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Abstract 

This research article introduces a novel chaotic hyperjerk system incorporating two 

hyperbolic sinusoidal functions and explores its bifurcation analysis in both integer 

and fractional orders. The bifurcation analysis, Lyapunov spectrum analysis and phase 

portraits show that the proposed system exhibits wide range of complex phenomena 

such as chaos and multistability. The multistability phenomenon is analysed in detail 

with the fractional-order modelling, where the system’s fractional dynamics are 

captured using Garappa method. The development of fractional order chaotic system 

results in more complex dynamical response and the presence of hyperchaos over a 

broad range of system parameter. Additionally, the proposed integer order hyperjerk 

system is implemented on a DE10-Standard digital board, which comprises a Cyclone 

V SE 5CSXFC6D6F31C6N FPGA to realize its chaotic behaviour for various real-

time applications. The results suggest that the proposed system could serve as a 

promising candidate in various domains where multistability and fractional-order 

systems are of interest. 
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1. Introduction 

Chaotic systems are very complicated dynamical systems that exhibit high sensitivity 

for initial conditions. The minute variations in the initial state of a chaotic system can 

lead to extremely different outcomes over time, providing long-term predictions 

nearly impossible. The understanding of chaotic systems gives a fundamental 

knowledge across a range of fields, including environmental engineering [1], 

economics [2], social sciences [3], molecular system [4], secure communication [5], 

Artificial intelligence [6] and optimization approach [7].  

The design of chaotic hyperjerk system is an interesting topic in the field of nonlinear 

dynamical systems, specifically involving higher-order derivatives of position. While 

most traditional chaotic systems focuses on position (x), velocity ( x&), acceleration ( x&&), 

and jerk ( x&&&), hyperjerk systems expand this concept to the fourth time derivative,  

hyperjerk or snap.  The design of chaotic hyperjerk systems is crucial not only for the 

theoretical understanding of chaos and higher order dynamics but also for practical 

applications that enhance the security in various industries such as cryptography [8,9], 

and robotics [10].  

Recently, the researchers introduced many integer order chaotic hyperjerk systems 

with trigonometric function and analysed their complex behaviours such as coexisting 

attractors. For example, Leutcho et al [11] introduced a multistable chaotic hyperjerk 

system. Moysis [12] commenced a modified hyperjerk system with various complex 

features such as coexisting attractors and antimonotinicity. Vivekanandhan et al [13] 

presented a hyperjerk model with multiple positive Lyapunov exponents. The author 

discovered coexisting attractors and transient behaviours in the proposed system.  

Xiong et al [14] discussed extreme event and multistability behaviours in the 

proposed hyperjerk system. Fouodji et al [15] introduced an autonomous hyperjerk 

system with strange attractors. Karthikeyan et al [16] realized a snap oscillator with 

tan nonlinearity using electronic circuit simulation. Still exploring chaos and 

mutistability in hyperjerk system is indeed with fascinating challenge. The modelling 

of hyperjerk system using trigonometric function adds another layer of complexity 

due to their periodic nature. The high-dimensional systems can be designed by 

coupling multiple low dimensional chaotic systems [17,18] and adding more state 

variables [19-21]. The straightforward method to design high dimensional system is 

by adding more state variables with the low dimensional systems. In this work, a 

chaotic hyperjerk system is derived by introducing a new state variable and 

incorporating hyperbolic sine nonlinearities in to an existing 3D chaotic jerk system. 



 

 

The hyperbolic sine nonlinearities introduce additional level of complexity which is 

more aggressive than simple polynomial terms. 

In traditional chaotic systems, the equations of motion typically defined by integer-

order derivatives. However, to solve many real-world problems such as viscoelastic 

models [22] and memory models [23,24],  fractional order (FO) derivatives are more 

suitable and flexible than integer order derivatives. This brings us to the concept of 

FO hyperjerk (FOHJ) systems. A FOHJ system extends the idea of chaotic systems by 

incorporating fractional calculus, which allows the derivatives to be of non-integer 

order. The introduction of fractional order dynamics results in more complex 

dynamical response and the existence of chaos over a broad range of parameter. This 

enhanced chaotic behaviour has significant practical applications such as secure 

communication [25], image encryption [26, 27], robotics [28] and random number 

generation [29]. 

Dowei Ding et al [30] introduced a memristor based FOHJ system and discussed the 

extreme multistability phenomena in the proposed system. Shaohui yun et al [31] 

proposed a 5D FOHJ system and applied in color image encryption scheme. Fei Yu et 

al [32] analysed the hyperchaotic behaviour and multiscroll attractors in a FO system. 

Shaohui yan [33] introduced a FO chaotic system with no equilibrium points. The 

author also analysed the multistability and offset boosting in the proposed system. 

Still the exploration of chaos in fractional order chaotic hyperjerk system with 

hyperbolic sine nonlinearities is a challenging task.  

The FPGA implementation of a chaotic hyperjerk system has significant importance 

since it has real time applications, The FPGA implementation is the highly valuable 

tool in various fields including secure communication [34, 35], and embedded 

systems. The primary advantages of using FPGA for implementing chaotic hyperjerk 

systems are parallelism, energy efficiency, high speed computation, and real word 

hardware computation. The key challenge is the FPGA implementation of hyperbolic 

sine nonlinearities in hardware, which has quite complex due to the nature these 

nonlinearity.  

First, an integer order chaotic hyperjerk system with two hyperbolic sin nonlinearities 

and a cubic nonlinearity is constructed from an existing chaotic jerk system. The 

bifurcation and Lyapunov (LEs) plots of the proposed system are used to confirm the 

presence of chaotic behaviour under the various system parameters. Next, the digital 



 

 

hardware implementation of the new chaotic system with two hyperbolic 

nonlinearities is successively achieved using a Cyclone V SE 5CSXFC6D6F31C6N 

FPGA board. Then, a fractional order chaotic hyperjerk system is introduced and 

explored its dynamics using Garappa method. Finally, the multistability and 

coexisting attractor’s behaviour is discussed using bifurcation diagram and phase 

portraits for the proposed fractional order system. The numerical simulation and 

hardware implementation indicate that the proposed system has wealthy dynamics and 

can be used in many practical applications. 

 

2. Integer Order Chaotic Hyperjerk System 

Recently, Ramar [36] modelled a chaotic system as given in Eq. (1). 
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To extend to a hyperjerk system, a new state w is included in Eq. (1) and this 

corresponds to adding a fourth differential equation. The modified system is described 

by the differential equations as given in Eq. (2).                        
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In the system (2) the variables are denoted as (x, y, z, w) while (a, b, c, d) represents 

the constants. The chaotic behaviour is observed in the system (2) when (a, b, c, d) are 

assigned values of (2.5,1.5,1.8,1.5). By initializing the system (2) at X(0) = (1, 2, 1, 2), 

the Lyapunov exponents (LEs) of the system (2) are calculated over a period 1E4 

seconds, resulting in LE1 = 0.2238, LE2 = 0, LE3 = −0.3972, LE4 = −0.8266. The 

fractal dimension (DL) is calculated as 1 2

3
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the system (2) has chaotic attractor. The divergence of the hyperjerk system (2) can be 

determined as 
4

1
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i
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    which indicating that the system (2) has dissipative 

flow. Figure 1 represents the state space diagrams of the new integer-order chaotic 

hyperjerk system (2) with the initial condition X(0). 

The fixed points of the system (2) are got by solving the following equation: 
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By substituting y = z = w = 0 in the fourth equation of (3), we got ax – x3 = 0. Since a > 

0, there are three solutions namely, 0,x a  . Thus there are three equilibrium 

points given by P0 = (0,0,0,0) and 1,2 ( ,0,0,0)P a  . The Jacobian matrix of the 

system (2) at any equilibrium points can be written as, 
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The eigenvalues of the matrix (4) at P0 and P1,2 when (a,b,c,d) = (2,5, 1.5, 1.8, 1.5) 

are computed as (0.656, -1.205, -0.225 ± j2.166), and (-0.871 ± j1.479, 0.371 ± j1.552) 

respectively. This demonstrates that P0 and P1,2 are unstable saddle – focus fixed 

points. 

3. Bifurcation and Lyapunov Plots 

This part delves into the intricate behaviors of the new system (2) through bifurcation 

plot and LE spectrum across various system parameters. In general, the bifurcation 

plot helps to visualize the transition between the different states of the system when 

the parameter varies. LE spectrum are plotted to access the chaotic nature in the 

system, the positive LE values indicates the chaos and highly sensitivity to the initial 

condition nature in the system. The bifurcation plot and LE spectrum are plotted by 

systematically increasing any one of the parameter and keeping other parameters and 

initial condition fixed.    

Figure 2a and Figure 2b illustrate the bifurcation diagram and set of LEs of the system 

(2), respectively, for a ∈ [1.7, 3]. Figure 2a shows that the system has various 

behaviors: a stable fixed point for a ∈ [1.7 − 1.91], a periodic 2-cycle for a ∈ [1.92 − 

2.1], one wing chaotic attractors for a ∈ [2.12 − 2.26] and double wing attractors for a 

∈ [2.27 − 3]. Figure 2b indicates that chaotic attractors exists when a > 2.12. The LE 

spectrum show that from a = 1.7 to a = 2.1, the system has periodic motion, with LE1 

= 0 and LE2, LE3, LE4 being negative. At the same time, when a > 2.12, LE1 becomes 

positive, and LE2 = 0, with LE3, LE4 remaining negative, confirming the chaotic 

motion in this region. 



 

 

Figures (3a - 3b) depict the bifurcation diagram and set of LEs for the parameter b. It 

is evident from Figure 3a that the system (2) has various type of attractors when b 

varies between 1.3 and 2.7: chaotic attractors for b ∈ [1.3, 2.1] with the exception of 

very small region, periodic attractors in the range b ∈ [2.15, 2.55], and finally stable 

points. Figure 3b shows that the system has chaotic oscillation in the regions b ∈ [1.3, 

1.92] and b ∈ [2, 2.1], where LE1 is positive, confirming the chaotic dynamics in 

these intervals. 

Figure 4 illustrates the bifurcation plot and LEs plot of (2) in the region from c = 1.3 

to c = 2.3. Figure 4a clearly demonstrates that the system (2) has chaotic motions 

within the range of c = 1.3 and c = 2.07, switching to periodic motions beyond c = 

2.07. Figure 4b reveals that LE1 > 0, LE2 =0 and LE3,4 < 0 within the region c ∈ [1.3, 

2.07], confirming the chaotic nature and sensitivity on initial condition of the system 

in this interval. 

Figure 5 depicted the bifurcation and LEs plots for the parameter d. It can be 

understood from Figure 5a that the system exhibits chaotic motion in the intervals d ∈ 

[1.15, 1.7], with the exception of small region [1.3, 1.4] and the remaining regions are 

dominated by periodic motions. Figure 5b further confirms this by showing that LE1 

is positive in these regions, indicating the presence of chaos in the system. 

 

4. FPGA Design of Integer Order Hyperjerk System 

This subsection presents the FPGA based digital implementation of the proposed 

system (2). From the system, we realize that it is composed of nonlinearities in the 

form of hyperbolic trigonometric functions, i.e., sinh() in the w state variable. 

Therefore, a CORDIC (COordic Rotation Digital Computer) algorithm is proposed to 

compute the solution of the hyperjerk system. As well known, CORDIC can compute 

several trigonometric functions [37, 38]. On the other hand, the algorithm suffers 

from a reduced range θ ≤ |1.1|, meaning the input angle must rely on −1.1 ≤ θ ≤ +1.1. 

However, the variables y and z of the hyperjerk system (2) show amplitudes closer to 

±3 and ±4. As a consequence of these values, we should scale the system variables. 

Let us consider the following new set of variables: 
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Where f R  represents an scaling factor. So, we obtain: 
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By proposing f = 1/6 and using the trigonometric identities: 
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We obtain the scaling of the hyperjerk system: 

1 1

2 1

3 1

3
3 31

1 1 1 1 1 1 12

3 3

1 1 1 1 1

2
( )(sinh(1.5 )cosh (1.5 ) cosh(1.5 )sinh (1.5 ))

3

2
( )(sinh(1.5 )cosh (1.5 ) cosh(1.5 )sinh (1.5 ))
3

x y

y z

z dw

x b
w ax y y y y cz

f

z z z z w







     

 

&

&

&

&
         (8) 

Figure 6 shows the state space trajectories of the modified hyperjerk system (8) 

obtained using the Forward Euler numerical method with integration step h = 0.01, 

X(0) = (0.1, 0.1, 0.1, 0.1), and (a, b, c, d) = (2.5, 1.5, 1.8, 1.5). It is worth noting that 

by applying the previous scaling operation, the ranges for the variables are changed to 

y1 ≤ |1.5 (±0.4)| and z1 ≤ |1.5 (±0.6)|, respectively, and can now be handled by the 

CORDIC algorithm. 

The next step consists of determining the fixed-point digital representation. Since the 

maximum and minimum values for the system solution are 1/f = 6 and z1 = −0.6, 

respectively, we choose a digital format Q3, 28, i.e., three bits allocated for the whole 

value part and the remaining bits for the decimal part. Figure 7 describes the main 

blocks of the digital design, where Euler block calculates the solution in every clock-

rising transition. The hyperjerk system was implemented on a DE10-Standard digital 

board comprising a Cyclone V SE 5CSXFC6D6F31C6N FPGA. Also, a 12-bit high-

speed data converter DAC312 is used for data visualization on an oscilloscope. 

On the other hand, Figure. 8 shows the RTL schematic which consists of the 

following parts: 



 

 

(a) To synchronize the operation frequency of the numerical algorithm in block 

Hyperjerk:S2, the input clk 50MHZ enables a 50 MHz clock, which is then 

divided by a frequency divisor of 50 KHz (20 us) clock for Euler Block 

(HyperJerk TIMER:S0) and 5 MHz (200 ns) clock for CORDIC Hyperbolic 

blocks (CORDIC Timer:S1).  

(b) In addition, the block Hyperjerk:S2 computes system variables x1, y2, z3, w4 of 

hyperjerk system, which are labeled as x[31 : 0], y[31 : 0], z[31 : 0], and w[31 : 

0], respectively.  

(c) To obtain phase portraits of chaotic attractors, it is possible to select pairs of 

variables for conversion via the DAC device (DAC Block:S3,S4). 

 

Listing 1 shows the pseudocode for the Hyperjerk block (S2) in Figure 8. 

MODULE Hyperjerk (x,y,z,w,clk_CORDIC,clk_Hyperjerk,rst); 

OUTPUT: x,y,z,w; 
INPUT : clk_CORDIC,clk_Hyperjerk,rst; 
REGISTER SIGNED: xt0,yt0,zt0,wt0; 

GENERATE 
Euler   

x_t0(xt0),.y_t0(yt0),.z_t0(zt0),.w_t0(wt0),.x(tp1),.y(tp2),.z(
tp3),. 

w(tp4),clk_CORDIC,clk_Hyperjerk; 
ENDGENERATE 
ALWAYS @(POSEDGE clk_Hyperjerk) BEGIN 

IF (rst == 1) BEGIN 
      xt0 = 'h01999999; 
      yt0 = 'h01999999; 
      zt0 = 'h01999999; 
      wt0 = 'h01999999; 
END 
ELSE BEGIN 
      xt0 = tp1; 
      yt0 = tp2; 
      zt0 = tp3; 
      wt0 = tp4; 
END 

ENDALWAYS 
ASSIGN  tp1  TO  x; 
ASSIGN  tp2  TO  y; 
ASSIGN  tp3  TO  z; 
ASSIGN  tp4  TO  w; 
ENDMODULE 
 

Listing 1: Verilog synthesis of the Hyperjerk module (S2) of Figure 8 for FPGA 

implementation 

 



 

 

To find a solution for the new hyperjerk system, we employ the Forward-Euler 

algorithm described in the Verilog hardware description language (Listing 2). For the 

Euler module, we use an integration step of h = 0.01, while the product of state 

variables requires a 32-bit multiplier module. 

MODULE Euler (x_t0, y_t0, z_t0, w_t0, x, y, z, w, 
clk_Euler,clk_CORDIC); 
    PARAMETERS: h = 0.01, a= 2.5, b= 1.5, c= 1.8, d= 1.5 // 
Fixed-Point 
    OUTPUTS: x, y, z, w; 
    INPUTS: x_t0, y_t0, z_t0, w_t0, clk_Euler,clk_CORDIC; 
    WIRES SIGNED: r_x, r_y, r_z, r_w; 
    GENERATE 
        MULTIPLY: phase_1_5_y = (1.5)(y_t0); 
        MULTIPLY: phase_1_5_y = (1.5)(z_t0); 
        CORIDIC_H: (phase_1_5_y,cosh_CORDIC_out_y, 
sinh_CORDIC_out_y,clk_CORDIC); 
        CORIDIC_H: (phase_1_5_y,cosh_CORDIC_out_y, 
sinh_CORDIC_out_y,clk_CORDIC, flag_CORDIC); 
        //----------------- 
        MULTIPLY: temp1 = (h)(y_t0); 
        ASSIGN r_x = temp1 + x_t0;   //x 
        //----------------- 
        MULTIPLY: temp2 = (h)(z_t0); 
        ASSIGN r_y = temp2 + y_t0;   //y 
        //----------------- 
        MULTIPLY: temp3 = (d)(w_t0); 
        MULTIPLY: temp4 = (h)(temp3); 
        ASSIGN r_z = temp4 + z_t0;   //z 
        //----------------- 
        MULTIPLY temp5 = (a)(x_t0); 
   MULTIPLY temp6 = (x_t0)(x_t0); 
   MULTIPLY temp7 = (temp6)(x_t0); 
   MULTIPLY temp8 = (temp7)(f_x_inv); 
   MULTIPLY temp9 = (temp8)(f_x_inv); 
   MULTIPLY temp10 = 
(sinh_CORDIC_out_y)(cosh_CORDIC_out_y); 
   MULTIPLY temp11 = (temp10)(cosh_CORDIC_out_y); 
   MULTIPLY temp12 = (temp11)(cosh_CORDIC_out_y); 
   MULTIPLY temp13 = (temp10)(sinh_CORDIC_out_y); 
   MULTIPLY temp14 = (temp13)(sinh_CORDIC_out_y); 
   ASSIGN   temp15 = temp12 + temp14; 
   MULTIPLY temp16 = (c)(z_t0); 
   MULTIPLY temp17 = 
(sinh_CORDIC_out_z)(cosh_CORDIC_out_z); 
   MULTIPLY temp18 = (temp17)(cosh_CORDIC_out_z); 
   MULTIPLY temp19 = (temp18)(cosh_CORDIC_out_z); 
   MULTIPLY temp20 = (temp17)(sinh_CORDIC_out_z); 
   MULTIPLY temp21 = (temp20)(sinh_CORDIC_out_z); 
   ASSIGN   temp22 = temp19 + temp21; 



 

 

   MULTIPLY temp23 = (temp22)(f_w_4); 
   ASSIGN   temp24 = temp5 - temp9 - temp15 - temp16 - 
temp23 - w_t0; 
   MULTIPLY temp25 = (h)(temp24); 
   ASSIGN r_w = temp25 + w_t0;    //w 
    ENDGENERATE 
    always @(posedge flag_CORDIC)begin 
  ASSIGN: x = r_x; 
        ASSIGN: y = r_y; 
        ASSIGN: z = r_z; 
        ASSIGN: w = r_w; 
    end 
ENDMODULE 
Listing 2: Verilog synthesis for digital design of the proposed Hyperjerk in the FPGA 

 

 

After that, the resulting digital outputs are converted to analog ones by DAC312 only 

for visualization purposes. Since DAC312 requires a 250ns stabilization time, eight 

clock cycles are chosen to obtain 20us with a master clock of 50MHz by using the 

module HyperJerk TIMER. Finally, the DAC output block (S3,S4) in Figure. 8 is 

custom-designed for each output signal x, y, z, w. Figure 9 depicts the experimental 

setup of the new HyperJerk system implemented on a DE10-Standard digital board, 

which comprises a Cyclone V SE 5CSXFC6D6F31C6N FPGA. The hardware 

resources utilization is summarized in Table 1. 

 

We have found that the main limitation associated with implementing the hyper jerk 

system in FPGAs can be the scaling factor required to change the maximum and 

minimum values of the chaotic signals, as shown in Eq. (5) to Eq. (8). For instance, in 

the case of high-dimensional systems comprising more than three state variables, the 

change of variable becomes cumbersome and yields more intricate expressions, which 

may result in more FPGA resource utilization and power consumption. In particular, 

the challenge for the chaotic hyperjerk system arises from implementing the CORDIC 

architecture as the algorithm is constrained within the interval ±π/2 to generate the 

sinh(.) function. 

 

Regarding performance benchmarking, we perform the following studies. The power 

analysis was conducted using the Power Analyzer Tool provided by Quartus design 

software, which considers a toggle rate for the input/output signals while the 

remaining signals are fixed at 12.5%. Furthermore, the Timing Analysis considers a 

Master Clock with a period of 20 ns (50 MHz), a rise time of 0 ns, and a fall time of 



 

 

10 ns for the input pin indicated as clk_50MHZ. The obtained results and comparison 

with other FPGA implementations of chaotic systems are given in Table 2. For 

example, the study conducted in [39] focuses on a double displacement system with 

three variables and demonstrates superior performance in terms of static power; 

however, the dynamic and I/O power consumption is predominantly higher than that 

of the proposed design. The works in [40] and [41] relate to chaotic systems with four 

and three variables, respectively, and do not report power consumption. Nonetheless, 

it can be noticeable that these two systems operate at a maximum frequency lower 

than the proposed architecture herein, indicating a higher processing speed 

performance with a high bit throughput of 5.8 Gbps. 

Associated with the power consumption analysis in Table 2, the cooling requirements 

demand a 23 mm heat sink with an airflow rate of 200 LFpM, resulting in a total 

thermal power dissipation of 444.67 mW. Using the Quartus design software, the 

FPGA results in this work are obtained by establishing an operation scenario with a 

temperature of about 85°C, indicating 3.4 times the ambient temperature. This setting 

ensures optimal functionality in environments categorized as hot. However, it is 

important to note that the chaotic attractor results were acquired in a controlled 

laboratory environment, eliminating the potential effects of noise that could interfere 

with real-time data acquisition. The proposed FPGA design for the hyperjerk system 

has one input and two outputs. So, with the help of the Signal Tap Logic Analyzer in 

Quartus, we have not identified any abnormal operation of the chaotic outcomes. 

Since the signal tap logic analyzer operates in real time, the output data cannot be 

stored. Therefore, presenting empirical evidence of proper functionality is crucial, as 

illustrated in Figure 10. 

Finally, the outcomes of the FPGA implementation of the new chaotic hyperjerk 

system are shown in Figure 10, which are contrasted with the ones delivered by 

Matlab. More particularly, we plot the phase planes xy, yz, zw, and xw, respectively. 

We found a strong correlation between numerical results and FPGA implementation, 

validating the chaos generation of the new proposed system. 

 

5. Fractional – Order Chaotic Hyperjerk (FOHJ) System 

 

A FOHJ system is a system where the governing equations are based on fractional-

order derivatives of the state variables. The fractional-order systems typically take the 

form: 
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Here, Dq represents the fractional derivative of order q (with 0 < q < 1), x, y, z, and w 

represent states of the system, f(x,y,z,w) is a nonlinear function that governs the 

chaotic behavior of the system. Let us define a new FOHJ system as follows: 
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                            (10) 

In the FOHJ system (10), q = 0.99, and a = 6.5, b = d = 1.5, c = 1.8. The LEs of the 

FOHJ system (10), computed with a simulation time of 10,000 and an initial condition 

of (1,1,1,1), are (LE1, LE2, LE3, LE4) = (0.2682, 0, −0.4602, −0.9314), demonstrating 

its chaotic nature. The Lyapunov dimension of FOHJ system (10), given by DL = 2 + 

[(L1 + L2)/|L3|] = 2.2879 which is fractal.  

To solve fractional order differential equations many numerical methods such as 

Garappa method [42], Grünwald–Letnikov method [43], Laplace transform [44] and 

spectral methods [45] are available. In this work, we selected the Garappa method to 

solve the proposed FOCHJ system due its accuracy and efficiency. It offers a reliable 

numerical stability, making it well-suited for simulating complex fractional-order 

chaotic systems. While other methods may offer similar accuracy, they are complex to 

implement and also require more computation time. 

The proposed FOHJ system (10) is simulated by using Roberto Garrappa method 

employing the step size of 0.005. Figure 11 shows the phase portraits of the new 

FOHJ system with the initial condition (1,1,1,1). 

The bifurcation and LEs plot for FOHJ system (10) under the fractional order q are 

depicted in Figure 12. Figure 12a specify that the FOHJ system (10) has chaotic 

motion in the region ranges from q = 0.97 to q = 1. Figure 12b illustrates the LEs plot 

as the fractional order q varies within the range [0.95,1], revealing that the system has 

chaotic behavior specifically for q ∈ [0.97, 1]. 

 

 



 

 

6. Multistability in Fractional Order Hyperjerk System 

Multistability and coexisting phenomenon is a special feature of chaotic system by 

which the system can able to produce multiple coexisting attractors under the same set 

of system parameters. In this section, we explored the multistability and coexisting 

phenomenon in the proposed fractional order hyperjerk system (10). 

Recently, Liu [46] analyzed multistability in the fractional order multiwing chaotic 

system, Ren et al [47] discovered extreme multistability in their proposed system. In 

secure communication system, multistability and coexisting attractors enhances the 

security of the system since it make very difficult to predict the system behavior. The 

multiple attractors can be used to represent different symbols in the information 

encoding [48, 49]. To enhance stability, the adaptive control techniques such as 

fractional order sliding mode controllers [50], backstepping controllers [51] can be 

integrated to maintain the desired dynamics. Additionally, various synchronization 

methods [52, 53] ensure the recovery of reliable signal under varying initial 

conditions.   

Figure 13a illustrates the bifurcation behavior of the FOHJ system (10) for specific 

value of a, displaying the results of two different initial conditions: One set of 

conditions (0.1,0.1,0.1,0.1) in blue and another set (0.1,-0.1,-0.1,-0.1) in red. The clear 

separation between the blue and red branches within the range a ∈ [1, 5] signifies the 

occurrence of multiple stable states, including periodic oscillation and chaotic 

attractors, with in the system (10). This bifurcation pattern highlights the system's 

complex dynamics over this parameter range. The overlapping of the blue and red 

branches in the region a ∈ [5.5, 8] suggests the existence of a single chaotic attractor 

within that parameter range. Figure 13b supports that the system (10) has chaotic 

attractors where LE1 (Blue) has positive values. 

Further, to validate the multistability in the FOHJ system (10), the bifurcation for c 

with the set of initial conditions (0.1,0.1,0.1,0.1) (blue) and (0.1,-0.1,-0.1,-0.1) (red) 

are plotted as give in Figure 15a. The non-overlapping of the blue and red branches in 

the range c ∈ [3, 5] indicates the occurrence of coexisting attractors in periodic and 

chaotic regions in the system (10). As depicted in Figure 15b, the system (10) exhibits 

intricate chaotic dynamics within the region c ∈ [1, 3.5] where LE1 in Blue takes on 

positive values. This suggests the presence of strong dependence on initial positions, a 

key characteristic of chaotic behavior in the system. The various coexisting attractors 

in various c values are shown in Figure 16. 

 



 

 

Conclusion 
 

This study proposes a new chaotic hyperjerk system with two hyperbolic functions, 

along with a detailed dynamical analysis that highlight its wealthy chaotic behavior, 

including Lyapunov exponents, and bifurcations. The dynamic characteristics of the 

proposed system were thoroughly examined using numerical simulations and 

theoretical study. Furthermore, we successfully implemented the proposed integer 

order chaotic hyperjerk system on an FPGA platform, demonstrating its feasibility 

and efficient hardware realization. Further, we introduced a fractional order hyperjerk 

system, which is designed from the proposed integer order system. Through an in-

depth multistability analysis, we observed the initial conditions based coexistence of 

multiple attractors within the system. The results show that fractional-order dynamics 

can significantly enhance the usability of chaotic systems in areas like secure 

communication and nonlinear control.  
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(a)                                                             (b) 

Figure 1 : The state space trajectories of the new chaotic hyperjerk system (2)  

 

  

(a)                                                        (b) 

Figure 2: (a) Bifurcation (b) LEs plots for the parameter a 

 



 

 

  

(a)                                                                   (b) 

Figure 3: (a) Bifurcation (b) LEs plots for the parameter b 

 

 

  

(a)                                                       (b) 

Figure 4: (a) Bifurcation plot and (b) LEs plot for the parameter c 

 

  

(a)                                                         (b) 

Figure 5: (a) Bifurcation (b) LEs plots for the parameter d 

 



 

 

 

Figure 6: The attractors of the chaotic hyperjerk system under a scaling procedure. 

 

 

 

 

 

 

Figure 7: Block diagram for implementing the proposed Hyperjerk system on an 

FPGA board. 

 

 

 

 

 

 

 



 

 

 

Figure 8: RTL schematic for the realization of the proposed Hyperjerk system. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Hardware realization of the proposed system in FPGA technology. 

 

 

 

 

 

 

 

 



 

 

 
(a)                                                                    (e) 

 
(b)                                                                     (f) 

 
(c)                                                                     (g) 

  
(d)                                                                       (h) 

Figure 10: Comparison of the FPGA implementation of the new chaotic HyperJerk 

system versus Matlab numerical simulations  



 

 

 

 

(a)                                                                   (b) 

 

                      (c)                                                                 (d) 

Figure 11: The phase projections of FOHJ system (10) in various planes 

 

 

 

Figure 12: (a) Bifurcation (b) LE plot of FOHJ system (10) for fractional order q 

 

 

 

 



 

 

  

(a)                                                       (b) 

Figure 13: (a) Bifurcation plot (b) LEs plot of FOHJ system (10) for the parameter a 

 

 

  

(a)                                                       (b)  

  

        (c)                                                                (d)  

Figure 14: The coexisting attractors of FOHJ system (10) when (a) a = 1.8, (b) a = 2, 

(c) a = 4 and (d) a = 6 respectively. 

 

 

 



 

 

 

  
 

Figure 15: (a) Bifurcation behavior (b) LE plot of FOCHJ system (10) for c 

 

 

 
(a)                                                            (b)  

 
                      (c)                                                                       (d)  

 

Figure 16: The coexisting attractors of FOHJ system (10) when (a) c = 1, (b) c = 3.2, 

(c) c =3.6 and (d) c =4.5. 

 

 

 

 



 

 

Table 1: Resources utilization by Entity and Total of the FPGA implementation of 

hyperjerk system. 

Entity Combinational 

ALUTs 

Dedicated 

Logic Registers 

DSP Blocks Pins 

Hyperjerk 300 128 0 0 

Euler  1928 481 72 0 

HyperJerk_Timer 43 33 0 0 

CORDIC_Timer 43 33 0 0 

DACs 88(44) 0 6(3) 0 

Total 2154 675 78 26 

 

 

 

Table 2: Power consumption and operating frequency comparison of the proposed 

Hyperjerk system. 

  This work Gugapriya 

et al [39] 

Karakaya 

et al [40] 

Mohammad 

et al [41] 

Power Dynamic  22.03 mW 139 mW N/A N/A 

Static 412.81 mW 159 mW N/A N/A 

I/O 9,83 mW 91 mW N/A N/A 

Total 444.67mW 298 mW N/A N/A 

Max. Frequency 90.69MHz Not 

reported 

59.492 

MHz 

73.83 MHz 

Bit Throughput 5.804 Gbps N/A 3.807 Gbps 1.772 Gbps 

Reported behavior Hyperjerk Double 

scroll 

Double 

scroll 

Hyperchaos 

 

 


