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Abstract . Q

This research article introduces a novel ch &perjerk system incorporating two
hyperbolic sinusoidal functions and e its bifurcation analysis in both integer
and fractional orders. The bifurcation analysis, Lyapunov spectrum analysis and phase
portraits show that the propose %m exhibits wide range of complex phenomena
such as chaos and multist: m;e multistability phenomenon is analysed in detail
with the fractional-or@&

captured using Ga method. The development of fractional order chaotic system

delling, where the system’s fractional dynamics are

results in mor lex dynamical response and the presence of hyperchaos over a
broad rang@ system parameter. Additionally, the proposed integer order hyperjerk
system i@wplemented on a DE10-Standard digital board, which comprises a Cyclone
V SE 5CSXFC6D6F31C6N FPGA to realize its chaotic behaviour for various real-
time applications. The results suggest that the proposed system could serve as a
promising candidate in various domains where multistability and fractional-order

systems are of interest.

Keywords: Chaos, Hyperjerk, Multistability, Fractional order, FPGA Implementation


mailto:rrameshbabu15@gmail.com
mailto:sundar@veltech.edu.in
mailto:luis.lujano@alumno.buap.mx

1. Introduction

Chaotic systems are very complicated dynamical systems that exhibit high sensitivity
for initial conditions. The minute variations in the initial state of a chaotic system can
lead to extremely different outcomes over time, providing long-term predictions
nearly impossible. The understanding of chaotic systems gives a fundamental
knowledge across a range of fields, including environmental engineering [1],
economics [2], social sciences [3], molecular system [4], secure communication [5],
Artificial intelligence [6] and optimization approach [7].

The design of chaotic hyperjerk system is an interesting topic in the field of no@ar
dynamical systems, specifically involving higher-order derivatives of positi hile
most traditional chaotic systems focuses on position (x), velocity (), ac@!'ration (%),
and jerk (&), hyperjerk systems expand this concept to the fourth &ime derivative,
hyperjerk or snap. The design of chaotic hyperjerk systems is)gmal not only for the
theoretical understanding of chaos and higher order dy af@é but also for practical
applications that enhance the security in various indus{ries such as cryptography [8,9],
and robotics [10]. . @

Recently, the researchers introduced many, '%ger order chaotic hyperjerk systems
with trigonometric function and analy?@complex behaviours such as coexisting
attractors. For example, Leutcho et gl [11] introduced a multistable chaotic hyperjerk
system. Moysis [12] commen@x dified hyperjerk system with various complex
features such as coexistingyattractors and antimonotinicity. Vivekanandhan et al [13]
presented a hyperjerk with multiple positive Lyapunov exponents. The author
discovered coexi '&attractors and transient behaviours in the proposed system.
Xiong et al &]swssed extreme event and multistability behaviours in the
proposed h@rjerk system. Fouodji et al [15] introduced an autonomous hyperjerk
system with strange attractors. Karthikeyan et al [16] realized a snap oscillator with
tan%)?lvinearity using electronic circuit simulation. Still exploring chaos and
mutistability in hyperjerk system is indeed with fascinating challenge. The modelling
of hyperjerk system using trigonometric function adds another layer of complexity
due to their periodic nature. The high-dimensional systems can be designed by
coupling multiple low dimensional chaotic systems [17,18] and adding more state
variables [19-21]. The straightforward method to design high dimensional system is
by adding more state variables with the low dimensional systems. In this work, a
chaotic hyperjerk system is derived by introducing a new state variable and

incorporating hyperbolic sine nonlinearities in to an existing 3D chaotic jerk system.



The hyperbolic sine nonlinearities introduce additional level of complexity which is
more aggressive than simple polynomial terms.

In traditional chaotic systems, the equations of motion typically defined by integer-
order derivatives. However, to solve many real-world problems such as viscoelastic
models [22] and memory models [23,24], fractional order (FO) derivatives are more
suitable and flexible than integer order derivatives. This brings us to the concept of
FO hyperjerk (FOHJ) systems. A FOHJ system extends the idea of chaotic systems by
incorporating fractional calculus, which allows the derivatives to be of non-integer
order. The introduction of fractional order dynamics results in more co@ex
dynamical response and the existence of chaos over a broad range of para . This
enhanced chaotic behaviour has significant practical applications 9@33 secure
communication [25], image encryption [26, 27], robotics [28 @ldom number
generation [29]. &

Dowei Ding et al [30] introduced a memristor based @»system and discussed the
extreme multistability phenomena in the propose@stem Shaohui yun et al [31]
proposed a 5D FOHJ system and applied in ct @age encryption scheme. Fei Yu et
al [32] analysed the hyperchaotic beha multiscroll attractors in a FO system.
Shaohui yan [33] introduced a FO cr%

author also analysed the multlstz&ﬁy and offset boosting in the proposed system.

Still the exploration of chao actional order chaotic hyperjerk system with
hyperbolic sine nonllnearls a challenging task.

The FPGA mplg |on of a chaotic hyperjerk system has significant importance

system with no equilibrium points. The

since it has re applications, The FPGA implementation is the highly valuable
tool in s fields including secure communication [34, 35], and embedded
Sys &e primary advantages of using FPGA for implementing chaotic hyperjerk
systgvsare parallelism, energy efficiency, high speed computation, and real word
hardware computation. The key challenge is the FPGA implementation of hyperbolic
sine nonlinearities in hardware, which has quite complex due to the nature these
nonlinearity.

First, an integer order chaotic hyperjerk system with two hyperbolic sin nonlinearities
and a cubic nonlinearity is constructed from an existing chaotic jerk system. The
bifurcation and Lyapunov (LESs) plots of the proposed system are used to confirm the

presence of chaotic behaviour under the various system parameters. Next, the digital



hardware implementation of the new chaotic system with two hyperbolic
nonlinearities is successively achieved using a Cyclone V SE 5CSXFC6D6F31C6N
FPGA board. Then, a fractional order chaotic hyperjerk system is introduced and
explored its dynamics using Garappa method. Finally, the multistability and
coexisting attractor’s behaviour is discussed using bifurcation diagram and phase
portraits for the proposed fractional order system. The numerical simulation and

hardware implementation indicate that the proposed system has wealthy dynamics and

o

2. Integer Order Chaotic Hyperjerk System ¢ O
Recently, Ramar [36] modelled a chaotic system as given in Eq. (1). Q

B=q <
e r x (1)
&= ap— p° —bsinhq—cr o (b

To extend to a hyperjerk system, a new state w jsNpcluded in Eqg. (1) and this

can be used in many practical applications.

corresponds to adding a fourth differential eql.Jati .. phe modified system is described
by the differential equations as given in Eq.&N

Bz
Ze=dw

v&:ax—xwin y—cz-sinhz—w

In the system (2) the V;EE@ are denoted as (x, y, z, w) while (a, b, c, d) represents

)

the constants. The ch@oti€’behaviour is observed in the system (2) when (a, b, c, d) are
assigned vaIue@S,l.S,l.&l.S). By initializing the system (2) at X(0) = (1, 2, 1, 2),
the Lyapu onents (LEs) of the system (2) are calculated over a period 1E4
seconds@ulting in LE; = 0.2238, LE2 = 0, LE3s = —0.3972, LE4 = —0.8266. The

fracEi dimension (Dv) is calculated as D, =2+_LE1+ LE,

=2.563, suggesting that
|LE, |

the system (2) has chaotic attractor. The divergence of the hyperjerk system (2) can be
4

determined as D :ZLEi =—1 which indicating that the system (2) has dissipative
i=1

flow. Figure 1 represents the state space diagrams of the new integer-order chaotic

hyperjerk system (2) with the initial condition X(0).

The fixed points of the system (2) are got by solving the following equation:
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ax—x*—bsinhy—cz—-sinhz—w=0
By substituting y = z = w = 0 in the fourth equation of (3), we got ax — x3 = 0. Since a >
0, there are three solutions namely, x=0,+va . Thus there are three equilibrium
points given by Po = (0,0,0,0) and P, =(J_r«/5, 0,0,0). The Jacobian matrix of the

system (2) at any equilibrium points can be written as,

0 1 0 0 . C)
-l 00 Lo Q\ @
a—3x* (b

—bcoshy -c-coshz -

The eigenvalues of the matrix (4) at Po and P12 when (a,b c$(2,5, 1.5, 1.8, 1.5)
are computed as (0.656, -1.205, -0.225 + j2.166), and (- ﬁj1.479, 0.371 +j1.552)
respectively. This demonstrates that Po and P1 a &table saddle — focus fixed
points. o @

3. Bifurcation and Lyapunov Plots \

This part delves into the intricate behawiefS)of the new system (2) through bifurcation
plot and LE spectrum across variods system parameters. In general, the bifurcation
plot helps to visualize the tr ‘%etween the different states of the system when
the parameter varies. LE@gctrum are plotted to access the chaotic nature in the
system, the positive L@ es indicates the chaos and highly sensitivity to the initial
condition nature@system. The bifurcation plot and LE spectrum are plotted by

r

systematically@ ing any one of the parameter and keeping other parameters and

initial cc@nﬁ;ﬁ fixed.

Fi 2aand Figure 2b illustrate the bifurcation diagram and set of LEs of the system
(2), ‘yespectively, for a € [1.7, 3]. Figure 2a shows that the system has various
behaviors: a stable fixed point for a € [1.7 — 1.91], a periodic 2-cycle for a € [1.92 —
2.1], one wing chaotic attractors for a € [2.12 — 2.26] and double wing attractors for a
€ [2.27 — 3]. Figure 2b indicates that chaotic attractors exists when a > 2.12. The LE
spectrum show that from a = 1.7 to a = 2.1, the system has periodic motion, with LE;
=0 and LE>, LEs, LE4 being negative. At the same time, when a > 2.12, LE; becomes
positive, and LE> = 0, with LEs, LE4 remaining negative, confirming the chaotic

motion in this region.



Figures (3a - 3b) depict the bifurcation diagram and set of LEs for the parameter b. It
is evident from Figure 3a that the system (2) has various type of attractors when b
varies between 1.3 and 2.7: chaotic attractors for b € [1.3, 2.1] with the exception of
very small region, periodic attractors in the range b € [2.15, 2.55], and finally stable
points. Figure 3b shows that the system has chaotic oscillation in the regions b € [1.3,
1.92] and b € [2, 2.1], where LE; is positive, confirming the chaotic dynamics in
these intervals.

Figure 4 illustrates the bifurcation plot and LEs plot of (2) in the region from ¢ = 1.3
to ¢ = 2.3. Figure 4a clearly demonstrates that the system (2) has chaotic S
within the range of ¢ = 1.3 and ¢ = 2.07, switching to periodic motions. dc=
2.07. Figure 4b reveals that LE; > 0, LE> =0 and LE3 4 < 0 within the r@@ﬁ ce[1.3,
2.07], confirming the chaotic nature and sensitivity on initial n@ of the system
in this interval. &

Figure 5 depicted the bifurcation and LEs plots fof@arameter d. It can be
understood from Figure 5a that the system exhibits #¢ motion in the intervals d €
[1.15, 1.7], with the exception of small region [1 ,Qand the remaining regions are
dominated by periodic motions. Figure 5b %f confirms this by showing that LE;

is positive in these regions, indicating sence of chaos in the system.

4. FPGA Design of Integer @perjerk System
FPG

This subsection presents A based digital implementation of the proposed
system (2). From the , we realize that it is composed of nonlinearities in the
form of hyperboli &igonometric functions, i.e., sinh() in the w state variable.
Therefore, a (COordic Rotation Digital Computer) algorithm is proposed to
compute @Iution of the hyperjerk system. As well known, CORDIC can compute
several trigonometric functions [37, 38]. On the other hand, the algorithm suffers
frorgrveduced range 0 < |1.1], meaning the input angle must rely on —1.1 <6 <+1.1.
However, the variables y and z of the hyperjerk system (2) show amplitudes closer to
+3 and +4. As a consequence of these values, we should scale the system variables.

Let us consider the following new set of variables:

X, = fx
Y1 = fy (5)
z, =1z
w, = fw

Where f € R represents an scaling factor. So, we obtain:



)&: Y1

yg!': Z
51‘: dw
3
W= ax, —%— (%b)(sinh(l.Syl)cosh3(1.5y1) +cosh(L.5y,)sinh®(1.5y,)) —cz, —

(%)(sinh(l.Szl)cosh3(1.5zl) +cosh(L52,)sinh*(1.52,)) —w,

(6)
By proposing f = 1/6 and using the trigonometric identities: (b'
sinh(26) = 2sinh(8) cosh(8) v O
(7)

cosh(26) = cosh? () +sinh?(6) ,c,\

We obtain the scaling of the hyperjerk system:

'&
&=y, )\«

w=12 . (b

&=dw, N
\Aﬁc:ax1—fﬁz—(%b)(sinh(l.Syl)cosh3(1.5yl)tco@)sinhﬁl.Syl))—czl— ®

(%)(sinh(l.Szl) cosh®(1.5z,) + cosh(@gﬁ?(l.&l)) -W

Figure 6 shows the state space )%::tories of the modified hyperjerk system (8)
obtained using the Forward Ewler) numerical method with integration step h = 0.01,
X(0) = (0.1, 0.1, 0.1, 0.1)@ (a, b, c,d) =(25, 1.5, 1.8, 1.5). It is worth noting that
by applying the previ @caling operation, the ranges for the variables are changed to
y1 < |15 (10.4)|Q& < |1.5 (%0.6)|, respectively, and can now be handled by the
CORDIC algo
The nex@i{onsists of determining the fixed-point digital representation. Since the
maXi and minimum values for the system solution are 1/f = 6 and z1 = —0.6,
resrgv‘ti\;ely, we choose a digital format Q3, 28, i.e., three bits allocated for the whole
value part and the remaining bits for the decimal part. Figure 7 describes the main
blocks of the digital design, where Euler block calculates the solution in every clock-
rising transition. The hyperjerk system was implemented on a DE10-Standard digital
board comprising a Cyclone V SE 5CSXFC6D6F31C6N FPGA. Also, a 12-bit high-
speed data converter DAC312 is used for data visualization on an oscilloscope.
On the other hand, Figure. 8 shows the RTL schematic which consists of the

following parts:



(a) To synchronize the operation frequency of the numerical algorithm in block
Hyperjerk:S2, the input clk 50MHZ enables a 50 MHz clock, which is then
divided by a frequency divisor of 50 KHz (20 us) clock for Euler Block
(HyperJerk TIMER:S0) and 5 MHz (200 ns) clock for CORDIC Hyperbolic
blocks (CORDIC Timer:S1).

(b) In addition, the block Hyperjerk:S2 computes system variables x1, y2, z3, wa of
hyperjerk system, which are labeled as x[31 : 0], y[31: 0], z[31 : 0], and w[31:
0], respectively.

(c) To obtain phase portraits of chaotic attractors, it is possible to select pairsvof
variables for conversion via the DAC device (DAC Block:S3,54). '\

>
Listing 1 shows the pseudocode for the Hyperjerk block (S2) in Fi @
MODULE Hyperjerk (x,y,z,w,clk_CORDIC,clk_Hype;§!§k,rst);

OUTPUT: X,Yy,z,w; e
INPUT : clk_CORDIC,clk_Hyperjerk,r§§€>y
REGISTER SIGNED: xt@,yte,zto,wto;

GENERATE
[
Euler @

x_to(xto),.y to(yto),.z_to(zt ,(Eu_@(wt@),.x(tpl),.y(th),.z(
tp3),.
w(tp4),clk _CORDIC,clk, Hyperjerk;

ENDGENERATE
ALWAYS @(POSEDGE clk_ jerk) BEGIN

IF (rst == 1) ABEG
xte = '{{03999999;
yto =(Ph81999999;

2t0)§ "h01999999;
@) 'h01999999;

END
EL GIN
(:) xto = tpi;
yto = tp2;
; ) zto tp3;
wto tp4;

END
ENDALWAYS
ASSIGN tpl TO x;
ASSIGN tp2 TO vy,
ASSIGN tp3 TO z;
ASSIGN tp4 TO w;
ENDMODULE

Listing 1: Verilog synthesis of the Hyperjerk module (S2) of Figure 8 for FPGA
implementation



To find a solution for the new hyperjerk system, we employ the Forward-Euler
algorithm described in the Verilog hardware description language (Listing 2). For the
Euler module, we use an integration step of h = 0.01, while the product of state
variables requires a 32-bit multiplier module.

MODULE Euler (x_to, y_teo, z_ to, w_to, X, Y, zZ, W,
clk _Euler,clk_CORDIC);

PARAMETERS: h = ©0.01, a= 2.5, b= 1.5, c= 1.8, d= 1.5 //
Fixed-Point

OUTPUTS: x, vy, z, Ww;

INPUTS: x_to, y to, z_to, w_to, clk_Euler,clk CORDIC;

WIRES SIGNED: r_x, r_y, r_z, r_w; (b'

GENERATE o
MULTIPLY: phase 1 5 y = (1.5)(y_t0); A\y
MULTIPLY: phase 1 5y = (1.5)(z_t0); ‘(:"

CORIDIC H: (phase_1_5_y,cosngfaﬁblc_out_y,

sinh_CORDIC_out_y,clk CORDIC); »\(
CORIDIC H: (phase_1 5 y,cos

sinh_CORDIC_out_y,clk _CORDIC, flag CORDIG) ;(bﬂ
[[===mmmmmmmmmm - &
MULTIPLY: templ = (h)(y_t0);
ASSIGN r_x = templ + x_t0; @
[ J
MULTIPLY: temp2 = (h) z_@
5> 11y

ASSIGN r_y = temp2 +

CORDIC out_y,

MULTIPLY: temp3 = )(w_t0o);
MULTIPLY: tem ) (temp3);
ASSIGN r_z = te + z_10o; //z

MULTIPLY = (a)(x_t0);
(x_t0)(x_t0);

MULTIPL& p6
MULTI@ emp7 = (temp6)(x_t0);
L

temp8 (temp7) (f_x_inv);

MUL@
temp9 (temp8) (f_x_inv);
IPLY temple =

(sinh GORDIC out_y)(cosh_CORDIC out_y);

‘%’V'MULTIPLY templl = (templ®)(cosh CORDIC out_y);
MULTIPLY templ2 = (templl)(cosh_CORDIC out_y);
MULTIPLY templ3 = (templ®)(sinh_CORDIC out_y);
MULTIPLY templ4 = (templ3)(sinh_CORDIC out_y);
ASSIGN templ5 templ2 + templ4;

MULTIPLY templ6 = (c)(z_t0);

MULTIPLY templ7 =
(sinh_CORDIC out_z)(cosh_CORDIC out z);

MULTIPLY templ8 = (templ7)(cosh_CORDIC out_z);

MULTIPLY templ9 = (templ8)(cosh CORDIC out z);

MULTIPLY temp20 = (templ7)(sinh_CORDIC out_2z);

MULTIPLY temp21l (temp20) (sinh_CORDIC out_z);

ASSIGN temp22 templ9 + temp21;



MULTIPLY temp23 = (temp22)(f _w_4);
ASSIGN temp24 = temp5 - temp9 - templ5 - templ6 -
temp23 - w_to;
MULTIPLY temp25 = (h)(temp24);
ASSIGN r_ w = temp25 + w_t0; //w
ENDGENERATE
always @(posedge flag CORDIC)begin
ASSIGN: X = r_x;

ASSIGN: y = r_y,;
ASSIGN: z = r_z;
ASSIGN: w = r_w;
end
ENDMODULE (b'

Listing 2: Verilog synthesis for digital design of the proposed Hyperjerk n]\ PGA

After that, the resulting digital outputs are converted to analog o AC312 only
for visualization purposes. Since DAC312 requires a 250ns st %atlon time, eight
clock cycles are chosen to obtain 20us with a master clo‘@f 50MHz by using the
module HyperJerk TIMER. Finally, the DAC outpu&p&’k (S3,54) in Figure. 8 is
custom-designed for each output signal x, vy, z, re 9 depicts the experimental
setup of the new HyperJerk system implem ?&n a DE10-Standard digital board,
which comprises a Cyclone V SE 6D6F31C6N FPGA. The hardware

resources utilization is summarized in Tabte 1.

system in FPGAS can scaling factor required to change the maximum and

We have found that the airﬁ@at n associated with implementing the hyper jerk
>
minimum values of e@botic signals, as shown in Eq. (5) to Eq. (8). For instance, in
the case of highw%nsional systems comprising more than three state variables, the
change of v i@ comes cumbersome and yields more intricate expressions, which
may resepnore FPGA resource utilization and power consumption. In particular,
the?ﬂenge for the chaotic hyperjerk system arises from implementing the CORDIC
archifecture as the algorithm is constrained within the interval +m/2 to generate the

sinh(.) function.

Regarding performance benchmarking, we perform the following studies. The power
analysis was conducted using the Power Analyzer Tool provided by Quartus design
software, which considers a toggle rate for the input/output signals while the
remaining signals are fixed at 12.5%. Furthermore, the Timing Analysis considers a
Master Clock with a period of 20 ns (50 MHz), a rise time of 0 ns, and a fall time of



10 ns for the input pin indicated as clk_50MHZ. The obtained results and comparison
with other FPGA implementations of chaotic systems are given in Table 2. For
example, the study conducted in [39] focuses on a double displacement system with
three variables and demonstrates superior performance in terms of static power;
however, the dynamic and 1/0 power consumption is predominantly higher than that
of the proposed design. The works in [40] and [41] relate to chaotic systems with four
and three variables, respectively, and do not report power consumption. Nonetheless,
it can be noticeable that these two systems operate at a maximum frequency lower
than the proposed architecture herein, indicating a higher processin d
performance with a high bit throughput of 5.8 Gbps. ¢
Associated with the power consumption analysis in Table 2, the coolin@(uirements
demand a 23 mm heat sink with an airflow rate of 200 LFp ,.Q%ing in a total
thermal power dissipation of 444.67 mW. Using the Quart&esign software, the
FPGA results in this work are obtained by establishing ration scenario with a
temperature of about 85°C, indicating 3.4 times the&a&t temperature. This setting
ensures optimal functionality in environmepts@ orized as hot. However, it is
important to note that the chaotic attract Mlts were acquired in a controlled
laboratory environment, eliminating t@&ial effects of noise that could interfere
with real-time data acquisition. Theqroposed FPGA design for the hyperjerk system
has one input and two outpu‘@%h the help of the Signal Tap Logic Analyzer in
ifie

Quartus, we have not id any abnormal operation of the chaotic outcomes.

Since the signal tap | alyzer operates in real time, the output data cannot be
stored. Therefore, nting empirical evidence of proper functionality is crucial, as
illustrated in Fi 0.

Finally, th@ltcomes of the FPGA implementation of the new chaotic hyperjerk
sys%7 shown in Figure 10, which are contrasted with the ones delivered by
Matlab

We found a strong correlation between numerical results and FPGA implementation,

. More particularly, we plot the phase planes xy, yz, zw, and xw, respectively.

validating the chaos generation of the new proposed system.

5. Fractional — Order Chaotic Hyperjerk (FOHJ) System

A FOHJ system is a system where the governing equations are based on fractional-
order derivatives of the state variables. The fractional-order systems typically take the

form:



Dix=y
Dly =1z
9)
Dlz=w
Diw= f(x,y,z,w)
Here, DY represents the fractional derivative of order q (with0<q<1),x,Y, z, and w
represent states of the system, f(x,y,z,w) is a nonlinear function that governs the

chaotic behavior of the system. Let us define a new FOHJ system as follows:
Dix=y

Dly=z2

> w
Dz =dw (b,
Dfw=ax—x*-bsinh y —cz—sinhz —w

In the FOHJ system (10), g = 0.99,anda=6.5,b=d = 1(@3 = 1.8. The LEs of the
FOHJ system (10), computed with a simulation time M 00 and an initial condition
of (1,1,1,1), are (LEs, LE2, LE3, LE4) = (0.26};2&{ 4602, —0.9314), demonstrating
its chaotic nature. The Lyapunov dimensiond)

[(L1 + L2)/|Laf] = 2.2879 which is fract%
To solve fractional order differential efuations many numerical methods such as
e

e
Garappa method [42], Grin %ﬁikov method [43], Laplace transform [44] and
spectral methods [45] are‘ayailable. In this work, we selected the Garappa method to

J system (10), given by D =2 +

solve the proposed FO stem due its accuracy and efficiency. It offers a reliable

numerical stabilit an ing it well-suited for simulating complex fractional-order

le other methods may offer similar accuracy, they are complex to
implement@ also require more computation time.

Th pro@ed FOHJ system (10) is simulated by using Roberto Garrappa method
employing the step size of 0.005. Figure 11 shows the phase portraits of the new
FOHJ system with the initial condition (1,1,1,1).

The bifurcation and LEs plot for FOHJ system (10) under the fractional order q are
depicted in Figure 12. Figure 12a specify that the FOHJ system (10) has chaotic
motion in the region ranges from q = 0.97 to q = 1. Figure 12b illustrates the LEs plot
as the fractional order q varies within the range [0.95,1], revealing that the system has

chaotic behavior specifically for g € [0.97, 1].



6. Multistability in Fractional Order Hyperjerk System

Multistability and coexisting phenomenon is a special feature of chaotic system by
which the system can able to produce multiple coexisting attractors under the same set
of system parameters. In this section, we explored the multistability and coexisting
phenomenon in the proposed fractional order hyperjerk system (10).

Recently, Liu [46] analyzed multistability in the fractional order multiwing chaotic
system, Ren et al [47] discovered extreme multistability in their proposed system. In
secure communication system, multistability and coexisting attractors enhances the
security of the system since it make very difficult to predict the system behavio@e
multiple attractors can be used to represent different symbols in the'@iation
encoding [48, 49]. To enhance stability, the adaptive control techrigues such as
fractional order sliding mode controllers [50], backstepping r&% [51] can be
integrated to maintain the desired dynamics. Additionally, varfgus synchronization
methods [52, 53] ensure the recovery of reliable i under varying initial
conditions. &

Figure 13a illustrates the bifurcation behavior he~FOHJ system (10) for specific
value of a, displaying the results of two&rent initial conditions: One set of
conditions (0.1,0.1,0.1,0.1) in blue and%ﬁ set (0.1,-0.1,-0.1,-0.1) in red. The clear
separation between the blue and red4ranches within the range a € [1, 5] signifies the
occurrence of multiple sta %, including periodic oscillation and chaotic
attractors, with in the sy: b%). This bifurcation pattern highlights the system's
complex dynamics ov parameter range. The overlapping of the blue and red
branches in the re &a € [5.5, 8] suggests the existence of a single chaotic attractor
within that p Qr

attractors V\@e LE;: (Blue) has positive values.

Fur, er,@validate the multistability in the FOHJ system (10), the bifurcation for c
Wit%lZset of initial conditions (0.1,0.1,0.1,0.1) (blue) and (0.1,-0.1,-0.1,-0.1) (red)

are plotted as give in Figure 15a. The non-overlapping of the blue and red branches in

range. Figure 13b supports that the system (10) has chaotic

the range ¢ € [3, 5] indicates the occurrence of coexisting attractors in periodic and
chaotic regions in the system (10). As depicted in Figure 15b, the system (10) exhibits
intricate chaotic dynamics within the region ¢ € [1, 3.5] where LE; in Blue takes on
positive values. This suggests the presence of strong dependence on initial positions, a
key characteristic of chaotic behavior in the system. The various coexisting attractors

in various c values are shown in Figure 16.



Conclusion

This study proposes a new chaotic hyperjerk system with two hyperbolic functions,
along with a detailed dynamical analysis that highlight its wealthy chaotic behavior,
including Lyapunov exponents, and bifurcations. The dynamic characteristics of the
proposed system were thoroughly examined using numerical simulations and
theoretical study. Furthermore, we successfully implemented the proposed integer
order chaotic hyperjerk system on an FPGA platform, demonstrating its feasibility
and efficient hardware realization. Further, we introduced a fractional order hyperjerk
system, which is designed from the proposed integer order system. Throughk a/In-
depth multistability analysis, we observed the initial conditions based c .eé)nce of
multiple attractors within the system. The results show that fraction Qdynamics
can significantly enhance the usability of chaotic systems@ as like secure

communication and nonlinear control.
. (b»
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Figure 10: Comparison of the FPGA implementation of the new chaotic HyperJerk
system versus Matlab numerical simulations
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Figure 11: The phase projecg@OHJ system (10) in various planes
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Figure 12: (a) Bifurcation (b) LE plot of FOHJ system (10) for fractional order q
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Figure 14: The coexisting attractors of FOHJ system (10) when (a) a = 1.8, (b) a = 2,

(c) a=4and (d) a = 6 respectively.
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Figure 16: The coexisting attractors of FOHJ system (10) when (a) c = 1, (b) ¢ = 3.2,
(c) c=3.6 and (d) c =4.5.



Table 1: Resources utilization by Entity and Total of the FPGA implementation of

hyperjerk system.
Entity Combinational Dedicated DSP Blocks Pins
ALUTs Logic Registers
Hyperjerk 300 128 0 0
Euler 1928 481 72 0
HyperJerk_Timer 43 33 0 0
CORDIC_Timer 43 33 0 0
DACs 88(44) 0 6(3) 0
Total 2154 675 78 . @"

Table 2: Power consumption and operating frequency CO?@] of the proposed
Hyperjerk system. ‘.

This work Gugapri a\,karakaya Mohammad

et al et al [40] et al [41]

Power Dynamic 22.03 mW 139 N/A N/A

Static 41281mwW 1 N/A N/A

1/0 9,83mwW A~ QJ¥mw N/A N/A

Total 444 6TmV=™) 298 mW N/A N/A
Max. Frequency 90.69MHz ~© Not 59.492 73.83 MHz

ﬁ reported MHz

Bit Throughput 8041Gbhps  N/A 3.807 Gbps 1.772 Gbps

Reported behavior yperjerk Double Double Hyperchaos
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