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Abstract

In this study, energy analysis, engine performance, and noise emissiws of Euro diesel and
safflower methyl ester fuels were conducted on a diesele en% The experiments were
conducted independently for each fuel type across engine spgedS ranging from 1000 to 2400
rpm, and the physicochemical properties of the fuels Wraeterimd and evaluated through
engine testing. Noise emission values were reco four different points around the

According to the test results, the most s fuel type was determined based on engine

engine at a distance of one meter and w ared with those of reference diesel fuel.
performance. noise emission and ene;%?alyms. In this study, modeling was performed using
artificial neural networks (A sed on experimentally obtained data, and the noise
emission characteristics of B@ld D!% fyels were analyzed. Both raw and normalized datasets
were evaluated to asses@

predictive success \psely associated with the choice of training algorithms and transfer

redictive accuracy of the models. It was concluded that the

functions utiliz findings highlight that selecting suitable models and algorithms tailored
to the structyre ¢f the dataset plays a critical role in enhancing prediction accuracy.

Keywor@Safﬂower Methyl Ester, Energy Analysis, Engine Performance, Noise Emission

AnawArtiﬁcial Neural Networks.

Highlight

e Determined the most suitable fuel type based on engine performance. noise emissions, and
energy analysis.

e Conducted tests between 1000 and 2400 rpm.

e Employed an Artificial Neural Network (ANN) model for data analysis, utilizing 80% of
data for training and 20% for testing.



e Compared results with reference to diesel fuel (D100).

1. Introduction

The rapid depletion of fossil fuels is primarily driven by increasing industrialization. which
escalates the demand for energy consumption [1]. Researchers are focusing on the complete
replacement of petroleum-based fuels. such as biodiesel, to better reduce harmful pollutants [2].
Many countries are highly dependent on imported fossil fuels due to insufficient domestic
reserves. which negatively impacts their economies [3]. Despite being re%ard an
environmentally sustainable alternative to conventional diesel fuels, the utiliza‘w of pure
biodiesel (Bioo) in diesel engines has not yet received widespread regulato val. Choice
of feedstock for biodiesel production is influenced by factors gucli a$”cost, feedstock
availability, production techniques, and fuel stability [4]. While the& several methods for

producing biodiesel, the most commonly used today is transester@ion. Transesterification is

an environmentally friendly process that produces liquid b from oilseed crops (such as
canola, sunflower, soybean and safflower) and animal ugh a reaction with a short-chain
alcohol (typically methanol or ethanol) and a cat ]. These characteristics can directly

production and the performance of the o1l uSed are of critical importance. In particular.

impact biodiesel yield and efficiency d%@duction. In this context, both biodiesel
safflower methyl ester oil has emergeﬂg%l new and significant source for biodiesel production.
The higher cetane number an scosity of safflower methyl ester oil compared to
conventional diesel fuel fu@enhance its importance. Experimental studies on safflower
methyl ester have recentl@l ed prominence.

Dogan et al. cond &ﬁumerical simulations using AVL software to compare diesel and
safflower oil m ter (SOME) in a diesel engine across compression ratios of 12:1 to 18:1
and Varying® s. SOME showed higher BSFC but lower CO and HC emissions, with
increase(@ﬂ)x and CO.. Simulation results closely aligned with experimental data, particularly
at h%ompression ratios, confirming the model's reliability [6].

AsoKan et al. investigated the impact of adding antioxidants to safflower methyl ester (B2o) on
engine performance and emissions. The incorporation of antioxidants, namely butylated
hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), contributed to improved engine
performance at elevated injection pressures (210 bar), with BHA in particular achieving a 5%

reduction in NOx emissions. Compared to pure diesel, B2o biodiesel demonstrated lower CO

and HC emissions, though there was an observed increase in NOx emissions and smoke opacity.



The findings suggest that safflower methyl ester enriched with BHA could serve as a promising
alternative fuel for diesel engines, particularly in terms of emission performance [7].
Rajendran et al. investigated the impact of injection timing on a CI engine fueled with safflower
methyl ester (SAME). Retarded timing reduced NOx by 28%, along with CO and smoke, but
lowered BTE by 10%. Advanced timing slightly increased NOx while reducing smoke opacity.
The study highlights the importance of injection timing optimization to mitigate high viscosity
effects and enhance engine performance and emissions [8].

With the increasing focus on emission regulations and design innovations i 'r@al
combustion engines, the effects of different oils and production methods used in t:i&l have
gained importance in terms of engine performance. In this context, engine g behavior
across speed-load ranges, emissions, fuel consumption, noise, mec n@ ad, and thermal
load are frequently used to define engine performance [9]. &

The cetane number, flash point, viscosity, lubricating propeme al properties, physical

characteristics and molecular structure of the fuel 1nﬂuenc&%ges in engine vibration [10].

The combustion noise level is affected by the rate of in: n combustion pressure, which is,

in turn, related to parameters such as injection ti d ignition delay [11]. A considerable

vibration profiles of internal combustion

number of studies have focused on dyna nse characteristics specifically noise and
engipes operating on biodiesel, aiming to assess its

impact on acoustic performance and ;%ural integrity.
ds (5-20%) on a 402 CC Dongfeng engine at 1,300—

1,900 rpm. The B10 blend a@O rpm showed the longest fuel consumption time (155 s) with
lowest noise (105.7 dB) @ ration (975.7 Hz). The B20 blend achieved the lowest exhaust

emissions (56.8%).

Susilo et al. tested diesel-essentti

ts indicate essential oil blends reduce noise and vibration while

influencing fuel
Al-Rawash studied carbonyl emissions from a CI engine using diesel and
methano@sel blends (DM 10, DM20). Methanol blends raised aldehyde emissions, especially
at 1(?65, but lowered NOx, HC, and CO at high speeds. DM20 had the lowest NOx due to

charge cooling. Formaldehyde decreased with load, while acrolein and crotonaldehyde

ncy and emissions. [12].

et al.

increased. Higher methanol reduced power and torque but improved combustion cleanliness,
raising concerns about toxic aldehydes. [13].

Ala’a et al. investigated the extraction, characterization and engine performance of muskmelon
seed oil biodiesel in various blends (BD1o, BD20, BDso and BD10o). Produced via esterification
and transesterification, the biodiesel was tested in a single-cylinder diesel engine across

multiple speeds. BD2o exhibited the best performance with brake thermal efficiency (36.0%)
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nearly equal to diesel and lower CO (207 ppm) and SO emissions. Though BD1oo showed the
highest NOx, BD2o had optimal emission balance. Physical tests confirmed compliance with
biodiesel standards. This study suggests BD2o as a sustainable, engine-compatible fuel from
agricultural waste, reducing environmental pollution while promoting renewable energy in
semi-arid regions like Jordan [14].

Al-Hwaiti et al. produced biodiesel from Handal oil using catalysts NaOH, KOH, NaOCHs, and
Fe20; nano. Sodium methoxide (NaOCHs) gave the highest yield (99.4%). Engine tests_with
B20 and B80 blends showed B80 improved brake power and reduced CO and HC '@15,
with a slight NOx increase. Fe.Os nano catalysts were efficient and reusable. The s.tNerports

Handal biodiesel as a sustainable fuel with good performance and emission Ff , especially

for arid regions like Jordan [15].
Biodiesel has a high oxygen content, which causes combustion irmdlesel blends to start
earlier and spread more evenly [16]. The oxygen concentratien Is plays a crucial role in

reducing emissions of carbon dioxide, carbon monoxide am&r}tfulate matter [17]. According
to many researchers, it is a general trend that biﬁ and its blends generate higher

combustion noise compared to conventional miﬁ& esel [18]. Since biofuel is a highly

viscous fuel, using pure vegetable oil in digsel nes is expected to cause various problems
such as poor atomization, advanced injection, imjector blockages and piston ring sticking [19].

The engine noise was measured as d Pressure Level (SPL) and this measurement was

performed using Eq (1). w

Prvs: RMS value of the sou@essure measured from the microphone
Po: Reference sound pres@ alue

Sound Pressure Ley, ) =201og4o (PI’:;WS dB (1)

Results of all th@a eters of biodiesel are well within the standard range of ASTM standards,
comparable With that of normal diesel, and hence the biodiesel is suitable for use in CI engine
as 1 . Patnaik et al. conducted research highlighting the use of artificial neural networks
(A to enhance the integration of biodiesel in compression ignition (CI) engines. With
optimized topologies like 6-5-1 for Brake-Specific Fuel Consumption (BSFC). ANN accurately
predicted biodiesel performance and emissions, showing low mean squared errors (MSE) and
high correlation coefficients. The findings advocate for broader adoption of biodiesel in
alignment with global clean energy and sustainability goals [21].

Hosseini et al. evaluated the impact of alumina nanoparticles on diesel-biodiesel blends using

an artificial neural network (ANN) to predict engine performance, emissions and vibration. An



ANN model with a 12-25-25-12 architecture, trained via the Levenberg-Marquardt algorithm,
demonstrated high accuracy, with R-values of 0.97-0.99 for performance and emissions
predictions, and 0.94-0.99 for vibration analysis. The study confirms that the ANN method
effectively correlates predicted data with experimental results. showing the potential of nano-
catalysts to improve biodiesel's thermo-physical properties and engine efficiency [22].

Celebi et al. studied the effects of biodiesel blends (20%, 40% sunflower and canola) and natural
gas on noise and vibration in an unmodified diesel engine. Biodiesel reduced SPL and vibration
and lowered CO emissions but increased CO: and NOx. Natural gas further reduced g&nd
emissions but worsened overall emissions. An ANN model accurately predic.t& L and
vibration, outperforming linear regression. The study highlights biodiese}’éi ise reduction

benefits with emission trade-offs [23].
Yildirim et al. compared ANN and SVM for predicting vibration, mand emissions (CO,
CO2, NOx) in a diesel engine fueled with biodiesel blends andeh @n. ANN with Levenberg-
Marquardt training outperformed SVM, achieving highe&xnd lower MAPE across all
parameters. SVM showed weaker performance, especwco prediction [24].

This study innovatively evaluates the effects of & er methyl ester on diesel engines,
covering energy analysis, performance, noi @swns, and uses artificial neural networks
(ANN) to predict experimental data. It uniquely examines different transfer functions and
training algorithms to improve ANN %rjacy from multiple measurement points, contributing
to advanced engine data modeli e approach integrates environmental impact and engine
compatibility of alternative @ Key assumptions include stable environmental conditions,
consistent fuel propertie@

models assume a muous, learnable relationship between inputs and outputs, with

calibrated measurement devices ensuring accurate data. ANN

training/testing @ ing representative and independent. Min-max normalization is valid,
assuming stgble)data ranges, and datasets are free of outliers. These assumptions underpin the

reliabilit@experimental results and ANN predictions.

2. Mgterial and Methods

In this study, safflower methyl ester (SME) was produced via a base-catalyzed
transesterification process. Specifically, safflower oil reacted with methanol at a concentration
of 20% by volume, using sodium hydroxide (3.5 g per liter of oil) as the alkaline catalyst. The
reaction was carried out under controlled conditions to ensure efficient conversion of
triglycerides into methyl esters, resulting in a biodiesel fuel suitable for engine performance
evaluation. Euro diesel was obtained from the market. The test engine is a single cylinder, water
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cooled, 17:1 compression ratio, 15 HP, 60 Nm torque diesel engine. A Jetronl S4001 noise level
meter with a measurement range of 30-130 dB and a sensitivity of 1.5 dB was used to measure
the noise levels. Measurements were taken from four different points of the engine at a distance
of one meter. The results of the analysis of the test fuels are presented in Table 1. The values in
the table comply with the EN 590 standard for Euro diesel fuel and the EN 14214 standard for
safflower methyl ester fuel.

2.1. Energy Analysis ° O

In general, energy analysis is defined as the energy supplied and consumed with

This analysis enables the measurement of the internal energy difference
mass flow, as a function of the transfer of energy between points 'u%&;, either as heat or
useful work. Thermodynamic analysis paves the way for studying test fuel mixtures and various
operating conditions in comparison with basic engine oper ti.ox‘ﬁe’ effect of various factors,
such as engine load and mixed fuel conditions, helps to ca losses during the investigation
process [25]. v @

Engine energy analysis calculations are given in Nion (2) through Equation (5).
To facilitate computational simplicity befqfe entation on the test engine, the following
assumptions were considered:
e The engine operation is ass ‘@% be in steady state.
e The air and exhaust sewe engine are considered ideal gases [26].
Energy analysis enables the%\tiﬁcation of energy transformations, such as work and heat,

within a control Volur& valuating energy transfers and the enthalpy associated with mass

flow across its boes [27].
Nt = 5 Rl @)

m;y,: Ma;;ér and fuel mixture entering the interior

of exhaust gases at the outlet

r'no]@' I
Efuel =W+ Qlost 3)

Efuer : Fuel energy ratio W: Brake Power Qjost : Lost energy rate
Efuel = mfuel- Hu (4)
Mg,e : Mass flow rate Hu : Low calorific value

H mnT
W = ” (5)
n : Motor speed T : Engine torque



3. Conclusion and Discussion

3.1. Engine Performance

The torque variation obtained at different engine speeds during full-load tests with Euro diesel
fuel and safflower methyl ester is illustrated in Figure 1 as a function of engine speed. The
maximum torque was measured at 54.957 Nm at 1200 rpm using D100 fuel. A decrease of 0.34%
in torque was observed with B1oo fuel compared to Digo fuel. The primary reason for the higher
torque values in Digo fuel compared to those of the other fuels is that the kinematic Vi@‘ﬁof
Dioo fuel is lower than that of Bigo fuel. as shown in Table 1. .x

The changes in the effective power values obtained at different engine spee g full-load
tests using Euro diesel and safflower methyl ester fuels are presented in g@

The maximum engine power was measured at 14.467 HP at 200&: using Dioo fuel. A
decrease of 2.5% was observed with B1oo fuel compared to Digo f\f:vhis reduction is attributed
to insufficient atomization and low ignition quality due to th&high density of Bigo, as indicated
in Table 1. The changes in specific fuel consumption v tained at different engine speeds
during full-load tests using Euro diesel and safflow, éﬂyl ester fuels are presented in Figure
3. The minimum specific fuel consumptio asured at 231.955 g/HPh at 1500 rpm for
Dioo fuel. An increase of 4.78% in specific fuel consumption was observed with Bioo fuel
compared to Digo fuel.

The changes in fuel consumpti esfobtained at different engine speeds during full-load
tests using Euro diesel andﬁlower methyl ester fuels are illustrated in Figure 4. At the
maximum engine power 0 rpm. the fuel consumption value for Digo fuel was measured
at 1.009 g/h. The o &in biodiesel and additives causes fuel premixed phase combustion,
which improve Ql efficiency and combustion [28]. An increase of 10.07% was observed
for Bioo fuel Compared to D1oo fuel. The primary reason for the higher specific fuel consumption
and fuel @umption values in Bioo fuel compared to Dioo fuel is that the calorific value of Bioo
is l?as shown in Table 1. The analysis of engine torque, brake power, specific fuel
consumption, and total fuel consumption demonstrates consistency with the results presented

by Borecki et al. [29].

3.2. Noise Emissions
In internal combustion engines, the formation of vibrations is largely dependent on the
magnitude and rate of mechanical forces within the cylinder. According to the experimental

data obtained in this study, maximum in-cylinder pressure, heat release rate, and pressure rise
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rate generate vibrations throughout the engine cycle. Noise emissions, which are a consequence
of these vibrations, exhibit a similar trend [30]. Furthermore, when the engine is under load,
increased friction between the crankshaft bearings, cylinder-piston surfaces, and other engine
components, along with the elevated combustion pressure inside the cylinder, contributes to
higher levels of noise emissions [31]. Therefore, analyses were conducted under different load
conditions in this study.

Figure 5 displays the noise emission graph measured at one meter from point A as a func
engine speed. An analysis of the graph reveals a 0.102% decrease in noise emissio 100
fuel at maximum engine power at 2000 rpm compared to Dioo fuel. Figure 6 prese&@ noise
emission graph measured one meter from point B as a function of engine spegdNA# analysis of
the graph indicates a 0.103% decrease in noise emission for Bioo fuel a @n engine power
at 2000 rpm compared to Dioo fuel. Figure 7 illustrates the noise e@n graph of the fuels
measured at one meter from point C as a function of engine sp@An analysis of the graph
reveals a 0.102% decrease in noise emission for Bigo fuel imum engine power at 2000
rpm compared to Digo fuel. Figure 8 displays the nois ission graph of the fuels measured
one meter from point D as a function of engme @

An analysis of the graph indicates a

a decrease 1n noise emission is observed for

0.102% decrease in noise emission for B at maximum engine power at 2000 rpm
compared to Digo fuel. Upon analyzing thm%n

Bioo fuel compared to Dioo fuel. Th%‘uctlon is attributed to the high kinematic viscosity
values of Bjoo fuel and the dam
methyl ester. as indicated iuble 1. In this research, it is assumed that as the speed of the

machines increases, the

provided by the lubricating properties of safflower

to complete jobs is reduced, but the noise pollution in the
production environ &ﬁ increased [32]. The results obtained from the analysis of the noise
emission values ing engine tests are consistent with the findings of Ahmed et al. [33] and

Sanjid et al. [34).

O

33 ?{gy Analysis

The outcomes of the energy analysis conducted on the fuel samples at different engine speeds
are summarized below, with Figure 9 illustrating the results obtained at 1200 rpm. Which
corresponds to the maximum torque speed; Figure 10 shows the results at 1500 rpm.
representing the minimum brake specific fuel consumption speed; Figure 11 displays the results
at 2000 rpm. associated with the maximum power speed. Increasing the brake power of pure

diesel and oxygenated fuel mixtures enhanced the thermal efficiency of the brakes [35].



It was determined that for all fuels, the fuel energy flow increased with rising engine speed. The
primary reason for the higher energy analysis values of D1oo fuel compared to Bioo fuel is the
lower calorific value of Bioo fuel, as indicated in Table 1. The results obtained from the
examination of the energy analysis values because of engine tests aligned with the findings of

the studies conducted by Kul and Kahraman [36].

3.4. Investigation of Noise Emission Prediction with ANN Model

Artificial Neural Networks (ANN) provide flexible architectures that are particularly, 1ve
in addressing nonlinear problems. ANN provides efective process modeling in ten;l& ciency,
accuracy, and cost [37]. ANN models offer flexibility and powerful learni abilities for
large and complex datasets; they learn non-linear patterns in data thapksefo their multi-layered
structure [38]. Artificial neural network architecture consists of sev&ayers, with each one
linked to its successor. Every layer is comprised of neuroms ®ocessing elements, each
equipped with a nonlinear activation function, excluding these”at the input level [39]. This
iterative process continues until the neural network t aligns with the target output.
Therefore, it is essential for an artificial neural e@rk model to be trained, tested, and
validated based on a substantial amount ofdat ,}In the present study, the Feed-Forward
Back-Propagation (FFBP) model, a wide%ized ANN approach for addressing nonlinear
problems. is employed. Predictions \x%r:ade for the four different points of noise emissions

obtained using an artificial neu

separated with an 80% train@;d 20% testing ratio. Figure 12 shows the ANN architecture.

(ANN) model. The training and testing data were

3.4.1. Error Analysi &

Three different Qint methods are commonly employed in neural network predictions.
These const am@wilitate the evaluation of the model's success by examining the difference
between @dicted values and actual values. The mathematical models representing these
con% are presented below. Their primary aim is to minimize errors and optimize
prediction performance to enhance the model's accuracy. The equations for the error metrics are
provided in Equations (6) through Equations (8) below. The Root Mean Square Error (RMSE)
is one such metric. RMSE (Root Mean Square Error) is a metric that measures the square root
of the average squared differences between predicted and actual values. It indicates how much
prediction errors deviate from the real values.

n = total number of observations (dimensionless)



e, = error at time t. calculated as the difference between the observed value and the predicted
value at time t (same unit as the predicted variable)

t = time index or observation index. running from 1 to n (dimensionless)

1
~yn, ef (6)

Mean-Square Error (MSE)

This formula calculates the Mean-Square Error (MSE). which measures the average of the

>

squared differences between predicted and actual values.
n: number of observations (unitless) ¢ O

1

o &t=1 et,g &
Mean Absolute Percentage Error (MAPE) [41] x’

MAPE (Mean Absolute Percentage Error) is a metric that mea:u e average absolute error

e error at time t (same unit as the predicted variable) Q’

(7

between predicted and actual values. expressed as a percent the actual values.

n: number of observations (unitless) @Q

[
e absolute error at time t (i.e.. [predicted; — actualtN

vi: actual value at time
MAPE: the result is expressed as a percentage (7o)
A lower MAPE value indicates bette el accuracy with 0% being perfect prediction

%100 ¢y et @
—— i=17,; (8)

Compute performance metri@h as MSE, RMSE and Accuracy Rates to quantify the model's

predictive accuracy a tiveness [42]. Concerning the performance of forecasting models.
the values of RM E. and MAPE should ideally be close to zero. To evaluate a linear
relationship. th correlation coefficient should be as close to 1 as possible. indicating that

the modetjga’sses strong predictive capability.

3.4.% :;ata analysis

The data were collected from experiments conducted on an experimental compression ignition
(CI) engine assembly operating at specific speeds of 1000, 1500, 1900 and 2400 rpm. The
experiments were carried out separately for Bioo and Dioo fuels. Energy analysis, engine
performance and noise emission tests were performed during the experiments. Noise emissions
were measured from four different points on the engine using a Jetronl S4001 noise level meter.

The dataset includes parameters such as engine speed (RPM). engine torque (Nm), power (Bg),
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fuel consumption (g/s), specific fuel consumption (g/Bg), fuel consumption (kg/s) and fuel
energy flow (Bg). These parameters were utilized to estimate the noise emissions obtained from
the four different points separately using an artificial neural network (ANN) model. When
estimating noise emissions at point A, data from the other points (B, C and D) were also
included in the input data. The same approach was applied to points B, C and D. The same
models were employed to analyze the data while predicting each of the four points respectively.
The dataset was divided into 80% for training and 20% for testing. Additionally, the data_were
normalized to address the imbalance between the values of 1 and 0. Consequently, tl@ €ss
rates of the raw and normalized data were also evaluated. .x
Normalization is a data transformation technique employed to convert a wi e of digital
values in a dataset into a common measurement while preserving proportional differences.
Various normalization techniques are available. with min-max nor&a‘[ion being the most
common [43]. The following equation Eq (9) is used as the fosmu min-max normalization.
Min-max normalization is a technique used to scale data&}een 0 and 1. The following
formula is used:

x: the original data value ¢ N@

Xmin: the minimum value in the dataset

Xmax: the maximum value in the dataset %

Xnorm: the normalized value (unitless. tanges from 0 to 1)

This method ensures all values ad roportionally within the range [0. 1]. which improves
the performance of many m@e learning models.

Xnorm = _X-Xmin @ )

Xmax—Xmin

3.4.3. Modelli-@'tacial Neural Networks

Three t i@ algorithms TrainLM (Levenberg-Marquardt), TrainBR (Bayesian
Re ari;{)n), and TrainBFGS (Broyden-Fletcher-Goldfarb-Shanno) were used for noise
em%onestimation. The number of neurons and layers was fixed, while epochs varied based
on testing success. TrainLM is fast and accurate for small to medium datasets, using Newton
derivatives for efficient weight updates. TrainBR extends TrainLM with regularization to
reduce overfitting, improving generalization on noisy data. TrainBFGS, a Gauss-Newton
method, requires second derivatives and solves linear equations each iteration, offering high

precision and faster convergence for large datasets. The ANN employed multilayer perceptron
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(MLP) architecture with three transfer functions tested: pure linear (Pure-Lin), log sigmoid

(Log-Sig), and hyperbolic tangent sigmoid (Tan-Sig) to find the optimal network structure.

3.4.4. Evaluation of Artificial Neural Network Results

In this study, noise emissions at four different measurement points were estimated using five
distinct ANN models per point, for both diesel (D1oo) and biodiesel (Bioo) fuels. A total of 80
models were developed using both raw and normalized datasets. The prediction perfor

were assessed using RMSE, MSE, and MAPE metrics. As shown in Table 2, for Do ost
successful model using raw data was the TRAINBR algorithm at point A, with ax@er 15-

neuron ANN architecture employing the Pure-Lin transfer function (RMSE SE 5.914,

MAPE: 2.279). For normalized data, the most accurate result was o oint A with the
TRAINBFG algorithm using the same architecture (RMSE: 0.214, M& 46, MAPE: 21.53).

In general, non-normalized data produced superior results. e

Similarly, Table 3 presents Bioo results. The best- perforrnn@del with raw data at point A
was obtained using the TRAINLM algorithm with 1 laygf\l O"'neurons, and the Tan-Sig transfer
function (RMSE: 1.149, MSE: 1.321, MAPE: 0. 9 r normalized Bioo data, the top result
was achieved using TRAINBR with 2 laye urons, and the Pure-Lin function (RMSE:

0.023, MSE: 0.001, MAPE: 4.004). Again, %ata generally led to higher prediction accuracy.
Figures 13 to 16 illustrate the best-per; ing models for each fuel type and normalization state
across all measurement points, highlighting point A as the location with the highest
accuracy. This success is attr@d to the low variance of data at point A, which facilitates more
effective learning, parti when using linear transfer functions such as Pure-Lin and
algorithms like T and TRAINLM. Overall, the study shows that models trained on
raw data tend to ize better due to the greater variance in the dataset. Figure 17 compares
the error me@ the best models across both D1go and Bigo, confirming the advantage of raw
data. T BR, due to its Bayesian regularization, performs well on noisy or complex datasets
by %ﬁng overfitting risks, unlike TRAINLM which, while faster, may overlearn in such
conditions. The study emphasizes that model performance is highly dependent on dataset-
specific features. The use of four distinct datasets in this research revealed that TRAINLM,
TRAINBR, and TRAINBFG each outperform the others under different conditions,
underscoring the importance of model selection based on data characteristics. The architecture
of the best B100 model using TRAINLM (1 layer, 10 distributions, Tan-Sig) is shown in Figure
18.
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Traditional methods have proven insufficient for managing large datasets, prompting the
development of advanced ML techniques that leverage atmospheric attributes to enhance
prediction accuracy and minimize errors [44]. After evaluating the weights of the features, it is
important to determine the feature selection algorithm [45]. Solving it using machine learning-

based approaches may lead to promising results [46].

4. Conclusion

This study investigated the performance, energy analysis, and noise emissions of, nd
laboratory-produced Bioo fuels in a CI diesel engine. Experimental data showed thw 1le D1oo
offered superior engine performance and energy efficiency, Bioo exhi ower noise
emissions, highlighting its environmental advantage. Noise data werg ¢ éh at four engine
speeds and four measurement points using a Jetronl S4001 device. E&parameters included
speed, torque, power, fuel consumption, and energy flow. AN"@Odels were trained using
TrainLM, TrainBR, and TrainBFG algorithms, with model perfofmance evaluated via RMSE,
MSE, MAPE, and R? metrics. Early stopping and da @Ying (80% training, 20% testing)

were applied to prevent overfitting. Among 86 configurations, the most accurate

e normalized data favored TRAINBFG. For
Bioo, TRAINLM (1 layer, 10 neurons;éTan Sig) excelled in raw data, whereas TRAINBR
yielded the best results with li

predictions were consistently achieved at p r raw Djoo data, TRAINBR with a 2-layer,
15-neuron Pure-Lin setup performed best: a‘

d inputs. Overall, non-normalized data improved
generalization due to higher wnce, while low-variance data enabled more effective learning.
TrainBR demonstrated s robustness in noisy datasets, whereas TrainLM offered speed

depends heavily,

and precision with &tial overfitting risks. These findings emphasize that model success
Q structure and the selection of suitable algorithms and transfer functions.

Future rese@ may explore different neuron/layer configurations to enhance model

optimiza@ and contribute to environmentally conscious engine technology development.

Yy
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Table List

Table 1. Analysis of Fuels

Limiting Values

Features Units B1oo D1oo _ Safflower Methyl
Euro diesel Ester
Density (15°C) g/cm®  0.885 0.843 0.82-0.84 0.86-0.90
Kinematic Viscosity (40°C) mm?/s 4.32 3.31 2-45 3.5-5 (b
Flash Point oC 120 60 55 ¢ &C}
Water Content ppm 395 39 200 QSOO
pH —— 52 5.3 — &‘b’ —
Thermal Value kJ/kg 40865 47645 —x« —
Cloud Point °Cc -3 -8 o %’ —
Pour Point °c -8.5 -19 &l —
Freezing Point °C -12.4 <.—20 @Q — —
CFPP °C -8 -20 -15
Copper Strip Corrosion —_ 1a% a No:1 No:1
Cetan —_ 56 51 —_—

Aj
Table 2. Diesel data and no liz 5

ed diesel data estimates at 4 different noise points
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Transfer Network Training Test Training Test Training Test

Data  Output ] @I )
Function Architecture RMSE  RMSE MSE MSE MAPE MAPE
D100 A Tan-Si RAINLM 10-10-1 1.965 4.653 3.861 21.65 1.153 4.108
D100 A Pure@ RAINLM 10-15-15-1 0.259 5.955 0.067 35.46 0.202 4.944
D100 A @ig TRAINLM 10-20-20-1 0.256 8.746 0.066 76.49 0.119 7.460
D100 A Pure-Lin  TRAINBR  10-15-15-1 0.376 2.432 0.141 5.914 0.239 2.279
D100 ? Pure-Lin TRAINBFG  10-15-15-1 2.566 8.737 6.585 76.34 2.161 7.327
E D100 Tan-Sig  TRAINLM 10-10-1 0.434 2.649 0.188 7.017 0.375 2.423
3 D100 B Pure-Lin  TRAINLM 10-15-15-1 0.335 2.506 0.112 6.281 0.252 2.277
5 D100 B Log-Sig  TRAINLM 10-20-20-1 0.244 10.10 0.060 101.9 0.097 9.871
- D100 B Pure-Lin  TRAINBR 10-15-15-1 2.358 5.564 5.558 30.96 2.198 5.370
D100 B Pure-Lin TRAINBFG  10-15-15-1 0.815 2.506 0.665 6.279 0.646 2.276
D100 C Tan-Sig  TRAINLM 10-10-1 0.369 5.598 0.136 31.33 0.189 4.922
D100 C Pure-Lin  TRAINLM 10-15-15-1 0.250 9.060 0.063 82.08 0.156 7.833
D100 C Log-Sig  TRAINLM 10-20-20-1 0.473 2.865 0.224 8.207 0.295 2.598
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D100 C Pure-Lin TRAINBR 10-15-15-1 0.318 2.772 0.101 7.684 0.226 2.576
D100 C Pure-Lin  TRAINBFG  10-15-15-1 2.220 9.123 4.930 83.23 1.961 7.619
D100 D Tan-Sig TRAINLM 10-10-1 0.208 4.078 0.043 16.63 0.173 3.643
D100 D Pure-Lin  TRAINLM 10-15-15-1 0.342 3.000 0.117 9.000 0.260 2.778
D100 D Log-Sig TRAINLM 10-20-20-1 0.580 7.503 0.336 56.29 0.271 5.658
D100 D Pure-Lin TRAINBR 10-15-15-1 0.410 3.010 0.168 9.061 0.248 2.792
D100 D Pure-Lin TRAINBFG  10-15-15-1 0.264 2.933 0.070 8.604 0.209 2.680
D100 A Tan-Sig TRAINLM 10-10-1 0.038 0.495 0.001 0.704 10.32 77.17
D100 A Pure-Lin  TRAINLM 10-15-15-1 0.027 0.720 0.001 0.518 % 64.67
D100 A Log-Sig TRAINLM 10-20-20-1 0.027 0.412 0.001 0.7 .946 4491
D100 A Pure-Lin TRAINBR 10-15-15-1 0.025 0.236 0.001 7.735 25.70
D100 A Pure-Lin TRAINBFG  10-15-15-1 0.023 0.214 0.001 Q 7.350 21.53
D100 B Tan-Sig TRAINLM 10-10-1 0.037 0.124 (& 0.351 11.70 35.76
D100 B Pure-Lin  TRAINLM 10-15-15-1 0.047 0.906 &/ 0.821 11.85 100.0
E D100 B Log-Sig TRAINLM 10-20-20-1 0.050 0. 222 .003 0.049 12.41 22.40
g D100 B Pure-Lin TRAINBR 10-15-15-1 0.028 N 0.001 0.821 8.523 100.0
a D100 B Pure-Lin TRAINBFG  10-15-15-1 0.001 & 0.032 0.222 9.789 22.39
E D100 C Tan-Sig TRAINLM 10-10-1 0 0 Q 0.001 0.528 9.720 80.61
:E: D100 C Pure-Lin  TRAINLM 10-15-15-1 0.897 0.002 0.805 12.33 100.0
% D100 C Log-Sig TRAINLM 10—20-2%@) 0.270 0.000 0.073 7.705 27.40
D100 C Pure-Lin TRAINBR 10-15-15- 0.195 0.492 0.038 0.242 70.75 53.75
D100 C Pure-Lin  TRAINBFG 15-15-1 0.023 0.897 0.001 0.805 6.606 100.0
D100 D Tan-Sig TRAINLM % 0.034 0.350 0.001 0.122 11.06 34.97
D100 D Pure-Lin QlS 15-1 0.153 0.239 0.024 0.057 23.29 24.39
D100 D Log-Sig TRAI 10-20-20-1 0.035 0.474 0.001 0.225 11.23 51.37
D100 D Pure-Lin @BR 10-15-15-1 0.027 0.239 0.001 0.057 7.494 24.39
D100 D Pure-Lin INBFG 10-15-15-1 0.030 0.239 0.001 0.057 8.431 24.39
Table 3. Bl(@@ data and normalized biodiesel data estimates at 4 different noise points

q Network Training Test Training Test Training Test

Data OW rans-fer Model Architec-
Function re RMSE RMSE MSE MSE MAPE MAPE
B100 A Tan-Sig TRAINLM 10-10-1 0.258 1.149 0.067 1.321 0.150 0.977
B100 A Pure-Lin TRAINLM  10-15-15-1 0.377 0.204 0.142 0.042 0.223 4.151
; B100 A Log-Sig TRAINLM  10-20-20-1 0.283 5.596 0.080 31.320 0.164 4.180
5 B100 A Pure-Lin ~ TRAINBR  10-15-15-1 0.151 1.594 0.023 2.541 0.117 1.102
5 B100 A Pure-Lin TRAINBFG  10-15-15-1 1.307 0.016 1.709 0.000 0.867 0.013
B100 B Tan-Sig TRAINLM 10-10-1 0.422 3.260 0.178 10.627 0.240 2914
B100 B Pure-Lin ~ TRAINLM  10-15-15-1 0.359 3.589 0.129 12.881 0.203 3.234



B100 B Log-Sig TRAINLM  10-20-20-1 0.516 3.198 0.266 10.225 0.272 2.869
B100 B Pure-Lin ~ TRAINBR  10-15-15-1 0.409 3.365 0.167 11.321 0.303 3.125
B100 B Pure-Lin  TRAINBFG  10-15-15-1 0.266 3.230 0.071 10.433 0.230 2.934
B100 C Tan-Sig TRAINLM 10-10-1 0.414 9.334 0.171 87.130 0.203 7.849
B100 C Pure-Lin ~ TRAINLM  10-15-15-1 0.337 2.726 0.113 7.432 0.236 2.464
B100 C Log-Sig TRAINLM  10-20-20-1 0.334 8.473 0.111 71.792 0.157 7.104
B100 C Pure-Lin ~ TRAINBR  10-15-15-1 0.269 2.748 0.072 7.552 0.178 2.507
B100 C Pure-Lin TRAINBFG  10-15-15-1 0.440 2.723 0.193 7.413 0.344 2.457
B100 D Tan-Sig TRAINLM 10-10-1 0.183 2.509 0.034 6.293 % 2.278
B100 D Pure-Lin ~ TRAINLM  10-15-15-1 0.204 2.514 0.041 6.319 O) 174 2.291
B100 D Log-Sig TRAINLM  10-20-20-1 0.258 8.608 0.067 7 N 0.121 7.515
B100 D Pure-Lin ~ TRAINBR  10-15-15-1 0.240 2.530 0.057 % 0.157 2.322
B100 D Pure-Lin  TRAINBFG  10-15-15-1 0.987 8.547 0.97 %.058 0.728 7.179
B100 A Tan-Sig TRAINLM 10-10-1 0.003 0.139 0.000 0.019 8.094 10.050
B100 A Pure-Lin ~ TRAINLM  10-15-15-1 0.017 0.000 0.000 0.000 46.028 0.023
B100 A Log-Sig TRAINLM  10-20-20-1 0.028 ..&(D(J.OOI 0.001 13.084 1.937
B100 A Pure-Lin  TRAINBR  10-15-15-1 0.026 & 0.001 0.001 4.004 1.683
B100 A Pure-Lin  TRAINBFG  10-15-15-1 0.05 %17 0.003 0.000 14.552 1.307
B100 B Tan-Sig TRAINLM 10-10-1 6 % 0.351 0.001 0.124 11.703 35.761
B100 B Pure-Lin ~ TRAINLM  10-15-15- @4 0.906 0.002 0.821 11.851 100.000
E B100 B Log-Sig TRAINLM  10-20-2 0.050 0.222 0.003 0.049 12.413 22.403
g B100 B Pure-Lin ~ TRAINBR  10-15¢15-1 0.028 0.906 0.001 0.821 8.523 100.000
a B100 B Pure-Lin  TRAINBFG -15-15-1 0.032 0.049 0.001 0.222 9.789 22.392
E B100 C Tan-Sig TRAIN, Mﬁ—w-l 0.023 0.514 0.001 0.264 8.797 49.040
% B100 C Pure-Lin  TRAI 10-15-15-1 0.018 0.227 0.000 0.052 5.771 22.823
g B100 C Log-Sig T 10-20-20-1 0.232 0.000 0.054 0.013 5.023 23.584
B100 C Pure-Lin &.INBR 10-15-15-1 0.559 0.184 0.313 0.034 61.376 81.449
B100 C Pure-Lj INBFG  10-15-15-1 0.016 0.228 0.000 0.052 5.821 23.117
B100 D Tap-Si RAINLM 10-10-1 0.024 0.456 0.001 0.208 8.251 43.637
B100 D EQLin TRAINLM  10-15-15-1 0.017 0.228 0.000 0.052 6.426 22.987
B100 Qog-Sig TRAINLM  10-20-20-1 0.060 0.763 0.004 0.583 12.426 74.469
B100 Pure-Lin TRAINBR  10-15-15-1 0.184 0.559 0.034 0.313 88.364 61.409
B100 Pure-Lin  TRAINBFG  10-15-15-1 0.017 0.229 0.000 0.052 6.645 23.106
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Figure 1. Engine torque values depending ;th gine speed
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Figure 2. Engine power ratings depending on engine speed
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Figure 3. Specific fuel consumption values depergiin@ gine speed
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Figure 4. Fuel consumption values depending on engine speed
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Figure 5. Noise emissions of fuel at 1 meter from.po@ epending on engine speed
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Figure 6. Noise emissions of fuel at 1 meter from point B depending on engine speed
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Figure 7. Noise emissions of fuel at 1 meter from.po@ epending on engine speed
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Figure 8. Noise emissions of fuel at 1 meter from point D depending on engine speed
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Figure 10. Energy Analysis (HP) 1500 d/d

27



70,000

& 60,000
5 ’
-2 50,000
=
<
£ 40,000
? 30,000
(=}
@
20,000
10,000
0,000
D100 B100
® Brake Power 13,726 14,114
“ Fuel Energy Rate 65,403 62,343
u Lost Energy Rate 51,677 48,229

Figure 11. Energy Analysis (HP) 2000 d/d

INPUT LAYER HIDDEN LAYER OUTPUT LAYER
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Comparison of Error Metrics for the Most Successful
Results of Diesel Fuel Noise Emission Predictions at
Different Points
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Figure 13. Comparison of error metrics for the po@?essful results of diesel fuel noise
emission predictions at different points (D10o) C}
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Comparison of Error Metrics for the Most Successful
Results of Diesel Fuel Noise Emission Predictions at
Different Points Using Normalized Data
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Figure 14. Comparison of error metrics for the most successful results of diesel fuel noise

emission predictions at different points using normalized data (ND1oo)
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Comparison of Error Metrics for the Most Successful
Results of Biodiesel Fuel Noise Emission Predictions at
Different Points
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Figure 15. Comparison of error metrics for the n;ost@gful results of biodiesel fuel noise
emission predictions at different points (B1oo) C)\v
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Comparison of Error Metrics for the Most Successful
Results of Biodiesel Fuel Noise Emission Predictions at
Different Points Using Normalized Data
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Figure 16. Comparison of error metrics for the most successful results of biodiesel fuel noise

emission predictions at different points using normalized data (NB)
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Comparison of Error Metrics for the Best Performmg Models:
D100, Normalized D100, B100, and Normalized B100
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Figure 17. Comparison of error metrics for the best p ng models: Digo. Normalized
[
Dioo. Bioo. and normalized B1oo '\
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Figure 18. The most successful modeling (Bioo-A Point) artificial neural networks

architecture
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