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Abstract 

The present mathematical framework theoretically investigates the impact of the fractional model on heat 

transfer advancement in mixed convection magnetohydrodynamics Maxwell hybrid nanofluid flow through a 

bi-directional stretching sheet. A Caputo-time derivative model is adopted in the work to inspect the behavior 

of fractional parameters on flow and heat transfer properties. Nanoparticles like copper and titanium dioxide, 

and base fluid water are considered for forming a hybrid nanofluid. Also, magnetic, buoyancy, and heating 

effects are considered. A system of non-linear coupled governing equations with the model of Caputo-time 

fractional derivative is subjected to non-dimensional forms by inserting appropriate non-dimensional quantities. 

Numerical results for the developing non-linear problem are acquired using a finite difference approximation 

technique together with the L1 algorithm. The impact of the involved flow influential elements on heat transfer 

and flow characteristics is analyzed and portrayed graphically. From the study, it is identified that the 

strengthening of fluid flow of hybrid nanofluid is directly correlated with the order of fractional derivatives, 

and the reverse trend is observed in thermal distribution. 
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1. Introduction 

Modern advances in nanotechnology have led to the discovery that the thermophysical characteristics of fluids 

fundamentally alter with the suspension of traditional nanoparticles/base fluids, which form nanofluids. In 1995, Choi 

came up with the term "nanofluid" [1]. Vemula et al. [2] have discussed a numerical model of transient natural convection 

flow of nanofluid with variable surface thermal distribution. A review on the flow of magnetohydrodynamics (MHD) 

nanofluids with radiation effect over a vertical plate is carried out by Sheela  et al. [3]. The thermal and mass transfers 

effect of a 3rd-grade nanofluid past a convectively heated surface under magnetic impact is examined by Ali et al. [4]. 

Khan et al. [5] have analyzed entropy generation and thermal radiation effects on the flow of Sutterby nanofluid. Xiong 

et al. [31] studied the heat transfer and flow characteristics of couple-stress nanofluid with thermal conductivity and 

thermal radiations, variable viscosity, and non-uniform magnetic field effects. A critical insight into nanofluids for heat 

transfer enhancement is carried out by Alami et al. [6]. The thermally generated bioconvection flow of Williamson 

nanoliquid across an inclined stretched cylinder with linear mixed convection and a non-uniform heat sink/source was 

examined by Zhou et al. [32] using the bioconvection phenomena, suspension of gyrotactic microorganisms, and the 

activation energy is explained. In addition to continuing to employ these fluids, researchers have also been using a new 

category of nanofluids termed "hybrid" nanofluids (HNFs), which are obtained by suspension of nanoparticles or composites 

of distinct metals into the traditional(base) fluids. These HNFs are better and more stable than ordinary nanofluids. It is 

undeniable that the supplement of nanoparticles improved the thermal conductivity of base fluids, but it also caused issues 

along with stability, erosion, pressure drop, convection heat transfer, and pumping power, because the viscosity was 

improved as a result of the formation of clusters, which increased the hydrodynamic diameter and decreased the specific 

surface area. In comparison to conventional fluids and the majority of unitary nanofluids, the hybrid nanofluids showed 

increased viscosity. Hybrid nanofluids offer improved rheological characteristics and cause less pipe blockage. Abiddin 

and Bachok have examined the impacts of Al2O3 − TiO2/H2O hybrid nanofluid on heat transfer of steady-state laminar 

flow, and also discussed the stability of the dual solutions. The mixed convection flow and heat transfer of Ag-

TiO2/H2O hybrid nanofluid is analyzed by Bakar    et al. [7] with the impact of magnetic and radiation. A numerical 

illustration of boundary layer and MHD flow of Ag-TiO2/H2O hybrid nanofluid in an irregular channel was reported by 

Kalpana et al. [8], and they discussed the impact of thermophoresis effect and Brownian motion in the heat transfer 

process. Few experimental and theoretical works on hybrid nanofluid under various circumstances were reported by 

several researchers [[9], [10], [11], [12], [13], [33]]. Also, to evaluate the impact of fluid viscosity and elastic behavior 

on flow nature, Maxwell suggested one of the most straightforward viscoelastic fluid models. This type of fluid is widely 

known as Maxwell fluid, and the associated model is the Maxwell fluid model. Several authors adopted the Maxwell 

model to inspect the flow behavior of hybrid nanofluids under various circumstances [[14], [15], [16]]. 

However, in the aforementioned works, the fractional derivatives involved in the governing equations have not be 



 

 

 

considered in the classical study of nanofluids/hybrid nanofluids. The majority of research works are restricted to models of 

integer order. However, the fractional model becomes more significant as a result of its role in explaining the intricate 

behavior of materials, notably long-term memory on fluid properties. Few works in this area have recently received 

notification. Using Caputo-time fractional derivatives, Aman et al. [17] investigated the impact of heat and mass transfer on 

a graphene-sodium alginate nanofluid. They also discussed about improvement of heat transfer by using mixed convection 

MHD Poiseuille flow of graphene- water nanofluid in a vertical channel [18]. Madhura et al. [19] have demonstrated 

analytical computation to study the heat transfer and flow characteristics of three distinct water-based fractional 

nanofluids and showed that containing Copper-water nanofluid displays a higher heat transfer rate in the existence and 

absence of thermal radiation. Few research works on fractional nanofluids have been carried out by the researchers in 

various aspects [ [20], [21], [22], [34], [35], [36]]. 

The prime goal of the study is to accomplish numerical computation to find the results of unsteady, two-

dimensional, laminar flow and heat transfer of Maxwell hybrid nanofluid across a vertical plate. The advanced 

model is accomplished with the supplement Caputo derivative and fractional relaxation times in the conventional 

model. Additionally, consideration is given to the effects of Ohmic heating, magnetic field, and internal heat 

production/absorption. The study adopts relaxation times (λ1, λ2) and fractional parameters (α, β) of velocity and 

temperature, respectively, to control the mechanism of the considered mathematical model. Flow and heat transfer 

characteristics are simulated using the L1 algorithm (for fractional derivatives) and finite difference approximation 

(FDA) (for derivatives of integral orders). The impact of the governing parameters is elucidated with the aid of 

plots and tables. 

The overview of the presentation of the article is as follows: Section 2 includes the flow and mathematical 

description. The numerical procedure and convergence criteria of the FDM are illustrated in Section 3.   Section 4 

comprises detailed explanations of the impact of flow parameters on the flow phenomena. Section 5 gives the overall 

conclusions drawn from the investigation. 

The outcomes of the present study have significant consequences for various advanced technologies due to the 

consideration of memory effect, different nanoparticles, and non-Newtonian behaviour. This work provided a 

framework for fluid flow and heat transport in critical engineering systems, and a few of them are listed below: 

 High-performance heat exchangers: The strengthening of thermal profiles with increasing Eckert number (Ec) 

and internal heat generation (Q) upholds the design of compact heat exchangers capable of handling high 

thermal loads in metal casting, chemical processing,  and power electronics cooling. 

 Fractional time effects in transient cooling: The Caputo derivative allows for more accurate modeling of 

transient heat transfer, making it valuable for processes where rapid thermal response is critical, such as laser 

machining, quenching, or cryogenic applications. 



 

 

 

 

2. Mathematical Formulation 

  Maxwell viscoelastic fluid’s constitutive relationship to fractional order derivatives is [23]: 
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According to the definition of the Caputo-time derivative with fractional order 𝛼 is given as [24]:  
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For 𝛽 = 1, Eq. (1) reduces to a form that characterizes fluid-like behavior, as presented in Friedrich (1991), and can 

be written as:  
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Setting   0   in Eq. (3) yields the classical Newtonian fluid model, and conversely, when   1   Eq. (3) corresponds 

to the ordinary Maxwell fluid model. These are given respectively by: 
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 Unsteady, two-dimensional MHD boundary layer flow of Maxwell hybrid nanofluid through a stretching sheet is 

considered. The velocity region is taken as bi-directional across a stretching sheet, and mathematically, it is portrayed 

as [ ( , , ), ( , , ), 0]U u x y t v x y t  .The velocity in the 𝑥-direction, whereas the 𝑦-axis extends upward and perpendicular to the 

plate as shown in   Figure 1. The uniform magnetic field 𝐵0 is employed normal to the fluid flow direction. At the 

beginning ( 0)t  , the sheet is invariant with the persistent environmental temperature 𝜃∞. Subsequently, once 0t 

then the plate setup into the movement with constant velocity 𝑈0 and thermal distribution lowered or raised to 𝜃𝑤. In 

this study, copper (Cu) and titanium dioxide (TiO₂) nanoparticles are introduced into a conventional base fluid, water 

(H₂O). It is assumed that the nanoparticles and the base fluid are in thermal equilibrium. The thermophysical 

characteristics of both the base fluid and the nanoparticles at a specified reference temperature are presented in Table 1. 



 

 

 

The effective co-relations of hybrid nanofluids are given in Table 2. Utilizing Eq. (3) and the governing equations 

present model are given by [25]: 
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 Eqs. (6)-(8) are solved and subjected to the following conditions [19]:  
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 Nondimensionalize Eqs. (6)-(8) utilizing the scaling as follows:  
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 Use Eq. (9) in Eqs. (6)-(8) and neglecting ∗′ 𝑠, one can get the non-dimensional structure of the governing equations as 

below:  
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and the problem is subject to the following boundary conditions: 
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2.1  Determination of Skin Friction and Nusselt Number Near the Plate 

 Surface drag 𝐶𝑓 and the heat transfer rate (Nusselt number) 𝑁𝑢, which compute the viscous shear stress and 

rate of heat transfer individually, are significant physical quantities in assessing the flow and heat transfer properties of 

the fluid. For an integer order model, the expressions for local skin friction, 𝐶𝑓 and heat transfer rate, 𝑁𝑢 are presented 

by:  
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 For the fractional model, 𝐶𝑓 and 𝑁𝑢 given by Eq. 17 can be modified as follows:  
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  Mean local skin-friction and heat transfer rate are presented by:  
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It is important to note that 𝐶𝑓 and 𝑁𝑢 for a conventional Maxwell hybrid nanofluid can be recovered as a special case 

by setting 𝛼 = 1 and β=1. 

 

3.  Numerical Approach and Simulation Outcomes 

To address the coupled, nonlinear, and time-dependent magnetohydrodynamic (MHD) boundary layer 

equations incorporating fractional derivatives, a numerical method is developed in this section. The solution strategy 

combines the finite difference approach (FDA) with the L1 algorithm to handle the temporal fractional derivatives 

effectively. By employing Eq. (13), the system of Eqs. (10)–(12) is discretized and solved using the FDA framework as 

described in [26], integrated with the L1 approximation scheme. This hybrid technique ensures accurate treatment of 

the fractional-order terms while maintaining computational efficiency. 



 

 

 

To implement the FDA, the computational domain in the 𝑥, 𝑦, and 𝑡 directions is uniformly discretized into 𝑁, 

𝑀, and 𝐾 subintervals, respectively. The corresponding step sizes are denoted as x , y  and t . The discrete grid 

points are defined as:  
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At each grid node (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘), the dependent variables ψ∈{U,V,T} are represented by 𝜓𝑖,𝑗
𝑘 , indicating their 

numerical values at that point in space and time. 

 

 The time-fractional derivative is approximated using the L1 algorithm, which provides a first-order accurate 

discretization for the Caputo fractional derivative and  is provided by [22]:  
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The relationship below is derived based on the fundamental properties of the Caputo time-fractional derivative 
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Finite difference approximations for partial order derivatives of those that appeared in Eqs. (10)-(12) at the node 

(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘): 
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Numerical solution of the unsteady coupled nonlinear differential equations is obtained in the succeeding section. 

By substituting Eq. (21) along with Eq. (23) into the governing Eqs. (10)–(12), the system is transformed into a set of 

algebraic equations, expressed as follows: 
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 Discretized forms of the skin friction coefficient and Nusselt number are given below 
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The computational region is defined as a rectangular region with 𝑥𝑚𝑎𝑥 = 1 and 𝑦𝑚𝑎𝑥 = 10 . The value of 𝑦𝑚𝑎𝑥  is chosen 

sufficiently large to approximate the condition 𝑦 → ∞ , ensuring that the far-field boundary lies outside the boundary 

layer region. The region is uniformly discretized into 𝑀 and 𝑁 sub-intervals along the 𝑥 and 𝑦 directions, respectively. 

At a given time level, the numerical solution is represented as a three-dimensional matrix of size 𝑀 × 𝑁 × 𝐾, where 𝐾 

denotes the number of time steps. For various values of parameters and grid sizes, governing equations are solved. From 

the computation, it is noted that the temperature and velocity values remain unaltered for the mesh size Δ𝑡 = 0.05, Δ𝑥 =

Δ𝑦 = 0.05 and Δ𝑡 = 0.01, Δ𝑥 = Δ𝑦 = 0.01. Furthermore, the profile values are convergent in the considered range of 

parameters. In the numerical simulations, the time step and spatial grid sizes are chosen based on convergence criteria, 

accuracy, and computational efficiency. Accordingly, the step sizes are set as Δ𝑡 = 0.05, Δ𝑥 = 0.05, and  Δ𝑦 =

0.05. The variations in fluid motion and temperature across the 𝑥𝑦-plane is analysed through three-dimensional 

graphical representations. These plots demonstrate good numerical stability and convergence in both time and space. 

The corresponding results are illustrated in figures 2 and 3. 

  

 



 

 

 

4. Results and discussion 

The primary objective of the work is to examine the effects of magnetrohydrodynamics flow and heat transfer 

properties of fractional Maxwell HNF over a bidirectional stretching sheet. A MATLAB code has been developed to 

simulate the governing Eqs. (24)-(26) utilizing FDA and an amalgamated L1 algorithm, and to obtain the outcomes of 

industrial needs. A theoretical study is carried out to demonstrate a few important physical aspects of the procured 

results. The variation of fluid flow, thermal, skin friction coefficient and the heat transfer rate is described in detail and 

displayed in plots 2 - 15 and tables 1 - 4 when different values of flow-controlling parameters, such as fractional 

parameters (α, β), magnetic parameter (H), Eckert number (Ec), momentum and thermal relaxation times (λ1, λ2), 

volume fraction of nanoparticle (ϕ) and heat source/sink parameter (Q) are employed. Table 5 provides a comparative 

study between the present model and Turkyilmazoglu and Pop [30] in the absence of magnetic field, heat generation, 

and radiation effects, and the single-phase ordinary nanofluid model, and the results show good agreement. It is 

significant to note that the acquired results are consistent with the findings of previous studies to support their accuracy. 

For that, let's assume that the fractional parameter 𝛼, 𝛽  and relaxation parameters  equal to 1. This will result in a 

solution that has the same flow properties as ordinary nanofluids, and coincides with the work of Madhura et al. [37].  

Figure 4 explains the change in velocity for the various fractional parameter α values. It is pointed out that when 

α increases, the velocity of the fluid increases and aids in controlling the fluid flow. Physically, it is trifling that 

the viscosity of the hybrid nanofluid will grow as α rises. Regular Maxwell HNFs have a dense velocity boundary 

layer, but classical Newtonian nanofluids display the strongest flow resistance, demonstrating that viscoelasticity 

increases flow defiance with the strength of α. 

The velocity distribution for the various momentum relaxation time λ1 is shown in Fig. 5. With an increase in 

λ1, the fluid motion slows down. As λ1 increases, the thickness of the velocity boundary layer decreases, which 

results in a decrease in the properties of Maxwell viscoelastic HNF flow. At the other end,  a rise in λ1 causes an 

increase in the time it takes to react to an applied stress, which increases the resistance to fluid movement. 

Additionally, there is a relationship between λ1 and the fluid’s viscosity, which leads to a decline in the fluid’s 

velocity as λ1 grows. Especially considering that λ1 = 0 yields the Newtonian nanofluid flow. 

Figure 6 behavior of how the velocity distribution is affected when the applied magnetic field varies. A kind 

of drag force that is Lorentz force exerts when a transverse magnetic field B0, is employed to the fluid flow. 

Therefore, the fluid is restricted by the Lorentz force, which also diminishes the fluid flow momentum.   Thus, the 

fluid velocity reduces with increasing magnetic parameter H, and the same is delineated in Fig. 6.     Also, Fig. 7 

portrays the influence of Grashof number Gr on fluid flow. It is observed that the rise in Gr leads to the 

strengthening of the velocity profile. It means, in terms of physics, that the Grashof number prioritizes buoyant 

force above viscous hydrodynamic force. For the higher values of Gr, viscous effects in the momentum equations 

are lessened; consequently, the fluid has more momentum. 

The flow field of the model for different nanoparticle volume fractions ϕ is elucidated in Figure 8. ϕ is the sum 



 

 

 

of nanoparticle volume fractions of first and second nanoparticles, i.e., ϕ = ϕ1 + ϕ2. In this study, we have adopted 

the Maxwell model and observed that ϕ shows a crucial impact on the viscosity and thermal conductivity of the 

HNFs. The greater ϕ prompted the formation of larger nano-clusters because of Vander Waals forces among the 

particles that might increase viscosity by restricting the movement of fluid layers. Also, internal shear stress 

increased due to nanoparticle volume fraction, increasing the hybrid nanofluid’s viscosity. Consequently, the 

velocity of the hybrid nanofluid reduces, and a similar nature is observed by  Afrand et al. [27] and Esfe et al. 

[28]. 

Figure 9 demonstrates the influence of the fractional parameter β on the temperature profile. As fluid flow is 

controlled by α, the parameter β provides control of the heat flow. The temperature profile has significantly 

decreased, as evidenced by an improvement in the β. The relaxation time λ2 on temperature distribution shows a 

similar tendency, and the same is seen in Fig. 10. The time gap for heat transmission from the heat source to the 

fluid flow area is improved as λ2 increases, and as a result, the temperature distribution in that area decreases. The 

Newtonian nanofluid flow is described when λ2=0. 

Figure 11 illustrates the influence of Eckert number Ec on the temperature of Maxwell hybrid nanofluid. 

Temperature rises for larger values of Ec, where Ec is a measure of the degree of Ohmic heating; a larger Ec 

indicates a stronger Ohmic heating. As a result, the heat transmission rate decreases while the heat dissipation rate 

increases. Consequently, the temperature rises. 

To understand how the heat absorption coefficient Q affects the temperature distributions, it is important to 

understand that Q < 0 and Q > 0 denote the internal heat sink and heat source, respectively. Therefore, the Q 

values are taken as −1, 0, 1, 2 in Fig. 12. From this graph, it can be seen that an increasing Q results in an increase 

in the thermal distribution. This is because increasing Q > 0 releases energy, leading to an increase in the thermal 

distribution, while increasing values of Q < 0 absorb energy, leading to a decline in temperature. 

Figure 13 displays the relationship between the dimensionless temperature profile versus nanoparticle volume 

fraction ϕ. It is observed that raising the volume fraction parameter makes the temperature profile to become more 

intense. The thermal conductivity of the hybrid nanofluid is improved by a greater volume percentage of 

nanoparticles, which thickens the thermal boundary layer. The ϕ is an important one that significantly affects how 

well the fluids conduct heat. Thus, we can conclude that the temperature can be adjusted in many industrial 

processes by altering the nanoparticle volume fraction. Similar behavior of nanofluid is observed by Colla et al. 

[29] experimentally. 

Figures 14-15 are plotted to analyze the influence of the dispersion of the nanoparticle in the ordinary 

fluid on the flow velocity and temperature distribution by varying the volume fraction. In the current study, by 

taking either ϕ1 = 0 or ϕ2 = 0, we get the ordinary (or mono-type) nanofluid model from the hybrid nanofluid 

model. From Figure 14, it is noticed that the flow velocity of the HNF (𝐻2𝑂 − (𝐶𝑢 + 𝑇𝑖𝑂2))  and ordinary 

nanofluid  (𝐻2𝑂 − 𝐶𝑢) is more significant compared to the base fluid (water). The enhanced thermal conductivity 



 

 

 

is the reason for the cause. In addition, hybrid nanofluids are more stable compared to ordinary nanofluids. The 

fluid thermal conductivity improves the thermal distribution. Thus, the thickness of the thermal boundary layer 

increased for nanofluid and hybrid nanofluid, and the same is depicted in Fig. 15. 

 

Key engineering quantities of interest, namely the skin friction coefficient (C f) and the Nusselt number (Nu), 

are computed at the boundary surfaces and evaluated under varying flow control parameters. The corresponding 

numerical results are summarized in Tables 3 and 4. Analysis of the skin friction coefficient is necessary since it 

contributes significantly to calculating the overall drag. Accurate skin friction measurement is essential for 

practical issues like improving vehicle fuel efficiency, describing the flow of a fluid across different solid 

geometries, etc. On the other hand, the Nusselt number produces the qualitative and quantitative properties of heat 

transfer studies. The effect of the fractional parameter, relaxation time, Grashof number, magnetic parameter, and 

nanoparticle volume fraction on surface drag is discussed in        Table 3. As α and λ1 increase, C f also increases, but a 

reverse trend is observed for Gr because fluid particles gain more velocity due to the rise in the Gr, this causes 

more heat to be lost to the environment, which lowers the skin friction coefficient. While the magnetic parameter 

and nanoparticle volume fraction elevates, C f increases monotonically. It is evident that adding particles to any 

base fluid causes the viscosity to increase, and hybrid nanofluids exhibit a similar characteristic. As a result, the 

hybrid nanofluid’s viscosity and frictional factor are both increased by the high nanoparticles volume fraction in 

the fluid. The influence of fractional parameter, Eckert number, relaxation time, heat generation parameter, and 

nanoparticle volume fraction on heat transfer rate is analysed, and the corresponding results are demonstrated in 

Table 4. Clearly, Nu declines with an increase of Q and Ec but enhances with an improvement in the β, ϕ, and λ2. 

 

5. Conclusions 

Utilizing the modern theory of Caputo time-fractional derivative for unsteady 2-dimensional boundary layer 

flow and heat transfer analysis of Maxwell hybrid nanofluid, significant findings were discovered in this study. 

Time derivatives are replaced by Caputo fractional derivatives. The key findings from the analysis are: 

o The flow of hybrid nanofluid is favored with increasing α and Gr, whereas λ1 and H oppose the fluid 

motion. 

o Temperature profiles are strengthened remarkably with increasing Eckert number and heat source 

parameter. On the contrary, with increasing relaxation time and fractional parameter, the temperature 

diminishes. 

o Shear stress increases for the higher values of α, λ1, and ϕ. 

o Increasing the values of the H, Ec, and Q significantly reduces the heat transfer rate, whereas the ϕ 

exhibits an opposite effect, enhancing the heat transfer. 

o The results for the Newtonian hybrid nanofluid can be recovered as a special case by setting the parameters 



 

 

 

𝜆1  = 𝜆2 = 0. 

o The study disclosed that the consideration of a fractional model improves 13.367% of the heat transfer rate.  

o Ordinary integer models take into account the instantaneous response to external forces, while fractional 

derivatives take into account the memory-dependent behavior of actual fluids and materials. This is especially 

important for viscoelastic fluids that show time-delayed stress-strain correlations, such as Maxwell fluids. 

Also, the consideration of hybrid nanofluid improves the thermal conductivity of the base fluid and which 

enhances the thermal conductivity due to synergistic effects between different particle types.  

 

Nomenclature   
Latin symbols 

B0 magnetic field 

 

Ec Eckert number 

 

H magnetic parameter 

 

Pr Prandtl number 

 
Cp specific heat 

 
C f skin-friction 

 

Re Reynolds number 

 

Q heat source/sink parameter 

 
Gr Grashof number 

 
Nu Nusselt number 

 
Q0 heat absorption/generation coefficient 

 
L characteristics length 

 
t time 

 

g gravity 

 
k thermal conductivity 

 
U, V fluid flow along x and y axes 

 

Greek symbols 



 

 

 

 
α momentum fractional parameter 

 
βT thermal expansion coefficient 

 
λ relaxation time 

 
ν kinematic viscosity 

 

β thermal energy fractional parameter 

 

λ1, λ2 relaxation times of velocity and temperature 

 
µ dynamic viscosity 

 
τ shear stress 

 
σ electric conductivity 

 

κT thermal diffusivity 

 
θ dimensionless temperature 

 
ξ shear strain 

 
ϕ nanoparticle volume fraction 

 
ρ density 

 
Subscripts or superscripts 

 
hn f hybrid nanofluid 

 
f base fluid 
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Figure 1: Geometry of the flow. 

 

Figure 2: Surface plot of velocity distributions. 
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Figure 3: Surface plot of temperature distributions. 

 

 

Figure 4: Velocity distributions for various α. 

 

Figure 5: Velocity distributions for various λ1. 



 

 

 

 

Figure 6: Velocity distributions for various H. 

 

 

Figure 7: Velocity distributions for various Gr. 

 

 

Figure 8: Velocity distributions for various ϕ. 

 



 

 

 

 

 

Figure 9: Temperature distributions for various β. 

 

 

Figure 10: Temperature distributions for various λ2. 

 

 

 

 

 

 

 

Figure 11: Temperature distributions for various Ec 

 



 

 

 

 

 

Figure 12: Temperature distributions for various Q 

 

 

 

 

 

 

 

Figure 13: Temperature distributions for various ϕ 

 

 

Figure 14: Velocity distributions for various fluids 



 

 

 

 

 

 

Figure 15: Temperature distributions for various fluids 

 

Table 1: Thermophysical properties of water and different nanoparticles [[6], [2]]. 

 

 

 

Properties H2O Cu TiO2 

 

K(W m−1 K−1) 

 

0.613 

 

400 

 

8.9538 

 

ρ(kg m−3) 

 

997.1 

 

8933 

 

4250 

 

Cp(J kg−1 K−1) 

 

4179 

 

385 

 

686 

B1 × 10−5(K−1) 

 

21 

 

1.67 

 

0.9 



 

 

 

Table 2: The effective thermophysical properties co-relation of hybrid nanofluid. [24] 

Property  `   Hybrid Nanofluid 

 

Dynamic Viscosity µ 

 

hn 

f 

µf 

= 
(1 − ϕ1 − ϕ2)2.5 

Density ρhn f = (1 − ϕ2)[(1 − ϕ1)ρf + ϕ1ρ1] + ϕ2ρ2 

Heat Capacity (ρCp)hn f = ρ1ϕ1Cp1 + ρ2ϕ2Cp2 + (1 − ϕ1 − ϕ2)ρf Cp f 

Thermal expansion coefficient (ρβ)hn f = (1 − ϕ1 − ϕ2)(ρβ) f + ρ1β1ϕ1 + ρ2β2ϕ2 

 

Thermal Conductivity 

𝑘ℎ𝑛𝑓

𝑘𝑓
=(ϕ1k1 + ϕ2k2)/ϕ + 2(kf − ϕkf + ϕ1k1 + ϕ2k2) 

           
(ϕ1k1 + ϕ2k2)/ϕ + 2kf + ϕkf − (ϕ1k1 + ϕ2k2)

 
 



 

 

 

Table 3: Variation of C f for various parameters 

Α λ1 H Gr ϕ1 = ϕ2 C f  

0.1 
    

0.106285 

0.5 
    

0.567222 

0.9 
    

0.880448 

 
0.1 

   
0.343763 

 
0.5 

   
0.567222 

 
0.9 

   
0.649268 

  
1 

  
0.567222 

  
2 

  
0.602321 

  
3 

  
0.632674 

   
-1 

 
0.924676 

   
0 

 
0.805658 

   
1 

 
0.686543 

    
0.01 0.536148 

    
0.05 0.567222 

    
0.1 0.59205 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 4: Variation of Nu for various parameters 

 

β λ2 Ec Q ϕ1 = ϕ2 Nu 

0.1 
    

1.711137 

0.5 
    

4.555254 

0.9 
    

6.459212 

 
0.1 

   
0.568497 

 
0.5 

   
0.711137 

 
0.9 

   
0.763777 

  
0.5 

  
0.711137 

  
1 

  
0.694343 

  
1.5 

  
0.676919 

   
-1 

 
2.476369 

   
0 

 
1.780317 

   
1 

 
0.711137 

    
0.01 0.566686 

    
0.05 0.711137 

    
0.1 0.8174 

 

 

 

Table 5: Comparison of Nusselt number for 𝑅 = 0, 𝛼 = 𝛽 = 1, 𝜆1 = 𝜆2 = 1, 𝐻 = 0, 𝑄 = 0, 𝐸𝑐 = 0, and 𝐻 = 0 for 

different values of nanoparticle volume fraction. 

 

𝜙 𝐶𝑢 − 𝐻2𝑂 nanofluid 𝑇𝑖𝑂2 − 𝐻2𝑂 nanofluid 

Ref [30] Present  Ref [30] Present  

0 1.40482073 1.404811 1.40482073 1.404811 

0.05 1.50455665 1.504547 1.48088609 1.480876 

0.1 1.60689998 1.606891 1.55782861 1.557819 

0.15 1.71283198 1.712822 1.63613715 1.636127 

0.2 1.82342619 1.823416 1.71632314 1.716313 
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