matrix above. D; indicates the level that each factor affects
the other factors in the system. Also, R; indicates the
effectiveness of each factor from the other factors.
Consequently, D + R and D — R are calculated. More value
of D + R results that this factor is more interactive with other
system factors. On the other hand, if D — R is positive, the
variable is causal, and if it is negative, it is not a cause. The
causal diagram can be plot based on D + R and D —R.
Interested readers can gain more detail about the steps of
fuzzy DEMATEL from the paper of [35].

3.3. Fuzzy BWM

Fuzzy BWM is one of the new multi-criteria decision-making
methods. The basis of this method is to measure the criteria by
comparing pairs. In the fuzzy BWM, the weight of the criteria
is determined by determining the priority of the best criterion
over other criteria and the preference of all criteria over the
worst criterion. Advantages of this method compared to other
multi-criteria decision-making methods are:

e Requires fewer comparative data;

e This method leads to more stable comparisons and
provides more reliable answers;

e This approach can easily combine with other MADM
methods [36].

The steps of fuzzy BWM are as follows [37]:
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Table 3. Transformation table of linguistic variables of fuzzy BWM [37].

Linguistic terms

Membership function

Equally Important (ET)
Weakly Important (WI)
Fairly Important (FI)
Very Important (VI)
Absolutely Important(Al)

(1,1,1)
(0.667, 1, 1.5)
(1.5,2,2.5)
2.5,3,3.5)
(3.5,4,4.5)

Table 4. Consistency Index n(CI) based on [31].

(ED?* (Wn® (FI)¢ (VD! (AD*
agw  (1,1,1)  (0.667,1,1.5) (15,2,25)  (25,3,3.5) (3.5, 4,4.5)
I 3.00 3.80 5.29 6.69 8.04

4 Equally Important; > Weakly Important; ¢ Fairly Important; ¢ Very Important; ¢ Absolutely

Important.

Step 1: Determining the best and worst (most important and
less important): This step can be determined using expert
opinions or a fuzzy Delphi method;

Step 2: Pair comparison of the best criterion with other
criteria and other criteria with the worst criterion: In this step,
pairwise comparison vectors with the following
transformation in Table 3.

Considering Ay, and Ay are the comparison vectors of other-
to-worst and best-to-other as Egs. (7) and (8).

IZIW = (dlw’dZW"“’anW)’ (7)
j’iB =(&’Bl>5327"'7dl¥n). (8)

Step 3: Creating a fuzzy BWM model: In this step, you can
calculate the factors using the nonlinear under-weight
planning model based on Eq. (9):

min &*
(Z‘V mvﬂ uﬂ’)
s Uy myuy)

525 <(k',k",k")Vj

w w w
() sm} u;

()

<(k',k" k"))

Uyps 1y st y)

W ARY
=
[P <m} <u;vj

I >0v)

S.t.: (9)

Step 4: In this method, after solving the model in Eq. (9), a
formula is used to calculate the Consistency Ratio (CR) to
check the validity of the comparisons. First, based on the
comparison vector of best-to-worst criteria, the Consistency
Index (CI) is determined (according to Table 4). Then, the
CR calculated applying Eq. (10) [37]. The smaller value for
CR (close to zero) is better.

*

CR=%_.
I

3.4. WFMEA

(10)

Risk assessment is a logical method for determining the
quantitative and qualitative score of hazards and examining
the potential consequences of potential accidents on people,
materials, equipment, and the environment. The FMEA
method is one of the most common methods of risk
assessment in industries in which possible failures and risks
during the project are identified and the amount of risk is
calculated. FMEA was first used by the aerospace industry
in the 1960s and rapidly was used in the automobile industry
and other industries gradually. FMEA is a systematic tool
used to identify, evaluate, prevent, eliminate or control
failures and their potential effects on a system, design
process, or service. Furthermore, the defects can be rooted
out and prevented from occurring [38].

The main factors in FMEA which should be scored are
Severity (S), Occurrence (O), and Detection (D). Severity
means the severity of the risk or the degree to which it is new
is the potential risk effect on individuals. There are four
scores for severity that are expressed on a scale of 1 (minor
effects) to 4 (dangerous). Occurrence determines how often
a potential cause or mechanism of danger occurs. The
probability of occurrence is measured on a scale of
I(unlikely) to 4 (very often). Finally, detection is the
possibility of discovering the occurrence of a hazard that has
scored from 1 (almost certain) to 4 (rarely) [39].

3.5. Markov chain

A Markov chain is a stochastic model depicting possible
events sequence in which the probability of each event
depends on the previous event only [40]. Based on this, in
this study, we define a matrix P which shows the probability
of being in a special risk level and transfer to other levels in
one period later as Eq. (11):
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Table 5. Different levels of occurrence risk factor.

O1 0: 0; 04 Os
Mean time Mean time Numbe
S between failures between Repeatability in  Repeatability Level
Visibility . . . . . . . r
in normal failures in normal situation  in pandemic
situation pandemic
Not visible at all Same failures Same failures Very High
< <
I months 3 days in 1 months in 3 days (VH) >

?Jlslisrllblteh‘zg:\e/ice 1-6 months <3-6 davs Same failures Same failures High 4

& Y in 1-6 months in 3-6 days (H)
Visible between
two inspection 6 months to 1 vear A week to a Same failures in Same failures in Moderate 3
intervals y month 6 months to 1 year  a week- a month ™M)
Visible while | vear -2 vears 1-2 months Same failures Same failures Low )
inspecting y Y in 1-2 years 1-2 months @)
Visible before an Failure is unlikely Fall'ure s Remote
. . >2 years >2 months unlikely 1
inspection >2 years (R)

>2 months

Pu Po Ps Pu Pis
Pr Pr Pr Pr Pr
Pu Pn Py Pu P
Por Par Par P Por
po|Pu Pe P Pu P o
Pir Py Pyr Pisr Pir
Pu Po Po Pu P
Par Par Par Par Par
P Pn Ps P Pss
Psr Psr Psr Psr Dsr

The second phase supposes that this matrix will remain
constant after a long time. This is called a steady-state
probability. It is calculated by multiplying the matrix P more
and more until it converges. So that the risk distribution at
the steady-state is as vector V in Eq. (12) [5]:

V=R VTs). (12)

4. Results

4.1. Identifying devices for COVID-19 patients and their

failures in the case study

The effective way to deploy the methodology is to select a
real case study. For this purpose, we used a private hospital
in Iran which services COVID-19 patients in the pandemic
period and has ten active departments dedicated to COVID-
19 patients includes three ICU departments, two CCU
departments, and five inpatients departments. The devices
used include a digital X-ray machine, CT scan 16Slice,
ventilator, patient monitor, echo cardiograph, syringe pump,
ECG, real-time PCR, cell counter, elisa reader.

These important and functional devices which are used
for COVID-19 patients are listed. Table A.1 in Appendix A
(in the supplementary data) shows these devices and their

probable failures in Supplementary Material.

4.2. Define factors and sub-factors of FMEA and
validating them using SEM

In FMEA, the risk priority orders of the identified failure modes
are scored by a RPN. The RPN is calculated from the
multiplication of the three risk factors Occurrence (O), Severity
(S), and Detection (D). but in this study, we considered some
sub-factors with related ranges for each of three factors due to
focus on more parameters for calculating each factor score.
These are extracted from the literature or some from expert

opinion. The sub-factors are described as follows:
Occurrence

O:: Visibility: The failure occurrence probability
especially hidden ones [14];

O,: Mean time between failures in the normal situation:
The interval between two consecutive failures in a
normal period [41];

O3: Mean time between failures in a pandemic: The
interval between two consecutive failures in the
pandemic period;

Os: Repeatability in the normal situation: Frequency of a
failure occurrence with the same cause during the
same period in the normal situation [42];

Os: Repeatability in Pandemic: Frequency of a failure
occurrence with the same cause during the same
period in the pandemic situation.

Also, Table 5 shows the different ranges and related levels of
01-0:s.
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Table 6. Different levels of detection risk factor.

D1 D> D; Dy Ds
o i . i i Level Numb
Pl‘Obablllt}:' of Detection method Detection costs Detection Detection eve umber
non-detection speed accuracy
Low or no No failure detection 5-10 working o .
detectability method 750-10008 days <20% Very High (VH) >
No failure detection
. - method but the failure can 3-5 working 0/ AN .
Fair detectability fairly be detected without 500-7508 days 20%-40% High (H) 4
method
Likely to detect The failure detection 200-500$ I-3working 4500 6006 Moderate (M) 3
method usually is used days
Good degree of . .
o There is a not-automated 1 hto 1 working 0/ Qo
detectability failure detection method 100-200$ days 60%-80% Low (L) 2
High degree of There is an automatic . o o
detectability failure detection method 0-100% Less than 1 h 80%- 00% Remote (R) !
Table 7. Different levels of severity risk factor.
S$1 and Sz 83 and Sy Ss Se
Patient general Potential H.Sk Mean time to . Level Number
for the device . Economic loss
safety repair
operator
Death Serious infected Order a new device = 60 % of the device price Very High (VH) 5
- Several days for 30% < 56 < 50% High
Severe injury Infected repair of the device price H) 4
- . 20% < 56 < 30%
Moderate injury Moderate infected 1 day- 4 days of the device price Moderate (M) 3
L L 10% < 56 < 20% Low
Minor injury Minor infected 1 h-1 day of the device price (L) 2
. . 0<56<10% Remote
Less or no effect No infection <1lh of the device price (R) 1

Detection

D Probability of non-detection: The probability of when
a failure will not be detected [43];

D;: Detection method: The degree of automation for a
medical device failure detection method [14];

Ds: Detection costs: The average cost of failure detection;

Dy: Detection speed: The average time to detect the failure;

Ds: Detection accuracy: How much the detection is valid.

Table 6 shows the different ranges and related levels of D-
Ds.

Severity

Si: Patient general Safety: General safety level of the
patient during failure occurrence [44];

S»: patient safety from Infection risk: Infection risk level
of the patient During and after failure occurrence;

S3: The potential risks for patients, operators, and nurses
in the normal situation;

S4: The potential risks for patients, operators, and nurses
in the pandemic situations;

Ss: Repair meantime: The average time for repairing a
medical device [45];

Se: Economic loss: Includes maintenance cost and the cost
related to delayed treatment [46].

Table 7 shows the different ranges and related level of ;-
Se.

To check the validity of the sub-factors selecting, the
measurement and structural models should be fitted:

Fitting of measurement models

The model drawn in SmartPLS software is as shown in
Figure 2. It shows the strengths of the relations between each
level of the model both the main factors and FMEA analysis
and the sub-factors with related factors.

One of the study indicators in fitting the measurement
model is the factor load. The strength of the relationship
between the factor (hidden variable) and the visible variable
is indicated by the factor load. The factor load is a value
between zero and one. If the factor load is less than 0.3, a
weak relationship is considered and ignored. The factor-load
of between 0.3 and 0.6 is acceptable, and if greater than 0.6
it is highly desirable. Therefore, relationships with a factor
load of less than 0.3 will exclude from the model.
Fortunately, Table 8 shows the factor loads which were
depicted in Figure 2. Based on this, all variables have a factor
load of more than 0.3 and all of the, are acceptable.
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Figure 2. FMEA risk factors and sub-factors SEM model.

Table 8. Variables factor loads of SEM.

Hidden variable \(f)al;"i,:i:;)l;: Factor load
O 0.847
0> 0.897
Occurrence Os 0.932
O+ 0.959
Os 0.883
D, 0.960
D: 0.861
Detection Ds 0.623
Dy 0.879
Ds 0.960
Si 0.741
S> 0.593
Sz 0.690
Severity s, 0.893
Ss 0.889
S6 0.849

Cronbach's alpha rate and hybrid reliability coefficient
are also used to measure the combined reliability of the
model. Also, to derive convergent validity in the model, the
mean of extracted variance (AVE) index is used. These
values are shown in Table 9 which are the software outputs.

Therefore, according to the stated values, it can be seen
that the validity and reliability and in general the fit of the
measurement model are proved.

Fitting the structural model

T-test and R2 criterion are used to check the structural model
fit. Table 10 shows the software outputs for the z significance
test. It should be noted that the test in the model of this
research has been tested at 95% confidence level. In the #-
values test, the values must be greater than 1.96, otherwise,
the test will be rejected. As can be seen in Table 10, the value
of the z statistic for all variables is greater than 1.96.

In SEM, the R2 criterion is related to the endogenous
(dependent) variables of the model. R2 is a criterion that
indicates the effect of an exogenous variable on an
endogenous variable and three values of 0.19, 0.33, and 0.67
are considered as the criterion values for weak, medium, and
strong values of R2. Table 11 shows the R2 values for the
model-dependent variables.

In this section, it can be seen that the stated criterion R2
has the standard limit and the desired value and as a result, is

valid.
The overall fit of the model

To test the overall fit of the model, two basic hypothesis tests
have been used. T-test hypothesis test and path coefficient
test, which were examined separately during the fit of the
measurement model and the structural model. In this model,
several statistical hypotheses have been examined that the
effect of occurrence, severity, and detection on FMEA
results. In Table 12, according to the Z test statistics as well

as the path coefficient, the hypothetical tests are examined.
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Table 9. Validation of SEM outputs.

. Cronbach's Combined Mean extraction
Hidden ey ers .
variable alpha reliability variance

coefficients . > 0.7 coefficient a > 0.7 AVE > 0.5
Occurrence 0.946 0.957 0.818
Detection 0.910 0.936 0.749
Severity 0.873 0.903 0.614

Table 10. Z significant test.
Hidden Obvious

variable variable To
O 31.048
0: 43.277
Occurrence O3 60.075
O« 133.903
Os 70.342
D; 158.604
D; 30.476
Detection D3 12.550
D4 53.984
D5 161.461
S1 17.241
S§2 9.562
Severity S3 14.570
S4 83.124
S5 69.420
S6 41.141

Table 11. R2 values for dependent variables.

Hidden variable R2 value
Occurrence 0.655
Detection 0.425
Severity 0.898

Table 12. Hypothetical tests results.
Hidden Path

variable coefficient To Result

Occurrence 0.652 27.043  Acceptance
Detection 0.809 42.056  Acceptance
Severity 0.948 196.148  Acceptance

As can be seen, according to software outputs and
hypothetical tests, all the risk factors and their sub-factors
affect the FMEA score and thus the factors and sub-factors
of the research are proven.

4.3. The interrelationship between sub-factors using fuzzy
DEMATEL

In this section, the interrelationships among the sub-factors
of O, D, and S are identified by the fuzzy DEMATEL
method. Moreover, since determining the best and the worst

Table 13. Determining the best and the worst
sub-factors of occurrence.

Criteria D+R The best The
worst
0; 2.866
(0)) 2.210
O3 2.571 0; 0>
Oy 2.797
Os 2.661

Table 14. Determining the best and the worst sub-factors of
detection.

Criteria D+R The best The worst
D 7.874
D> 9.127
D3 7.093 D> Ds
D4 8.169
Ds 6.99

Table 15. Determining the best and the worst sub-factors of
severity.

Criteria D+R The best The worst
Si 2.522
S> 2.695
S3 2.5651
S Si
S4 3.828
Ss 6.571
Y 4.780

criteria is hard work especially when the decision-makers
have different points of view, in this research, we apply the
output of the fuzzy DEMATEL to specify the best and the
worst criteria. In this way, the criteria with the highest D+R
are considered as the best, and the criteria with the lowest
D+R are defined as the worst. Table B.1-B.3 in Appendix B
(in the supplementary data) shows the average of experts’
opinions based on fuzzy numbers. Also, the crisp counterpart
of the relation matrix is presented in Table B.4-B.6 in
Appendices. Finally, the best and the worst criteria have been
determined in Tables 13-15.

4.4. Weighting sub-factors based on the output of
FDEMATEL output and FBWM

In this section, we report the obtained results from the

implementation of the FBWM for each risk factor. It should

be noted that the pairwise comparison is a collection using

questionnaires that are distributed to five experts who were
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managers and experts of medical devices. The average
opinions of three groups of experts are given in Tables C.1-
C.6 in Appendix C (in the supplementary data). For the
occurrence factor, based on expert’s opinions, O is the best,
and O is the worst. The achieved results are given in Table
16. The results of FBWM for sub-factors of detection are
given in Table 17. For this mode, as DEMATEL results
shown, select D as the best and Ds as the worst sub-factor.
Table 18 shows the results of FBWM for the sub-criteria of
severity risk factors. In this mode, S5 and S as the best and
worst criteria.

Based on the sub-factor weights obtained above, the
score of each failure will calculate in the next section.

4.5. WRPN for failures
In this step, a WRPN can be calculated using the sub-factors
weights through Eq. (13):

WRPN:(iOI. xa,.jx[zst,- Xﬂin(iS,- ><7,), (13)

where O; is occurrence of failures; a; the occurrence sub-
factors weights; D; the detection of failures; f; the detection
sub-factors weights; S; the severity of failures; y; the severity
of sub-factors weights.

Based on Eq. (13), Table 19, shows the results of
WFMEA for failures of the devices. After analyzing the
results obtained in Table 19, the experts specified different
ranges to categorize the failures into five categories of risk
failures such as very low, low, medium, high, and very high.
In Table 20, different levels of risk failures and their related
WRPN ranges are described.

4.6. Estimating very low/ low/ risks failures in the long
term

Based on Table 20, there are seventeen failures that are very
low and low risks. Experts decided to update their WRPN
scores during the time to consider some inadequate
information for these types of failures. This correction factor
involves the long-term possible effect of these failures. It
means that it can estimate whether a failure remains in its
current level or increase in next periods.

However, the probability of each very low and low failure
risk is evaluated in long term. To do this, the one-step
transition probability will be defined as Matrix P explained
in Subsection 3.5. the one-step transition matrix of all very
low and low failures is shown in Tables D.1-D.17 in
Appendix D (in the supplementary data). The probabilities
of remaining the failures in a unique risk level in the next
periods are described as a steady-state vector of V; , which is
shown in Table 21 for very low and low failures.

By calculating the steady-state, a RCF can be defined for
recalculating the WRPN for very low and low failures. This

correction factor relates to the sum of the probabilities of
high and very high probabilities at the steady-state of each
failure based on (Brun & Savino, 2018 [7]). So, we calculate
Py vn as Eq. (14) in Table 22:

By =Vt Vs, (14)

Besides, the RCF factor is specified based on different ranges
of C as Table 23. Updated WRP are calculated in Table 24.

5. Discussion

The medical devices risk assessment problem aims to score
different failures of devices and it includes a failure modes
evaluation process that considers qualitative and quantitative
criteria. Dealing with this problem, there are many different
tools and techniques which are useful.

Since FMEA is a popular method for evaluating the risks,
it is important to use it but in a way that its shortage cover by
defining more factors besides Occurrence, Detection, and
Severity. However, the least important of failures initially is
maybe at a higher risk level over time. So, a pattern that
shows dynamics of risk levels priority is necessary especially
for very low and low-risk failures, which can be attained
through Markov chains. These chains can suggest tracing
and predicting the pattern of constantly changing processes.
For example, now when we are in the initial months of the
pandemic, some failures like the display screen of the
ventilator or the slip rings of CT scan are in very low and
low-risk levels, but when the times they are disinfected
become more and more, it is the probability that their risk
levels increase. It is obvious that as the COVID-19 continues
and the infected patients increase, the risk levels of the
failures which are not that important today are changing. So,
if the changes in risk levels are not considered, sudden
serious failures are probable to lead to death on severe
injuries to patients or either device operators. But using the
Markov chains, the risk level scores can be calculated more
accurately.

Also, there are some factors when decision-makers try to
use FMEA such as Occurrence, Detection, and Severity. In
this study, we defined some sub-factors for each of them
when some of them imply the general situation, and some of
them are especially related to the pandemic situation.

Based on Table 16, visibility of failure occurrence has
the most weight, and also mean time between failures in
the general situation has the least weight between the sub-
factors of occurrence based on the expert opinion. It
means that when a failure occurred it is more critical to be
visible for operators to react through its repairing or
avoiding more hurt.

However, based on Table 17, the method of failure
detection has the most weight, and also detection accuracy
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Table 16. The results of FBWM for the sub-factors of the occurrence risk factor.

Criteria 0; 0: 03 0y Os
Optimal weights 0.3148588 0.09515465 0.2917890 0.1441147 0.1540829
£'=0.50000 CI=6.69 > CR=""""C- = 0.0747

Table 17. The results of FBWM for the sub-factors of the detection risk factor.

Criteria D; D> D3 Dy D5
Optimal weights 0.2292430 0.3460532 0.2265062 0.1115224 0.08667522
£'=0.3594849 CI=8.04 > CR% = 0.0447

Table 18. The results of fuzzy BWM for the sub-factors of the severity risk factor.

Criteria S S> S’3 Sy S's S's
. . 0.1333488
Optimal weights 0.09662019 0.1029543 0.2250613 0.1232335 0.3187820
0.7948322

£7=0.7948322 CI=8.04 > CRT = 0.0988

Table 19. The results of weighted FMEA for failures.

Failure Occurrence Detection Severity WRPN
no. 0, 0, O; 0y Os D, D, D; D, Ds S, S, S5 S, S5 S, Category
Weights 0314 0.095 0291  0.144 0.154 0229 0346 0226 0.1l _ 0.866  0.096  0.102 0225 0.123 0318  0.133

1-1 2 2 3 2 4 4 2 3 4 2 1 1 1 3 3 3 16.2 High
1-2 3 2 3 3 4 2 3 2 2 2 2 2 1 4 3 3 17.7 High
1-3 1 3 5 3 4 3 1 1 1 1 1 2 1 4 2 2 12.9 Medium
1-4 2 3 3 4 3 2 3 1 2 1 1 1 1 3 2 1 15.6 High
2-1 1 2 1 2 2 1 2 2 2 1 2 2 1 3 2 3 4.7 Very low
2-2 4 4 4 4 1 2 2 1 2 2 1 1 1 1 2 1 8.2 Low
2-3 1 2 1 3 4 3 2 2 2 1 1 1 1 1 2 2 5.7 Low
2-4 1 3 2 5 1 4 4 2 3 3 1 1 1 2 3 1 13.8 Medium
3-1 2 1 2 1 2 2 3 1 3 3 5 5 1 3 3 4 12.5 Medium
3-2 2 3 2 3 5 5 5 1 1 1 3 1 1 4 1 1 13.9 Medium
3-3 1 2 1 2 1 2 2 1 1 1 1 1 1 2 2 1 33 Very low
3-4 1 2 1 2 2 4 5 3 3 3 4 3 1 3 3 4 17.6 High
4-1 3 1 3 1 4 3 3 1 2 2 2 1 1 2 2 1 9.6 Low
4-2 4 1 3 1 5 3 2 1 1 1 1 1 2 2 1 1 7.6 Low
4-3 4 4 4 5 5 4 3 1 1 2 4 1 1 3 2 2 21.0 Very high
4-4 2 3 2 3 2 3 3 1 1 1 1 1 1 3 2 2 13.8 Medium
5-1 1 1 1 1 5 4 4 3 3 3 1 1 1 2 2 3 9.8 Low
5-2 2 2 1 2 1 3 3 1 1 2 1 1 1 3 4 3 8.5 Low
5-3 2 3 2 3 2 2 4 2 2 1 1 1 1 3 2 2 19.7 High
5-4 1 1 1 1 2 5 3 3 3 3 1 1 1 3 4 3 11.5 Medium
6-1 1 1 1 1 4 1 1 1 2 1 3 1 1 2 2 2 2.8 Very low
6-2 1 1 1 1 4 2 2 1 2 2 5 1 1 2 2 1 4.7 Very low
6-3 2 2 1 2 4 3 3 1 2 1 1 1 1 2 2 3 7.7 Low
6-4 1 2 1 3 4 4 2 2 1 1 1 1 1 2 2 2 6.5 Low
7-1 2 1 2 1 4 4 3 2 2 2 3 1 1 2 5 5 18.1 High
7-2 3 2 2 2 1 3 2 1 1 1 1 1 1 2 5 5 11.4 Medium
7-3 4 3 4 3 4 3 2 1 2 1 1 1 1 2 2 2 16.2 High
7-4 3 3 3 4 4 4 2 3 1 1 1 1 1 2 5 2 20.7 Very High
8-1 2 1 1 1 3 1 1 3 2 1 1 1 1 1 4 3 5.6 Low
8-2 1 1 1 1 1 1 1 2 2 1 1 1 1 3 2 2 22 Very low
8-3 2 4 2 4 5 2 1 3 4 3 1 1 1 3 3 2 12.9 Medium
8-4 1 2 1 2 4 2 2 2 2 2 1 1 1 4 4 4 13.6 Medium
9-1 2 1 3 3 5 4 4 3 3 4 1 1 1 4 3 2 21.9 Very high
9-2 1 1 2 1 4 4 3 3 2 1 1 1 1 3 2 3 94 Low
9-3 2 2 2 4 4 2 2 2 2 1 1 1 1 3 2 3 17.3 High
9-4 1 3 2 2 4 2 2 2 2 1 1 1 1 3 2 3 14 Medium
10-1 3 3 2 4 4 1 1 3 2 1 1 1 1 3 3 4 10.7 Medium
10-2 1 1 1 2 3 1 1 2 1 1 1 1 1 3 1 2 2.4 Very low
10-3 1 5 1 4 5 5 5 3 3 4 1 1 1 3 2 3 18.8 High
10-4 2 2 1 3 4 1 1 1 1 1 1 1 1 3 2 2 9.2 Low
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Table 20. Failure modes categorizing.

WRPN Category
O0<WRPN<5 Very low risk
S<WRPN< 10 Low risk
10<WRPN< 15 Medium risk
15<WRPN< 20 High risk
WRPN> 20 Very high risk

Table 21. Risk distribution at steady-state.
The probability at steady-sate

Failure };e‘:y Low Medium High ng Total
2-1 0.004 0.002  0.004 0.02 0.97 1
2-2 0.002  0.001 0.037 0.24 0.72 1
2-3 0 0.006 0.014 0.16 0.82 1
3-3 0.005 0.005 0.005 0.015 0.97 1
4-1 0.014 0.023  0.074 0.22  0.669 1
4-2 0 0.02 0.33 0.15 0.5 1
5-1 0 0.031 0.013 0.09  0.866 1
5-2 0 0.01 0.17 0.12 0.7 1
6-1 0.006 0.024 0.03 0.22 0.72 1
6-2 0 0.04 0.08 0.06 0.82 1
6-3 0 0.005  0.005 0.05 0.94 1
6-4 0 0 0.01 0.24 0.75 1
8-1 0 0.07 0.13 0.25 0.55 1
8-2 0 0.01 0.03 0.1 0.86 1
9-2 0 0 0.08 0.08 0.84 1
10-2 0 0.005 0.015 0.16 0.82 1
10-4 0.002 0.003  0.005 0.05 0.94 1

Table 22. Risk distribution at steady-state.

Failure Phyn
2-1 0.99
2-2 0.96
2-3 0.98
33 0.985
4-1 0.88
4-2 0.65
5-1 0.95
5-2 0.82
6-1 0.94
6-2 0.88
6-3 0.99
6-4 0.99
8-1 0.8
8-2 0.96
9-2 0.92
10-2 0.98
10-4 0.99

has the least weight between the sub-factors of detection
based on the expert opinion. It means that detecting the
failure is very hard in most cases and is the most important
sub-factors. Usually, if a failure can be detected it is accurate
based on expert opinion and historical data. So, the detection
accuracy is the least important sub-factor.

Table 23. RCF ranges.

Puyn RCF
Pyyn <0.30 1
0.31 <Py yp<0.45 1.5
0.46 <Py yp, < 0.60 2
0.61<Ppyp < 0.85 2.5
Pyyp > 0.86 3

Table 24. Updated WRPN.

. Updated
. Risk Updated .
Failure WRPN level RCF WRPN risk
level

v

2-1 47 ey 3 141 Medium
low

2-2 8.2 Low 3 24.6 Medium

2-3 5.7 Low 3 17.1 Medium
Vi

33 33 ey 3 99  Low
low

4-1 9.6 Low 3 28.8 Medium

4-2 7.6 Low 2.5 19 Medium

5-1 9.8 Low 3 29.4 Medium

5-2 8.5 Low 2.5 21.25 Medium
Ve

6-1 28 ey 3 84  Low
low
Vi

6-2 47 vy 3 141 Medium
low

6-3 7.7 Low 3 23.1 Medium

6-4 6.5 Low 3 19.5 Medium

8-1 5.6 Low 2.5 14 Medium
Vi

8-2 22 ey 3 66  Low
low

9-2 9.4 Low 3 28.2 Medium
Ve

10-2 2.4 ey 3 72 Low
low

10-4 9.2 Low 3 27.6 Medium

Finally, as Table 18 shows in severity factor, mean time
to repair is the most important sub-factor where the patient
general safety is the least important one. it can be concluded
that most of the time when a medical device faces failure, it
doesn’t hurt the patients by itself directly, but the time last
for repairing cause to more danger for patients need that
device.

Based on Table 19, most of the failures categorized in
very low and low-risk levels (12 /17) are the general failures
related to all medical devices except Digital X-ray machines
and ECG. For the medium, high, and very high category the
pandemic-related failures are more than general ones. It
shows that the expert and operators of these medical devices
are aware of the pandemic-related failures and notice them
as more important than general ones. Figure 3 shows the
general and pandemic-related failures in each of the five risk

categories.
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Figure 3. Risk levels general or pandemic related failures.

6. Managerial implication

In this section, we try to extract several managerial insights
based on the results of the study as follow:

o This paper proposed an integrated Markovian WFMEA
model for risk evaluation for medical devices used for
positive COVID-19 patients in hospitals. It can provide
an appropriate perspective to hospital medical device
managers for preventive maintenance plans based on
the results obtained;

e Figure 2 showed that there are several sub-factors
defined for the occurrence risk factor (visibility, mean
time between failures in the normal situation, mean
time between failures in a pandemic, repeatability in
the normal situation, repeatability in pandemic) had the
highly desirable relationship with occurrence (factor
loads were more than 0.6). In addition, the sub-factors
of detection risk factors (probability of non-detection,
detection method, detection costs, detection speed,
detection accuracy) also had a highly desirable
relationship with detection (factor loads were more
than 0.6). Finally, for the severity risk factor, the
defined sub-factors were patient general safety, patient
safety from Infection risk, the potential risks in the
normal situation, the potential risks in a pandemic
situation, repair meantime, economic loss. All of them
had highly desirable relationships except patient safety
from Infection risk which had an acceptable
relationship (factor load of between 0.3 and 0.6). So,
the medical device managers could consider the sub-
factors for more accurate risk evaluation and not only
the three main risk factors;

e Based on Table 16, the most important sub-factor of
occurrence risk factor was visibility (optimal weight:
0.3148588), and the least important was a mean time
between failures in the normal situation (optimal
weight: 0.09515465). Based on Table 17, the most

important sub-factor of detection risk factor was the
detection method (optimal weight: 0.3460532) and the
least important was detection accuracy (optimal
weight: 0.08667522). Based on Table 18, the most
important sub-factor of severity risk factor was
repaired meantime (optimal weight: 0.3187820) and
the least important was patient general safety (optimal
weight: 0.09662019). The managers should be certain
about the more important sub-factors and then decide
for their maintenance plans considering their
prioritizations for higher risk management levels;

e The failures with medium, high, and very high-risk
levels are important to be considered, too. Based on
Table 19, 23 failures of all 40 failures had a high or
very high score which is more than half of the failures.
Managers should focus on them seriously since they
can hurt patients directly;

e When medium, high, and very high-risk levels failures
are very important for a hospital, it is necessary to
predict the risk levels of very low and low-risk levels
in the future, too. Among 17 failures with very low and
low-risk levels, 13 of them transfer to medium risk
levels based on Table 24. Managers should plan for
preventive maintenance schedules, especially for these
failures.

7. Conclusion and future studies

This study tried to consider different devices related to
COVID-19 patient failures and assess their risks as one of
the important issues affecting hospital costs and more
important patient safety. Therefore, risk assessment,
especially for expensive equipment, can be important for
hospitals. Also, due to the pandemic and high volume of
COVID-19 patients, a device failure may result in death or
severe injury to a patient. In this regard, we used Weighted
Failure Mode and Effects Analysis (WFMEA) by describing
more sub-factors and weighted the using fuzzy Decision-
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Making Trial and Evaluation Laboratory (DEMATEL) and
fuzzy Best-Worst Method (BWM). Markov chain is also
used for considering long-term impacts and reprioritize
devices for facing the risk in the future. Considering a
hospital serves the COVID-19 patients in Iran as a case
study, the proposed approach was executed and results
showed that near half of the device failures are scored
medium risk level or more. Although the remained half is
very low and low level, there are some probabilities for each
of them during the time as the pandemic situation is going
worse. So, based on the Reprioritization Correction Factor
(RCF) based on the Markov transition matrix, most of these
very low and low-risk failures may lead to a medium level,
and planning for avoiding the serious problem is necessary.
The limitations of the model proposed in this study are: (i)
Other hospitals should assess their medical devices risks and
cannot use the same results of this study; (ii) Calculating the
risk levels needs questionnaire and the expert and this is not
an intelligence-based model. So, future researches can
combine the Markov transition matrix with artificial
intelligence methods and proposed a prediction artificial
intelligence approach to investigate the device risks and
comparing the results with the current study. Also,
researchers can consider risk assessment for other medical
devices for different patient categories, and also other risk
assessment tools can be investigated.
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