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Abstract: 

In this study, energy analysis, engine performance, and noise emission tests of Euro diesel and 

safflower methyl ester fuels were conducted on a diesel engine. The experiments were 

conducted independently for each fuel type across engine speeds ranging from 1000 to 2400 

rpm, and the physicochemical properties of the fuels were characterized and evaluated through 

engine testing. Noise emission values were recorded from four different points around the 

engine at a distance of one meter and were compared with those of reference diesel fuel. 

According to the test results, the most suitable fuel type was determined based on engine 

performance. noise emission and energy analysis. In this study, modeling was performed using 

artificial neural networks (ANNs) based on experimentally obtained data, and the noise 

emission characteristics of B100 and D100 fuels were analyzed. Both raw and normalized datasets 

were evaluated to assess the predictive accuracy of the models. It was concluded that the 

predictive success was closely associated with the choice of training algorithms and transfer 

functions utilized. The findings highlight that selecting suitable models and algorithms tailored 

to the structure of the dataset plays a critical role in enhancing prediction accuracy. 

Keywords: Safflower Methyl Ester, Energy Analysis, Engine Performance, Noise Emission 

Analysis, Artificial Neural Networks. 

 

Highlight 

 Determined the most suitable fuel type based on engine performance. noise emissions, and 

energy analysis. 

 Conducted tests between 1000 and 2400 rpm. 

 Employed an Artificial Neural Network (ANN) model for data analysis, utilizing 80% of 

data for training and 20% for testing. 
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 Compared results with reference to diesel fuel (D100). 

 

1. Introduction 

The rapid depletion of fossil fuels is primarily driven by increasing industrialization. which 

escalates the demand for energy consumption [1]. Researchers are focusing on the complete 

replacement of petroleum-based fuels. such as biodiesel, to better reduce harmful pollutants [2]. 

Many countries are highly dependent on imported fossil fuels due to insufficient domestic 

reserves. which negatively impacts their economies [3]. Despite being regarded as an 

environmentally sustainable alternative to conventional diesel fuels, the utilization of pure 

biodiesel (B100) in diesel engines has not yet received widespread regulatory approval. Choice 

of feedstock for biodiesel production is influenced by factors such as cost, feedstock 

availability, production techniques, and fuel stability [4]. While there are several methods for 

producing biodiesel, the most commonly used today is transesterification. Transesterification is 

an environmentally friendly process that produces liquid biofuel from oilseed crops (such as 

canola, sunflower, soybean and safflower) and animal fats through a reaction with a short-chain 

alcohol (typically methanol or ethanol) and a catalyst [5]. These characteristics can directly 

impact biodiesel yield and efficiency during production. In this context, both biodiesel 

production and the performance of the oil used are of critical importance. In particular. 

safflower methyl ester oil has emerged as a new and significant source for biodiesel production. 

The higher cetane number and lower viscosity of safflower methyl ester oil compared to 

conventional diesel fuel further enhance its importance. Experimental studies on safflower 

methyl ester have recently gained prominence. 

Doğan et al. conducted numerical simulations using AVL software to compare diesel and 

safflower oil methyl ester (SOME) in a diesel engine across compression ratios of 12:1 to 18:1 

and varying loads. SOME showed higher BSFC but lower CO and HC emissions, with 

increased NOx and CO₂. Simulation results closely aligned with experimental data, particularly 

at higher compression ratios, confirming the model's reliability [6]. 

Asokan et al. investigated the impact of adding antioxidants to safflower methyl ester (B20) on 

engine performance and emissions. The incorporation of antioxidants, namely butylated 

hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), contributed to improved engine 

performance at elevated injection pressures (210 bar), with BHA in particular achieving a 5% 

reduction in NOx emissions. Compared to pure diesel, B20 biodiesel demonstrated lower CO 

and HC emissions, though there was an observed increase in NOx emissions and smoke opacity. 
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The findings suggest that safflower methyl ester enriched with BHA could serve as a promising 

alternative fuel for diesel engines, particularly in terms of emission performance [7]. 

Rajendran et al. investigated the impact of injection timing on a CI engine fueled with safflower 

methyl ester (SAME). Retarded timing reduced NOx by 28%, along with CO and smoke, but 

lowered BTE by 10%. Advanced timing slightly increased NOx while reducing smoke opacity. 

The study highlights the importance of injection timing optimization to mitigate high viscosity 

effects and enhance engine performance and emissions [8]. 

With the increasing focus on emission regulations and design innovations in internal 

combustion engines, the effects of different oils and production methods used in biodiesel have 

gained importance in terms of engine performance. In this context, engine operating behavior 

across speed-load ranges, emissions, fuel consumption, noise, mechanical load, and thermal 

load are frequently used to define engine performance [9]. 

The cetane number, flash point, viscosity, lubricating properties, thermal properties, physical 

characteristics and molecular structure of the fuel influence changes in engine vibration [10]. 

The combustion noise level is affected by the rate of increase in combustion pressure, which is, 

in turn, related to parameters such as injection timing and ignition delay [11]. A considerable 

number of studies have focused on dynamic response characteristics specifically noise and 

vibration profiles of internal combustion engines operating on biodiesel, aiming to assess its 

impact on acoustic performance and structural integrity.  

Susilo et al. tested diesel-essential oil blends (5–20%) on a 402 CC Dongfeng engine at 1,300–

1,900 rpm. The B10 blend at 1,300 rpm showed the longest fuel consumption time (155 s) with 

lowest noise (105.7 dB) and vibration (975.7 Hz). The B20 blend achieved the lowest exhaust 

emissions (56.8%). Results indicate essential oil blends reduce noise and vibration while 

influencing fuel efficiency and emissions. [12]. 

Al-Rawashdeh et al. studied carbonyl emissions from a CI engine using diesel and 

methanol/diesel blends (DM10, DM20). Methanol blends raised aldehyde emissions, especially 

at low loads, but lowered NOx, HC, and CO at high speeds. DM20 had the lowest NOx due to 

charge cooling. Formaldehyde decreased with load, while acrolein and crotonaldehyde 

increased. Higher methanol reduced power and torque but improved combustion cleanliness, 

raising concerns about toxic aldehydes. [13]. 

Ala’a et al. investigated the extraction, characterization and engine performance of muskmelon 

seed oil biodiesel in various blends (BD10, BD20, BD50 and BD100). Produced via esterification 

and transesterification, the biodiesel was tested in a single-cylinder diesel engine across 

multiple speeds. BD20 exhibited the best performance with brake thermal efficiency (36.0%) 
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nearly equal to diesel and lower CO (207 ppm) and SO₂ emissions. Though BD100 showed the 

highest NOx, BD20 had optimal emission balance. Physical tests confirmed compliance with 

biodiesel standards. This study suggests BD20 as a sustainable, engine-compatible fuel from 

agricultural waste, reducing environmental pollution while promoting renewable energy in 

semi-arid regions like Jordan [14]. 

Al-Hwaiti et al. produced biodiesel from Handal oil using catalysts NaOH, KOH, NaOCH₃, and 

Fe₂O₃ nano. Sodium methoxide (NaOCH₃) gave the highest yield (99.4%). Engine tests with 

B20 and B80 blends showed B80 improved brake power and reduced CO and HC emissions, 

with a slight NOx increase. Fe₂O₃ nano catalysts were efficient and reusable. The study supports 

Handal biodiesel as a sustainable fuel with good performance and emission benefits, especially 

for arid regions like Jordan [15]. 

Biodiesel has a high oxygen content, which causes combustion in biodiesel blends to start 

earlier and spread more evenly [16]. The oxygen concentration in fuels plays a crucial role in 

reducing emissions of carbon dioxide, carbon monoxide and particulate matter [17]. According 

to many researchers, it is a general trend that biodiesel and its blends generate higher 

combustion noise compared to conventional mineral diesel [18]. Since biofuel is a highly 

viscous fuel, using pure vegetable oil in diesel engines is expected to cause various problems 

such as poor atomization, advanced injection, injector blockages and piston ring sticking [19].  

The engine noise was measured as Sound Pressure Level (SPL) and this measurement was 

performed using Eq (1). 

PRMS: RMS value of the sound pressure measured from the microphone 

P0: Reference sound pressure value 

Sound Pressure Level (SPL) = 20 𝑙𝑜𝑔10 (
  𝑃𝑅𝑀𝑆

𝑃0
) 𝑑𝐵                                        (1) 

Results of all the parameters of biodiesel are well within the standard range of ASTM standards, 

comparable with that of normal diesel, and hence the biodiesel is suitable for use in CI engine 

as a fuel [20]. Patnaik et al. conducted research highlighting the use of artificial neural networks 

(ANN) to enhance the integration of biodiesel in compression ignition (CI) engines. With 

optimized topologies like 6-5-1 for Brake-Specific Fuel Consumption (BSFC). ANN accurately 

predicted biodiesel performance and emissions, showing low mean squared errors (MSE) and 

high correlation coefficients. The findings advocate for broader adoption of biodiesel in 

alignment with global clean energy and sustainability goals [21]. 

Hosseini et al. evaluated the impact of alumina nanoparticles on diesel-biodiesel blends using 

an artificial neural network (ANN) to predict engine performance, emissions and vibration. An 
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ANN model with a 12-25-25-12 architecture, trained via the Levenberg-Marquardt algorithm, 

demonstrated high accuracy, with R-values of 0.97–0.99 for performance and emissions 

predictions, and 0.94–0.99 for vibration analysis. The study confirms that the ANN method 

effectively correlates predicted data with experimental results. showing the potential of nano-

catalysts to improve biodiesel's thermo-physical properties and engine efficiency [22]. 

Çelebi et al. studied the effects of biodiesel blends (20%, 40% sunflower and canola) and natural 

gas on noise and vibration in an unmodified diesel engine. Biodiesel reduced SPL and vibration 

and lowered CO emissions but increased CO₂ and NOx. Natural gas further reduced noise and 

emissions but worsened overall emissions. An ANN model accurately predicted SPL and 

vibration, outperforming linear regression. The study highlights biodiesel’s noise reduction 

benefits with emission trade-offs [23]. 

Yıldırım et al. compared ANN and SVM for predicting vibration, noise, and emissions (CO, 

CO₂, NOx) in a diesel engine fueled with biodiesel blends and hydrogen. ANN with Levenberg-

Marquardt training outperformed SVM, achieving higher R² and lower MAPE across all 

parameters. SVM showed weaker performance, especially in CO prediction [24]. 

This study innovatively evaluates the effects of safflower methyl ester on diesel engines, 

covering energy analysis, performance, noise emissions, and uses artificial neural networks 

(ANN) to predict experimental data. It uniquely examines different transfer functions and 

training algorithms to improve ANN accuracy from multiple measurement points, contributing 

to advanced engine data modeling. The approach integrates environmental impact and engine 

compatibility of alternative fuels. Key assumptions include stable environmental conditions, 

consistent fuel properties, and calibrated measurement devices ensuring accurate data. ANN 

models assume a continuous, learnable relationship between inputs and outputs, with 

training/testing data being representative and independent. Min-max normalization is valid, 

assuming stable data ranges, and datasets are free of outliers. These assumptions underpin the 

reliability of experimental results and ANN predictions. 

 

2. Material and Methods 

In this study, safflower methyl ester (SME) was produced via a base-catalyzed 

transesterification process. Specifically, safflower oil reacted with methanol at a concentration 

of 20% by volume, using sodium hydroxide (3.5 g per liter of oil) as the alkaline catalyst. The 

reaction was carried out under controlled conditions to ensure efficient conversion of 

triglycerides into methyl esters, resulting in a biodiesel fuel suitable for engine performance 

evaluation. Euro diesel was obtained from the market. The test engine is a single cylinder, water 
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cooled, 17:1 compression ratio, 15 HP, 60 Nm torque diesel engine. A Jetronl S4001 noise level 

meter with a measurement range of 30-130 dB and a sensitivity of 1.5 dB was used to measure 

the noise levels. Measurements were taken from four different points of the engine at a distance 

of one meter. The results of the analysis of the test fuels are presented in Table 1. The values in 

the table comply with the EN 590 standard for Euro diesel fuel and the EN 14214 standard for 

safflower methyl ester fuel. 

 

2.1. Energy Analysis 

In general, energy analysis is defined as the energy supplied and consumed within the system. 

This analysis enables the measurement of the internal energy difference and enthalpy due to 

mass flow, as a function of the transfer of energy between points in cycles, either as heat or 

useful work. Thermodynamic analysis paves the way for studying test fuel mixtures and various 

operating conditions in comparison with basic engine operation. The effect of various factors, 

such as engine load and mixed fuel conditions, helps to calculate losses during the investigation 

process [25].  

Engine energy analysis calculations are given in Equation (2) through Equation (5). 

To facilitate computational simplicity before implementation on the test engine, the following 

assumptions were considered: 

 The engine operation is assumed to be in steady state. 

 The air and exhaust gases of the engine are considered ideal gases [26]. 

Energy analysis enables the quantification of energy transformations, such as work and heat, 

within a control volume by evaluating energy transfers and the enthalpy associated with mass 

flow across its boundaries [27]. 

∑ 𝑚̇𝑖𝑛 = ∑ 𝑚̇𝑜𝑢𝑡                           (2) 

ṁin:  Mass of air and fuel mixture entering the interior 

ṁout ∶ Mass of exhaust gases at the outlet 

𝐸̇𝑓𝑢𝑒𝑙 = 𝑊̇ + 𝑄̇𝑙𝑜𝑠𝑡                                     (3) 

Ėfuel : Fuel energy ratio Ẇ:  Brake Power Q̇lost ∶ Lost energy rate 

𝐸̇𝑓𝑢𝑒𝑙 = 𝑚̇𝑓𝑢𝑒𝑙. 𝐻𝑢                         (4) 

ṁfuel ∶ Mass flow rate  Hu : Low calorific value 

𝑊̇ =
𝜋.𝑛.𝜏

30
                          (5) 

n : Motor speed  τ : Engine torque 
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3. Conclusion and Discussion 

3.1. Engine Performance  

The torque variation obtained at different engine speeds during full-load tests with Euro diesel 

fuel and safflower methyl ester is illustrated in Figure 1 as a function of engine speed. The 

maximum torque was measured at 54.957 Nm at 1200 rpm using D100 fuel. A decrease of 0.34% 

in torque was observed with B100 fuel compared to D100 fuel. The primary reason for the higher 

torque values in D100 fuel compared to those of the other fuels is that the kinematic viscosity of 

D100 fuel is lower than that of B100 fuel. as shown in Table 1. 

The changes in the effective power values obtained at different engine speeds during full-load 

tests using Euro diesel and safflower methyl ester fuels are presented in Figure 2. 

The maximum engine power was measured at 14.467 HP at 2000 rpm using D100 fuel. A 

decrease of 2.5% was observed with B100 fuel compared to D100 fuel. This reduction is attributed 

to insufficient atomization and low ignition quality due to the high density of B100, as indicated 

in Table 1. The changes in specific fuel consumption values obtained at different engine speeds 

during full-load tests using Euro diesel and safflower methyl ester fuels are presented in Figure 

3. The minimum specific fuel consumption was measured at 231.955 g/HPh at 1500 rpm for 

D100 fuel. An increase of 4.78% in specific fuel consumption was observed with B100 fuel 

compared to D100 fuel. 

The changes in fuel consumption values obtained at different engine speeds during full-load 

tests using Euro diesel and safflower methyl ester fuels are illustrated in Figure 4. At the 

maximum engine power of 2000 rpm. the fuel consumption value for D100 fuel was measured 

at 1.009 g/h. The oxygen in biodiesel and additives causes fuel premixed phase combustion, 

which improves thermal efficiency and combustion [28]. An increase of 10.07% was observed 

for B100 fuel compared to D100 fuel. The primary reason for the higher specific fuel consumption 

and fuel consumption values in B100 fuel compared to D100 fuel is that the calorific value of B100 

is lower. as shown in Table 1. The analysis of engine torque, brake power, specific fuel 

consumption, and total fuel consumption demonstrates consistency with the results presented 

by Borecki et al. [29].  

 

3.2. Noise Emissions 

In internal combustion engines, the formation of vibrations is largely dependent on the 

magnitude and rate of mechanical forces within the cylinder. According to the experimental 

data obtained in this study, maximum in-cylinder pressure, heat release rate, and pressure rise 
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rate generate vibrations throughout the engine cycle. Noise emissions, which are a consequence 

of these vibrations, exhibit a similar trend [30]. Furthermore, when the engine is under load, 

increased friction between the crankshaft bearings, cylinder-piston surfaces, and other engine 

components, along with the elevated combustion pressure inside the cylinder, contributes to 

higher levels of noise emissions [31]. Therefore, analyses were conducted under different load 

conditions in this study. 

Figure 5 displays the noise emission graph measured at one meter from point A as a function of 

engine speed. An analysis of the graph reveals a 0.102% decrease in noise emission for B100 

fuel at maximum engine power at 2000 rpm compared to D100 fuel. Figure 6 presents the noise 

emission graph measured one meter from point B as a function of engine speed. An analysis of 

the graph indicates a 0.103% decrease in noise emission for B100 fuel at maximum engine power 

at 2000 rpm compared to D100 fuel. Figure 7 illustrates the noise emission graph of the fuels 

measured at one meter from point C as a function of engine speed. An analysis of the graph 

reveals a 0.102% decrease in noise emission for B100 fuel at maximum engine power at 2000 

rpm compared to D100 fuel. Figure 8 displays the noise emission graph of the fuels measured 

one meter from point D as a function of engine speed. An analysis of the graph indicates a 

0.102% decrease in noise emission for B100 fuel at maximum engine power at 2000 rpm 

compared to D100 fuel. Upon analyzing the graph, a decrease in noise emission is observed for 

B100 fuel compared to D100 fuel. This reduction is attributed to the high kinematic viscosity 

values of B100 fuel and the damping effect provided by the lubricating properties of safflower 

methyl ester. as indicated in Table 1. In this research, it is assumed that as the speed of the 

machines increases, the time to complete jobs is reduced, but the noise pollution in the 

production environment is increased [32]. The results obtained from the analysis of the noise 

emission values following engine tests are consistent with the findings of Ahmed et al. [33] and 

Sanjid et al. [34]. 

 

3.3. Energy Analysis 

The outcomes of the energy analysis conducted on the fuel samples at different engine speeds 

are summarized below, with Figure 9 illustrating the results obtained at 1200 rpm. Which 

corresponds to the maximum torque speed; Figure 10 shows the results at 1500 rpm. 

representing the minimum brake specific fuel consumption speed; Figure 11 displays the results 

at 2000 rpm. associated with the maximum power speed. Increasing the brake power of pure 

diesel and oxygenated fuel mixtures enhanced the thermal efficiency of the brakes [35]. 
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It was determined that for all fuels, the fuel energy flow increased with rising engine speed. The 

primary reason for the higher energy analysis values of D100 fuel compared to B100 fuel is the 

lower calorific value of B100 fuel, as indicated in Table 1. The results obtained from the 

examination of the energy analysis values because of engine tests aligned with the findings of 

the studies conducted by Kul and Kahraman [36]. 

 

 3.4. Investigation of Noise Emission Prediction with ANN Model 

Artificial Neural Networks (ANN) provide flexible architectures that are particularly effective 

in addressing nonlinear problems. ANN provides efective process modeling in terms of eciency, 

accuracy, and cost [37]. ANN models offer flexibility and powerful learning capabilities for 

large and complex datasets; they learn non-linear patterns in data thanks to their multi-layered 

structure [38]. Artificial neural network architecture consists of several layers, with each one 

linked to its successor. Every layer is comprised of neurons or processing elements, each 

equipped with a nonlinear activation function, excluding those at the input level [39]. This 

iterative process continues until the neural network output aligns with the target output. 

Therefore, it is essential for an artificial neural network model to be trained, tested, and 

validated based on a substantial amount of data [40]. In the present study, the Feed-Forward 

Back-Propagation (FFBP) model, a widely utilized ANN approach for addressing nonlinear 

problems. is employed. Predictions were made for the four different points of noise emissions 

obtained using an artificial neural network (ANN) model. The training and testing data were 

separated with an 80% training and 20% testing ratio. Figure 12 shows the ANN architecture. 

 

3.4.1. Error Analysis 

Three different constraint methods are commonly employed in neural network predictions. 

These constraints facilitate the evaluation of the model's success by examining the difference 

between predicted values and actual values. The mathematical models representing these 

constraints are presented below. Their primary aim is to minimize errors and optimize 

prediction performance to enhance the model's accuracy. The equations for the error metrics are 

provided in Equations (6) through Equations (8) below. The Root Mean Square Error (RMSE) 

is one such metric. RMSE (Root Mean Square Error) is a metric that measures the square root 

of the average squared differences between predicted and actual values. It indicates how much 

prediction errors deviate from the real values. 

  n = total number of observations (dimensionless) 
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 eₜ = error at time t. calculated as the difference between the observed value and the predicted 

value at time t (same unit as the predicted variable) 

  t = time index or observation index. running from 1 to n (dimensionless) 

√
1

𝑛
∑ 𝑒𝑡

2𝑛
𝑡=1                                                                                                                                 (6) 

Mean-Square Error (MSE) 

This formula calculates the Mean-Square Error (MSE). which measures the average of the 

squared differences between predicted and actual values. 

n: number of observations (unitless) 

eₜ: error at time t (same unit as the predicted variable) 

1

𝑛
∑ 𝑒𝑡

2𝑛
𝑡=1                                                                                                                                    (7) 

Mean Absolute Percentage Error (MAPE) [41] 

MAPE (Mean Absolute Percentage Error) is a metric that measures the average absolute error 

between predicted and actual values. expressed as a percentage of the actual values. 

n: number of observations (unitless) 

eₜ: absolute error at time t (i.e.. |predictedₜ − actualₜ|) 

vₜ: actual value at time 

MAPE: the result is expressed as a percentage (%) 

A lower MAPE value indicates better model accuracy with 0% being perfect prediction 

%100

𝑛
∑

𝑒𝑡

𝑣𝑡

𝑛
𝑡=1                                                                                                                               (8) 

Compute performance metrics such as MSE, RMSE and Accuracy Rates to quantify the model's 

predictive accuracy and effectiveness [42]. Concerning the performance of forecasting models. 

the values of RMSE. MSE. and MAPE should ideally be close to zero. To evaluate a linear 

relationship. the R² correlation coefficient should be as close to 1 as possible. indicating that 

the model possesses strong predictive capability.   

 

3.4.2. Data analysis 

The data were collected from experiments conducted on an experimental compression ignition 

(CI) engine assembly operating at specific speeds of 1000, 1500, 1900 and 2400 rpm. The 

experiments were carried out separately for B100 and D100 fuels. Energy analysis, engine 

performance and noise emission tests were performed during the experiments. Noise emissions 

were measured from four different points on the engine using a Jetronl S4001 noise level meter. 

The dataset includes parameters such as engine speed (RPM). engine torque (Nm), power (Bg), 
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fuel consumption (g/s), specific fuel consumption (g/Bg), fuel consumption (kg/s) and fuel 

energy flow (Bg). These parameters were utilized to estimate the noise emissions obtained from 

the four different points separately using an artificial neural network (ANN) model. When 

estimating noise emissions at point A, data from the other points (B, C and D) were also 

included in the input data. The same approach was applied to points B, C and D. The same 

models were employed to analyze the data while predicting each of the four points respectively. 

The dataset was divided into 80% for training and 20% for testing. Additionally, the data were 

normalized to address the imbalance between the values of 1 and 0. Consequently, the success 

rates of the raw and normalized data were also evaluated. 

Normalization is a data transformation technique employed to convert a wide range of digital 

values in a dataset into a common measurement while preserving proportional differences. 

Various normalization techniques are available. with min-max normalization being the most 

common [43]. The following equation Eq (9) is used as the formula for min-max normalization. 

Min-max normalization is a technique used to scale data between 0 and 1. The following 

formula is used:  

x: the original data value 

xₘᵢₙ: the minimum value in the dataset 

xₘₐₓ: the maximum value in the dataset 

xₙₒᵣₘ: the normalized value (unitless. ranges from 0 to 1) 

This method ensures all values are scaled proportionally within the range [0. 1]. which improves 

the performance of many machine learning models. 

Xnorm = 
X−Xmin

Xmax−Xmin
                                                                                                               (9) 

 

3.4.3. Modelling Artificial Neural Networks 

Three training algorithms TrainLM (Levenberg-Marquardt), TrainBR (Bayesian 

Regularization), and TrainBFGS (Broyden-Fletcher-Goldfarb-Shanno) were used for noise 

emission estimation. The number of neurons and layers was fixed, while epochs varied based 

on testing success. TrainLM is fast and accurate for small to medium datasets, using Newton 

derivatives for efficient weight updates. TrainBR extends TrainLM with regularization to 

reduce overfitting, improving generalization on noisy data. TrainBFGS, a Gauss-Newton 

method, requires second derivatives and solves linear equations each iteration, offering high 

precision and faster convergence for large datasets. The ANN employed multilayer perceptron 
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(MLP) architecture with three transfer functions tested: pure linear (Pure-Lin), log sigmoid 

(Log-Sig), and hyperbolic tangent sigmoid (Tan-Sig) to find the optimal network structure. 

 

3.4.4. Evaluation of Artificial Neural Network Results 

In this study, noise emissions at four different measurement points were estimated using five 

distinct ANN models per point, for both diesel (D100) and biodiesel (B100) fuels. A total of 80 

models were developed using both raw and normalized datasets. The prediction performances 

were assessed using RMSE, MSE, and MAPE metrics. As shown in Table 2, for D100, the most 

successful model using raw data was the TRAINBR algorithm at point A, with a 2-layer, 15-

neuron ANN architecture employing the Pure-Lin transfer function (RMSE: 2.432, MSE: 5.914, 

MAPE: 2.279). For normalized data, the most accurate result was obtained at point A with the 

TRAINBFG algorithm using the same architecture (RMSE: 0.214, MSE: 0.046, MAPE: 21.53). 

In general, non-normalized data produced superior results. 

Similarly, Table 3 presents B100 results. The best-performing model with raw data at point A 

was obtained using the TRAINLM algorithm with 1 layer, 10 neurons, and the Tan-Sig transfer 

function (RMSE: 1.149, MSE: 1.321, MAPE: 0.997). For normalized B100 data, the top result 

was achieved using TRAINBR with 2 layers, 15 neurons, and the Pure-Lin function (RMSE: 

0.023, MSE: 0.001, MAPE: 4.004). Again, raw data generally led to higher prediction accuracy. 

Figures 13 to 16 illustrate the best-performing models for each fuel type and normalization state 

across all measurement points, consistently highlighting point A as the location with the highest 

accuracy. This success is attributed to the low variance of data at point A, which facilitates more 

effective learning, particularly when using linear transfer functions such as Pure-Lin and 

algorithms like TRAINBR and TRAINLM. Overall, the study shows that models trained on 

raw data tend to generalize better due to the greater variance in the dataset. Figure 17 compares 

the error metrics of the best models across both D100 and B100, confirming the advantage of raw 

data. TRAINBR, due to its Bayesian regularization, performs well on noisy or complex datasets 

by mitigating overfitting risks, unlike TRAINLM which, while faster, may overlearn in such 

conditions. The study emphasizes that model performance is highly dependent on dataset-

specific features. The use of four distinct datasets in this research revealed that TRAINLM, 

TRAINBR, and TRAINBFG each outperform the others under different conditions, 

underscoring the importance of model selection based on data characteristics.  The architecture 

of the best B100 model using TRAINLM (1 layer, 10 distributions, Tan-Sig) is shown in Figure 

18. 
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Traditional methods have proven insufficient for managing large datasets, prompting the 

development of advanced ML techniques that leverage atmospheric attributes to enhance 

prediction accuracy and minimize errors [44].  After evaluating the weights of the features, it is 

important to determine the feature selection algorithm [45]. Solving it using machine learning-

based approaches may lead to promising results [46]. 

 

4. Conclusion 

This study investigated the performance, energy analysis, and noise emissions of D100 and 

laboratory-produced B100 fuels in a CI diesel engine. Experimental data showed that while D100 

offered superior engine performance and energy efficiency, B100 exhibited lower noise 

emissions, highlighting its environmental advantage. Noise data were collected at four engine 

speeds and four measurement points using a Jetronl S4001 device. Engine parameters included 

speed, torque, power, fuel consumption, and energy flow. ANN models were trained using 

TrainLM, TrainBR, and TrainBFG algorithms, with model performance evaluated via RMSE, 

MSE, MAPE, and R² metrics. Early stopping and data splitting (80% training, 20% testing) 

were applied to prevent overfitting. Among 80 tested configurations, the most accurate 

predictions were consistently achieved at point A. For raw D100 data, TRAINBR with a 2-layer, 

15-neuron Pure-Lin setup performed best, while normalized data favored TRAINBFG. For 

B100, TRAINLM (1 layer, 10 neurons, Tan-Sig) excelled in raw data, whereas TRAINBR 

yielded the best results with normalized inputs. Overall, non-normalized data improved 

generalization due to higher variance, while low-variance data enabled more effective learning. 

TrainBR demonstrated superior robustness in noisy datasets, whereas TrainLM offered speed 

and precision with potential overfitting risks. These findings emphasize that model success 

depends heavily on data structure and the selection of suitable algorithms and transfer functions. 

Future research may explore different neuron/layer configurations to enhance model 

optimization and contribute to environmentally conscious engine technology development.  
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Table List 

 

Table 1. Analysis of Fuels 

Features Units B100 D100 

Limiting Values 

Euro diesel 
Safflower Methyl 

Ester 

Density (15°C) g/cm3 0.885 0.843 0.82-0.84 0.86-0.90 

Kinematic Viscosity (40°C) mm2/s 4.32 3.31 2- 4.5 3.5-5 

Flash Point 0C 120 60 55 101 

Water Content ppm 395 39 200 500 

pH _______ 5.2 5.3 _______ ______ 

Thermal Value kJ/kg 40865 47645 _______ ______ 

Cloud Point 0C -3 -8 _______ ______ 

Pour Point 0C -8.5 -19 _______ ______ 

Freezing Point 0C -12.4 <-20 _______ ______ 

CFPP 0C -8 -18 - 20 -15 

Copper Strip Corrosion _______ 1a 1a No:1 No:1 

Cetan _______ 45 56 51 ______ 

 

Table 2. Diesel data and normalized diesel data estimates at 4 different noise points 

 
Data Output 

Transfer 

Function 
Model 

Network 

Architecture 

Training Test Training Test Training Test 

RMSE RMSE MSE MSE MAPE MAPE 

R
E

A
L

 D
A

T
E

 

D100 A Tan-Sig TRAİNLM 10-10-1 1.965 4.653 3.861 21.65 1.153 4.108 

D100 A Pure-Lin TRAİNLM 10-15-15-1 0.259 5.955 0.067 35.46 0.202 4.944 

D100 A Log-Sig TRAİNLM 10-20-20-1 0.256 8.746 0.066 76.49 0.119 7.460 

D100 A Pure-Lin TRAİNBR 10-15-15-1 0.376 2.432 0.141 5.914 0.239 2.279 

D100 A Pure-Lin TRAİNBFG 10-15-15-1 2.566 8.737 6.585 76.34 2.161 7.327 

D100 B Tan-Sig TRAİNLM 10-10-1 0.434 2.649 0.188 7.017 0.375 2.423 

D100 B Pure-Lin TRAİNLM 10-15-15-1 0.335 2.506 0.112 6.281 0.252 2.277 

D100 B Log-Sig TRAİNLM 10-20-20-1 0.244 10.10 0.060 101.9 0.097 9.871 

D100 B Pure-Lin TRAİNBR 10-15-15-1 2.358 5.564 5.558 30.96 2.198 5.370 

D100 B Pure-Lin TRAİNBFG 10-15-15-1 0.815 2.506 0.665 6.279 0.646 2.276 

D100 C Tan-Sig TRAİNLM 10-10-1 0.369 5.598 0.136 31.33 0.189 4.922 

D100 C Pure-Lin TRAİNLM 10-15-15-1 0.250 9.060 0.063 82.08 0.156 7.833 

D100 C Log-Sig TRAİNLM 10-20-20-1 0.473 2.865 0.224 8.207 0.295 2.598 
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D100 C Pure-Lin TRAİNBR 10-15-15-1 0.318 2.772 0.101 7.684 0.226 2.576 

D100 C Pure-Lin TRAİNBFG 10-15-15-1 2.220 9.123 4.930 83.23 1.961 7.619 

D100 D Tan-Sig TRAİNLM 10-10-1 0.208 4.078 0.043 16.63 0.173 3.643 

D100 D Pure-Lin TRAİNLM 10-15-15-1 0.342 3.000 0.117 9.000 0.260 2.778 

D100 D Log-Sig TRAİNLM 10-20-20-1 0.580 7.503 0.336 56.29 0.271 5.658 

D100 D Pure-Lin TRAİNBR 10-15-15-1 0.410 3.010 0.168 9.061 0.248 2.792 

D100 D Pure-Lin TRAİNBFG 10-15-15-1 0.264 2.933 0.070 8.604 0.209 2.680 

N
O

R
M

A
L

İZ
E

D
 D

A
T

E
 

D100 A Tan-Sig TRAİNLM 10-10-1 0.038 0.495 0.001 0.704 10.32 77.17 

D100 A Pure-Lin TRAİNLM 10-15-15-1 0.027 0.720 0.001 0.518 8.856 64.67 

D100 A Log-Sig TRAİNLM 10-20-20-1 0.027 0.412 0.001 0.170 6.946 44.91 

D100 A Pure-Lin TRAİNBR 10-15-15-1 0.025 0.236 0.001 0.056 7.735 25.70 

D100 A Pure-Lin TRAİNBFG 10-15-15-1 0.023 0.214 0.001 0.046 7.350 21.53 

D100 B Tan-Sig TRAİNLM 10-10-1 0.037 0.124 0.001 0.351 11.70 35.76 

D100 B Pure-Lin TRAİNLM 10-15-15-1 0.047 0.906 0.002 0.821 11.85 100.0 

D100 B Log-Sig TRAİNLM 10-20-20-1 0.050 0.222 0.003 0.049 12.41 22.40 

D100 B Pure-Lin TRAİNBR 10-15-15-1 0.028 0.906 0.001 0.821 8.523 100.0 

D100 B Pure-Lin TRAİNBFG 10-15-15-1 0.001 0.049 0.032 0.222 9.789 22.39 

D100 C Tan-Sig TRAİNLM 10-10-1 0.029 0.727 0.001 0.528 9.720 80.61 

D100 C Pure-Lin TRAİNLM 10-15-15-1 0.039 0.897 0.002 0.805 12.33 100.0 

D100 C Log-Sig TRAİNLM 10-20-20-1 0.022 0.270 0.000 0.073 7.705 27.40 

D100 C Pure-Lin TRAİNBR 10-15-15-1 0.195 0.492 0.038 0.242 70.75 53.75 

D100 C Pure-Lin TRAİNBFG 10-15-15-1 0.023 0.897 0.001 0.805 6.606 100.0 

D100 D Tan-Sig TRAİNLM 10-10-1 0.034 0.350 0.001 0.122 11.06 34.97 

D100 D Pure-Lin TRAİNLM 10-15-15-1 0.153 0.239 0.024 0.057 23.29 24.39 

D100 D Log-Sig TRAİNLM 10-20-20-1 0.035 0.474 0.001 0.225 11.23 51.37 

D100 D Pure-Lin TRAİNBR 10-15-15-1 0.027 0.239 0.001 0.057 7.494 24.39 

D100 D Pure-Lin TRAİNBFG 10-15-15-1 0.030 0.239 0.001 0.057 8.431 24.39 

 

Table 3. Biodiesel data and normalized biodiesel data estimates at 4 different noise points 

 

Data Output 
Transfer 

Function 
Model 

Network 

Architec- 

ture 

Training Test Training Test Training Test 

RMSE RMSE MSE MSE MAPE MAPE 

R
E

A
L

 D
A

T
E

 

B100 A Tan-Sig TRAİNLM 10-10-1 0.258 1.149 0.067 1.321 0.150 0.977 

B100 A Pure-Lin TRAİNLM 10-15-15-1 0.377 0.204 0.142 0.042 0.223 4.151 

B100 A Log-Sig TRAİNLM 10-20-20-1 0.283 5.596 0.080 31.320 0.164 4.180 

B100 A Pure-Lin TRAİNBR 10-15-15-1 0.151 1.594 0.023 2.541 0.117 1.102 

B100 A Pure-Lin TRAİNBFG 10-15-15-1 1.307 0.016 1.709 0.000 0.867 0.013 

B100 B Tan-Sig TRAİNLM 10-10-1 0.422 3.260 0.178 10.627 0.240 2.914 

B100 B Pure-Lin TRAİNLM 10-15-15-1 0.359 3.589 0.129 12.881 0.203 3.234 
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B100 B Log-Sig TRAİNLM 10-20-20-1 0.516 3.198 0.266 10.225 0.272 2.869 

B100 B Pure-Lin TRAİNBR 10-15-15-1 0.409 3.365 0.167 11.321 0.303 3.125 

B100 B Pure-Lin TRAİNBFG 10-15-15-1 0.266 3.230 0.071 10.433 0.230 2.934 

B100 C Tan-Sig TRAİNLM 10-10-1 0.414 9.334 0.171 87.130 0.203 7.849 

B100 C Pure-Lin TRAİNLM 10-15-15-1 0.337 2.726 0.113 7.432 0.236 2.464 

B100 C Log-Sig TRAİNLM 10-20-20-1 0.334 8.473 0.111 71.792 0.157 7.104 

B100 C Pure-Lin TRAİNBR 10-15-15-1 0.269 2.748 0.072 7.552 0.178 2.507 

B100 C Pure-Lin TRAİNBFG 10-15-15-1 0.440 2.723 0.193 7.413 0.344 2.457 

B100 D Tan-Sig TRAİNLM 10-10-1 0.183 2.509 0.034 6.293 0.156 2.278 

B100 D Pure-Lin TRAİNLM 10-15-15-1 0.204 2.514 0.041 6.319 0.174 2.291 

B100 D Log-Sig TRAİNLM 10-20-20-1 0.258 8.608 0.067 74.091 0.121 7.515 

B100 D Pure-Lin TRAİNBR 10-15-15-1 0.240 2.530 0.057 6.400 0.157 2.322 

B100 D Pure-Lin TRAİNBFG 10-15-15-1 0.987 8.547 0.975 73.058 0.728 7.179 

N
O

R
M

A
L

İZ
E

D
 D

A
T

E
 

B100 A Tan-Sig TRAİNLM 10-10-1 0.003 0.139 0.000 0.019 8.094 10.050 

B100 A Pure-Lin TRAİNLM 10-15-15-1 0.017 0.000 0.000 0.000 46.028 0.023 

B100 A Log-Sig TRAİNLM 10-20-20-1 0.028 0.023 0.001 0.001 13.084 1.937 

B100 A Pure-Lin TRAİNBR 10-15-15-1 0.026 0.023 0.001 0.001 4.004 1.683 

B100 A Pure-Lin TRAİNBFG 10-15-15-1 0.052 0.017 0.003 0.000 14.552 1.307 

B100 B Tan-Sig TRAİNLM 10-10-1 0.037 0.351 0.001 0.124 11.703 35.761 

B100 B Pure-Lin TRAİNLM 10-15-15-1 0.047 0.906 0.002 0.821 11.851 100.000 

B100 B Log-Sig TRAİNLM 10-20-20-1 0.050 0.222 0.003 0.049 12.413 22.403 

B100 B Pure-Lin TRAİNBR 10-15-15-1 0.028 0.906 0.001 0.821 8.523 100.000 

B100 B Pure-Lin TRAİNBFG 10-15-15-1 0.032 0.049 0.001 0.222 9.789 22.392 

B100 C Tan-Sig TRAİNLM 10-10-1 0.023 0.514 0.001 0.264 8.797 49.040 

B100 C Pure-Lin TRAİNLM 10-15-15-1 0.018 0.227 0.000 0.052 5.771 22.823 

B100 C Log-Sig TRAİNLM 10-20-20-1 0.232 0.000 0.054 0.013 5.023 23.584 

B100 C Pure-Lin TRAİNBR 10-15-15-1 0.559 0.184 0.313 0.034 61.376 81.449 

B100 C Pure-Lin TRAİNBFG 10-15-15-1 0.016 0.228 0.000 0.052 5.821 23.117 

B100 D Tan-Sig TRAİNLM 10-10-1 0.024 0.456 0.001 0.208 8.251 43.637 

B100 D Pure-Lin TRAİNLM 10-15-15-1 0.017 0.228 0.000 0.052 6.426 22.987 

B100 D Log-Sig TRAİNLM 10-20-20-1 0.060 0.763 0.004 0.583 12.426 74.469 

B100 D Pure-Lin TRAİNBR 10-15-15-1 0.184 0.559 0.034 0.313 88.364 61.409 

B100 D Pure-Lin TRAİNBFG 10-15-15-1 0.017 0.229 0.000 0.052 6.645 23.106 
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Figure List 

 

 

Figure 1. Engine torque values depending on the engine speed 

 

 

Figure 2. Engine power ratings depending on engine speed 
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Figure 3. Specific fuel consumption values depending on engine speed 

 

 

Figure 4. Fuel consumption values depending on engine speed 
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Figure 5. Noise emissions of fuel at 1 meter from point A depending on engine speed 

 

 

Figure 6. Noise emissions of fuel at 1 meter from point B depending on engine speed 
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Figure 7. Noise emissions of fuel at 1 meter from point C depending on engine speed 

 

 

Figure 8. Noise emissions of fuel at 1 meter from point D depending on engine speed 
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Figure 9. Energy Analysis (HP) 1200 d/d 

 

 

Figure 10. Energy Analysis (HP) 1500 d/d 
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Figure 11. Energy Analysis (HP) 2000 d/d 

 

 

Figure 12. Network Architecture as ANN Type 
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Figure 13. Comparison of error metrics for the most successful results of diesel fuel noise 

emission predictions at different points (D100) 

 

 

Figure 14. Comparison of error metrics for the most successful results of diesel fuel noise 

emission predictions at different points using normalized data (ND100) 
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Figure 15. Comparison of error metrics for the most successful results of biodiesel fuel noise 

emission predictions at different points (B100) 

 

 

Figure 16. Comparison of error metrics for the most successful results of biodiesel fuel noise 

emission predictions at different points using normalized data (NB) 
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Figure 17. Comparison of error metrics for the best performing models: D100. Normalized 

D100. B100. and normalized B100 

 

Figure 18. The most successful modeling (B100-A Point) artificial neural networks 

architecture 


