Scientia Iranica (2025) 32(8): 5431

Sharif University of Technology

71N
4

Scientia Iranica
Transactions on Industrial Engineering

https://scientiairanica.sharif.edu

Reducing noise pollution by flexible job-shop scheduling with worker
flexibility: Multi-subpopulation evolutionary algorithm

Maryam Hajibabaei, Javad Behnamian *

Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
* Corresponding author: Behnamian@basu.ac.ir (J. Behnamian)

Received 26 February 2021; Received in revised form 20 December 2021; Accepted 7 February 2022.

Keywords Abstract

Flexible job-shop scheduling is one of the most critical production management topics. In this paper, it

Flexible job-sho:
! P is also assumed job interruption due to the machine breakdown is allowed, and the processing time

Sl depends on the speed of the machines and requires both human and machine resources to process the
Sustainability; jobs. Although, as the speed of the machine increases, the time of job” completion reduces, an increase
Machine breakdown; in speed results in an increase in noise pollution in the production environment, and with the aim of
Worker flexibility; applying a cleaner production that is a preventative approach, it has been tried to reduce noise pollution

by minimizing the increase in speed. After modeling the problem using the mixed-integer programming
and solving it using the e-constraint method, since the problem is NP-hard, a multi-subpopulation
evolutionary algorithm is proposed to solve it. The results showed that considering the Mean Ideal
Distance (MID) criterion, the e-constraint method has a better performance than the proposed algorithm
but considering other criteria the proposed algorithm has is better. Also, the proposed algorithm was
compared with the NSGA-II in large-size instances and the computational results showed that the
proposed algorithm performs better than the NSGA-II in most cases.

Sub-population meta-
heuristic.

1. Introduction

The industry of each country is one of the major sources of
employment and income for that country and is essential for
the production of goods and services [1]. Hence, industrial
development is a necessity for economic growth. At the
same time, the industry sector is a major consumer of
resources and materials, and industrial activities impose
environmental pollution. In the past, productive activities
have been much related to the profit of the production unit,
and environmental issues have not been considered vastly.
Given the importance of the environmental issue, it is
important to use a preventive approach to reduce the
environmental impacts of manufacturing plants. Therefore,

the cleaner production concept was born in 1997. In this
approach, the focus is on preventing contamination in the
production unit [2].

Cleaner production involves the continued application
of a comprehensive environmental strategy for the process
of products and services in order to increase overall
efficiency and reduce harmful effects on humans and the
environment. It is a strategy to make the changes needed in
existing technology and industry to build a sustainable
development society. The concept of cleaner production has
been further developed with an incentive to conserve the
environment [3]. From an environmental point of view,
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minimizing the amount of noise generated by the production
unit is one of the criteria for cleaner production [4]. Noise
is the kind of unpleasant sound that interrupts a person's
efficiency in some situations. Noise, like air pollution, has
been introduced as a new threat to humans. It has also been
proved that a certain level of noise can be harmful to human
hearing [5]. The sound level is measured in units of
decibels (dB), and the human ear is capable of hearing 1 to
140 decibels (dB).

Scheduling is a decision process used in many service and
manufacturing industries. The scheduling problem deals with
allocating resources to activities over time, and its purpose is to
optimize one or more goals. Goals can also take many forms.
One of the key success factors in any manufacturing
organization is to determine the scheduling and sequence of
jobs on production scheduling problems that play an important
and effective role in the performance of the manufacturing unit.
The job-shop scheduling problem is one of the most important
topics in production management, which is a branch of
production scheduling and is one of the most complex hybrid
optimization topics [6].

In this paper, it is assumed there are m machines and »
jobs that each job follows its predetermined path in the
flexible job-shop environment. A flexible job-shop problem
is a generalization of the job-shop problem and the problem
of parallel machines. This problem has several stages, each
containing several parallel machines. In this workshop,
every operation of any job can be performed on a machine
from a set of machines available for processing [7].
Therefore, in the case of the flexible job-shop problem, in
addition to sequencing jobs on machines, jobs are assigned
to machines. The problem addressed in this paper is an
extension of [8] in which in a flexible job-shop environment
with sequence-dependent setup time, the makespan is
minimized. In the case under study, many assumptions have
been made to make the situation more realistic, some of
which are: (i) The interruption of job is allowed; (ii) The
machines are not constantly available; (iii) The speeds of
the machines are also different; (iv) The noise pollution are
taken into account in this study. In this research, it is
assumed, as the speed of the machines increases, the time to
complete jobs is reduced, but the noise pollution in the
production environment is increased. After modeling the
problem as mixed inter programming, for simultaneous
minimizing of the total completion times and the sum of the
speed increments, and due to the NP-hardness of this
problem, a sub-population algorithm is proposed.

This paper is presented in six sections. In this section,
the introduction was discussed. Section 2 reviews the

literature on the subject. Section 3 deals with problem
definition and its modeling. Section 4 introduces the multi-
objective meta-heuristic method, which is used. Section 5
presents computational results, and Section 6 devotes to the
conclusion and future research.

2. Literature review

This section provides an overview of research on the issues
of job-shop scheduling and flexible job-shop scheduling.
The papers studied are categorized into cleaner production

scheduling and environmental impacts.
2.1. Cleaner production

de Oliveira Neto et al. [9] introduced a cleaner approach to
minimizing the environmental impacts that are imposed on
the environment by production in industrial plants. They
also compared the features of the end-of-line control
approach and cleaner production. Ultimately, they
concluded that cleaner production would be effective in the
production units. Rajaram et al. [10] presented a multi-
objective model including minimizing environmental
impacts and maximizing economic aspects of cleaner
production and used a two-objective genetic algorithm to
solve it. Mokhtari and Hasani [4] presented a multi-
objective model including minimization of production
costs, transportation, and environmental impacts, including
CO; emissions, waste generation, noise generation, and
occupational injury in transportation scheduling at
manufacturing plants. Then, they were solved the presented

model using ideal programming.
2.2. Cleaner production and environmental impacts

Zarrouk et al. [11] minimized the makespan in the multi-
process job-shop scheduling by considering maintenance in
cleaner production and solved the problem using ant colony
algorithms and particle swarm optimization. Amjad et al.
[12] proposed a mathematical model in the case of flexible
job-shop scheduling with stochastic processing time. They
then used the multi-objective genetic algorithm to minimize
completion time and energy consumption. They also
compared the proposed algorithm with hybrid particle
swarm optimization algorithms and hybrid simulated
annealing optimization algorithm. Dai et al. [13] proposed
a multi-objective nonlinear programming model for energy
efficiency in flexible job-shop environments considering
transportation constraints. In the proposed model, the goals
of minimizing energy consumption and maximizing
completion time were considered. An improved genetic
algorithm was used to solve the problem, and to solve the
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proposed algorithm, and then it was solved in several
problem instances. Maine et al. (2019) proposed a multi-
objective non-linear programming model for energy
efficiency in flexible job-shop scheduling problem with
consideration of transportation constraints. To minimize the
energy consumption and makespan, they used an improved
genetic algorithm to solve the problem. Abedi et al. [14]
considered the job-shop scheduling problem with machines’
breakdown. They proposed a multi-objective memetic
algorithm to minimize the sum of the weighted delay and
the total energy consumption.

2.3. Scheduling with makespan

Liand Gao [15] proposed a mathematical model and a meta-
heuristic tabu search algorithm for the problem of job-shop
scheduling with parallel machines. The purpose of this
study was to minimize the makespan. The proposed
algorithm was also compared with the combined genetic
and ant colony algorithm. Kundakci and Kulak [16]
proposed a mathematical model and genetic algorithm to
minimize the makespan in the dynamic job-shop scheduling
problem and solved it in several problems to investigate the
performance of the proposed algorithm.

AitZai et al. [17] proposed a mixed-integer model for the
job-shop scheduling problem to minimize the makespan.
Then, a detailed branch and bound method using valid
equations were presented and solved in different numerical
examples to investigate the efficiency of the proposed
method. Wu et al. [ 18] proposed an ant colony optimization
algorithm for a flexible job-shop scheduling problem with
the aim of minimizing the makespan. They also solved the
proposed algorithm in several problems to evaluate the
performance of the proposed algorithm.

To minimize the makespan, Wang et al. [19] proposed
an ant colony optimization algorithm for the flexible job-
shop scheduling problem. Jamrus et al. [20] presented a
discrete particle swarm optimization algorithm for
scheduling a flexible job-shop production with parallel
machines whose aim was to minimize the makespan and to
use innovative methods to evaluate the performance of the
proposed algorithm. In the flexible job-shop scheduling
problem with flexible human resources, Gong et al. [21]
proposed an integer non-linear programming model and a
memetic algorithm to minimize the makespan, maximum
machine workload, and total machine workload. Shen et al.
[8] solved the problem of flexible job-shop scheduling by
considering sequence-dependent setup times with the

objective of minimizing the makespan using the discrete

graph method and the tabu search algorithm. Peng et al. [22]
presented a mathematical model and genetic algorithm to
minimize the makespan for the flexible job-shop scheduling
problem with dual human-machine resources. Tamssaouet
et al. [23] presented tabu search and simulated annealing to
minimize the makespan in job-shop scheduling problem
with limited machine access. They also used a graph theory-
based method to solve small-size instances. Yazdani et al.
[7] employed flexible job-shop scheduling with
consideration of human and machine resources to minimize
the makespan. They also proposed a mathematical model
and a hybrid algorithm of neighborhood search and
simulated annealing. Also, the results of the presented
hybrid algorithm were compared with the results of other
algorithms. Gong et al. [24] minimized the makespan and
the maximum total delay time in the job-shop scheduling
problem by a memetic algorithm. Zhang et al. [25] proposed
an improved genetic algorithm for the flexible job-shop
scheduling problem, to minimize the makespan, total start-
up time, and total shipping time. To minimize the makespan
in the flexible job-shop scheduling problem, Ding and Gu
[26] proposed a mathematical model and an improved
particle swarm optimization algorithm. Yang et al. [27]
proposed a multi-objective non-linear mixed-integer model
and NSGA-II for a flexible job-shop scheduling problem
with the objectives of the makespan and energy

consumption.
2.4. Scheduling with ET objective function

Heydari and Aazami [28] presented the maximum tardiness
and makespan for a job-shop scheduling problem with
sequence-dependent setup times. The e-constraint method
solved the presented problem. Gao et al. [29] proposed a
harmonic search algorithm for a flexible job-shop
scheduling problem with multiple objectives. The
objectives are the weighted combination of two
minimization criteria, namely, the maximum of the
completion time and the mean of earliness and tardiness.
They also solved the problem in several instances to
evaluate the performance of the proposed algorithm.
Ebrahimi et al. [30] presented a mixed linear programming
model and a cluster-based algorithm for the flexible job-
shop problem that aims to minimize the makespan and
tardiness time. Yazdani et al. [31] proposed a mixed-integer
programming model and an approximate optimization
method based on imperialist competitive algorithm and
neighborhood search to minimize the tardiness and earliness

in the job-shop scheduling problem. Yu and Lee [32]
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proposed a mixed-integer programming model and two
other methods to minimize the tardiness of job-shop with
group processing. They also solved the problem in small
size using the branch and bound method. Mendoza et al.
[33] proposed a linear programming model to minimize the
tardiness in the job-shop problem and solved it in numerical
examples to investigate the efficiency of the proposed
model. Sadaghiani et al. [34] developed a multi-objective
mixed-integer programming model for the flexible job-shop
problem that minimized the makespan, total workload, and
maximum workload of machines. They also proposed an
algorithm based on Pareto and NSGA-II methods for large-
scale problem-solving. Then, in order to evaluate the
efficiency and effectiveness of the proposed algorithm, they
compared it with other algorithms. Dalfard and Mohamadi
[35] proposed a mixed-integer nonlinear programming
model for the problem of flexible job-shop scheduling
considering maintenance constraints. To solve the large-
scale problem, they presented a combination of a genetic
algorithm and an innovative algorithm and compared it with
another algorithm to evaluate the performance of the
proposed method. Huang et al. [36] proposed a modified
particle swarm optimization algorithm for a flexible multi-
objective job-shop scheduling problem. The objectives of
this study were to minimize the makespan, minimize the
machine load, and minimize the maximum machine load.
Table 1 shows the difference between the present study and
previous researches. According to the studied papers,
flexible job-shop scheduling, with the objective of
minimizing the total completion time and the sum of the
speed increments (to reduce the noise pollution) in the
manufacturing environment, machine breakdown and
interruption of the job have not been considered
simultaneously. Therefore, in this paper, these assumptions
are studied simultaneously in a cleaner production
environment with the aim of approaching the conditions of

the problem under study to the real world.

3. Problem definition

In the case of flexible job-shop scheduling, each job i

consists of operation op;, which o, represents the set of

operations performed for each job. This operation is
performed on a set of machines that can perform the above
operations on the machines and each job is assigned a
machine. In this problem, each job requires both human and

machine resources for processing, and each operation is

processed by a set of ms; , which includes machines

ijm >
capable of performing operation o; to produce 1 part. The

interruption is due to the machine breakdown permitted and
the duration of the interruption is predetermined. The speed
of the machines varies, and each machine generates less
noise while working at a lower speed. Due to the importance
of reducing the time to complete the parts by increasing the
speed of the machines, this goal can be achieved. But as the
speed of the machines increases, the amount of noise
generated in the industrial unit increases. On the other hand,
it endangers the physical and mental health of workers, and
the physical and mental problems of workers reduce the
efficiency of production. Therefore, to remedy this problem,
the rate of acceleration in production is determined by the
amount of noise that people have the ability to hear. The
amount of noise generated in the production unit is
measured by dB. The maximum noise that workers can
handle is 140 dB. Therefore, the speed of the machines can
be increased so that the noise level does not exceed the
maximum value. After each job is completed, a
corresponding part is produced. The purpose of this paper is
to minimize the sum of completion times and reduce the rate
of acceleration to reduce noise production and less injury to
workers. Following Aurich et al. [37], the sound intensity is
calculated using Eq. (1).
94 -10 LogT =Lpa, (1)

where T is the time of exposure to sound in hours; and Lpa
the sound pressure level allowed for exposure time, dB.
The following assumptions are presented in this study:
e Jobs are available at zero time;
e  Machines are available at zero time;
e Interruption is allowed,
e  Once the job is being processed, the job continues as
it has been interrupted after the repairs are completed;
e Workers are available at zero time and cannot leave
the machine during the processing of an operation;
e A machine can only perform one operation at a time;
e Every process needs both machine and worker
resources;
e All parameters are definite;
e As the speed of the machines increases, the amount
of noise created increases.
3.1.Mathematical model
Nonlinear mixed-integer programming model is formulated

to formulate a flexible job-shop scheduling problem with
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Table 1. A summary of the reviewed research related to the present study.

Objec.t 1ve Solving method Environment Resource Impact environment
function
Authors/year Heuristic/ . .
Single  Multiple meta- Exact Job- F lexible Machine  Worker N01s.e Energy CO;
. e shop  job-shop pollution
heuristic
Rajaram et al. * * * *
[10]
Mokhtari and * * * %
Hasani [4]
Zarrouk et al. * % * *
[11]
Amjad et al. % % % % %
[12]
Lu and Jiang * % * * * *
[43]
Min et al. [13] . * . * *
Abedi et al. % % % % %
[14]
Li & Gao [15] * * *
Kundaker and % % %
Kulak [16]
AitZai et al. " * * *
[17]
Li and Gao % * * *
[15]
Wu et al. [18] * * * *
Jamrus et al. * " " *
[20]
Shen et al. [8] * * * *
Yazdani et al. % % % %
(7]
Wang et al. % % % %
[19]
Gong et al. * % % « %
(21]
Peng et al. % % % % "
[22]
Tamsuet et al. % % % %
(2018)
Gong et al. * % « «
[24]
Zhang et al. * " " *
[25]
Ding and Gu % % %
[26]
Heydari and * * * *
Aazami [28]
Gao et al. [29] *
Ebrahimi et al. % % % %
[30]
Yazdani et al. % % % %
[31]
Yu and Lee * * * *
[32]
Mendoza et al. % % %
[33]
Sadaghiani et % % % %
al. [34]
Dalfard et al. * " " *
[35]
Huang et al. " " " *
[36]
* * * * * * *

Present Study
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job interruption. Before presenting the proposed model, Z W =1, V1, f,m (3)
indexes, parameters, and decision variables are introduced. kemsy,
Indexes "oy c
. , , Bjm 2 j-rym + z Zai( j-Tymk* Pl j-1)mhi
1,1 Job index i=1...,n,i=1,..n kemsy,, 1=1 Yiim (4)
.. . . . o ’
JJ Operation index j=1,...,e,j =1,...,e + Z PG il
k Machine index k£ =1,...,K kemsy,
[ Worker index  [=1,...,L ’ ' L
m,m’  Partindex m=1...M, m=1..,M Lijm = Ly IZI: ijmk- Plijma —H
Parameters (2 = Wk — Dk T Oy ) + Py
p,-’,ml Standard processing time of operation o, for VLT mm ' k€ msy,, ©)
i i B
part m by worker / , ,
tio 2t + Y @; .. pt. o —H
H A large positive number g ; i~ Pljmid
Vi The minimum speed of machine & (3 = Aigmie — Ak — baijmi’j'm' ) + DMy Uy
i, Repair time of machine & Vj,j i mm = m' k€ msy,, (6)
. . . L
mt, ~ Number of times that machine k needs repair ,
cc;, >t + a. . .pt. .+ m.. . .tt, ,
ffi ~ The maximum speed of machine & ym Z Z i~ Pliimid Z Pl e
.. . kemsijm =1 kEmSijm
/T, The minimum speed of machine & Y jim, )
Decision variables ¢, = CCijm Vm,=m,j=e , (8)
Wik A binary variable that takes a value of 1 if the DMy < Qe s Y j,i,m,k € ms,, )
operation 0 for part m is performed by the n e M
machine k& zzzpmljmk smiy, vk emsy,, (10)
apy, The binary variable that takes the value of 1 if i=l j=1 m=1
the worker | is assigned to the machine & n e M
PPy A binary variable that takes a value of 1 if zz E Py 21, V ke msy,, (11)
operation o, for part m be interrupted by i=l j=lm=l
: apy,.p;;
ma({hme k . . Plimit = Pk -Pijmi ’ Y joivm 1 ke msg,, (12)
baijmi,j,m, A binary variable that takes a value of 1 if the Dby + Vi
operation o;; for part m is performed before L
operation o, for part m'’ Zaplk =1, vk, 13)
I=1
tl;-m Start time of operation o;; for part m K
cc,, Completion time 0 for part m Zaplk =1, v, (14)
v k=1
cny Completion time of part m
N . . 1 ¢ <14-6 Ve S 15
Dliiii Processing time of operation o, on machine O\ Plijmia | =1 > (15)
/ v M = 11
k by worker / .
. . bb. . < M —Vi s Vj,i,m,k - 16
bb[jmk Increase speed of machine & for processing tjmk Hi=ve b SIE M (16)
o;; operation for part m apye-Dijmi o aPyie-P jjmi
_ﬁ(-k = Flijmkl = v ’
The proposed mathematical model with respect to the Y i jm,l kemsg,, (17
symbols defined as follows: '
n e M aijmk 6(071) ) pmijmk E(O,l),
minzzz z bby . (1) Vi, jom ke msy,, (18)
i=1 j=l m=lk " '
. bagmns € (0,1), Y i, jmd,jm’ (19)
minzc,,n , ©) tl-'jm 20, cc, 20, ¢, 20, Vi, j,m, (20)
m=1 Plijmit = 0, Y oi,j,m,lk €msy,, 21

S.t.:
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apy, €(0,1), V1k (22)

Eq. (1) as the first objective function minimizes the sum
of the speed increments. Eq. (2) as the second objective
function minimizes the total completion time. Egs. (3) - (17)
indicate the constraints. Eq. (3) guarantees that each
operation for each part is assigned to one and only one of its
eligible machines. Eq. (4) guarantees preconditioning
relationships between successive operations of the same job
for a part. Egs. (5) and (6) indicate the time relationship
between two operations of two different parts if two
operations are performed by a machine. Eq. (7) indicates
when each operation of each part will be completed. Eq. (8)
indicates the time of completion of each part. Eq. (9)
indicates that the processing of each operation of each part
on each machine is interrupted when that operation is
assigned to that machine. Constraints (10) and (11) indicate
the minimum and the maximum number of interruptions of
each machine. Eq. (12) indicates the processing time of each
operation of each part with respect to the speed of each
machine. Eq. (13) indicates that a worker is assigned to each
machine. Eq. (14) indicates that each worker is assigned a
machine. Eq. (15) shows the maximum amount of sound
intensity in the workstation. Eq. (16) indicates the maximum
speed value of each machine. Eq. (17) indicates the upper
and lower limits of processing time. Egs. (18) - (22) indicate
the status of the variables.

3.2. e-constraint method

The e-constraint method (known as the e-constraint method)
is one of the multi-objective problem-solving methods. In
this method, except for one objective function, the rest of the
objective functions will be appeared as a constrained upper
bound in the minimization problem. In multi-objective
problems, the Pareto layer is created by applying parametric
changes to the right-hand side of this constraint. In this
regard, it is assumed that there is a mathematical model &
objective function as follows:

minz, = f} (xl,xz,...,xn) s k=1,...,p,
s.t.: (23)
gj(xl,xz,...,xn)ﬁbj , j=1...,m.

To solve this model, one of the objective functions is
minimized by the e-constraint method as a single-objective
problem, while the other objective functions are added to the
constraints with upper bounds. The following model shows
this method, schematically:

minz, = f (xl,xz,...,xn),

s.t.:
fr(X)=z e, (24)

A

o ’
' .o . Sub-population

Objective 1
Y
N
®

-
-
-

Objective 2

Figure 1. Pareto solutions.

f3(X)z e,

fp(X)ze,,
gj(xl,xz,...,x,,)ﬁbj, j=L...,m,

In this study, as the main objective function, the rate of
increase in speed is minimized, and the other one is
considered as a constraint.

4. Subpopulation genetic algorithm

The main goal of multi-objective decision-making is to
achieve the set of Pareto solutions. In this study, the multi-
objective method of the multi-objective genetic algorithm
was used. In multi-objective optimization, failure to achieve
solutions with appropriate diversity indicates an immature
process in the evolutionary algorithm. In this algorithm, in
order to generate diverse solutions, by dividing the initial
population into several subpopulations, the weighted method
is used [38].

In this study, the Subpopulation Genetic Algorithm
(SPGA) is used. In this algorithm, the initial population is
subdivided into several subpopulations to generate effective
responses, and each subpopulation is weighted. For each
subpopulation, the genetic algorithm is fully implemented,
and Pareto solutions are generated [39]. Figure 1 shows the
Pareto algorithm solutions.

4.1. Initial solution representation

The random key method is used for initial solution
representation. In a flexible job-shop environment, there are
a number of parallel machines at each stage capable of
performing the same operation. Each job has a
predetermined path for processing. For example, Figure 2
shows the processing path of each job. This is a matrix of
three rows and four columns whose number is equal to the
number of stages and the number of columns to the number
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J1 |J2 1J31J41J5]J6
S1 121213
S2 |1 |21 ]2 ]13]2
S3 313 (3111

Figure 2. Jobs processing route.

b | )2 13 J4 1 J5 | J6
S1 1.25 2.75
S2 1.2 1.05
S3 25115

Figure 3. Solution representation.

of jobs. S1, S2, and S3 represent the first, second, and third
stages, respectively. As this figure shows, the first job is first
processed in the second stage, then in the first stage, and does
not need to be processed in the third stage. The Asterisk
shows that one job does not need to be processed at that
stage. The second job is processed first in the first stage, then
second stage, and finally in the third stage. The third job is
processed first in the second stage, then in the first stage and
finally in the third stage. The fourth job is processed first in
the first stage, then in the second stage, and finally in the
third stage. The fifth job is first processed in the third stage,
then in the first stage, and finally in the second stage, and
finally, the sixth job, first in the third stage, then in the second
stage, and finally in the first stage. The first, second, and
third stages consist of two, two, and three machines,
respectively. The solution is a matrix with » rows and %
columns. 7 is the number of stages and / is the number of
jobs. According to the matrix, for each row where the first
operation of each job is processed at that stage, a random
number (1, m + 1) is generated at random. m is the number
of machines in each stage. For example, the representation
of the solution for Figure 2 is shown in Figure 3. As Figure
3 shows, for the second and fourth columns in the first row,
two random numbers are generated in the interval (1 to 3).
The number 1.25 indicates that the first operation of the
second job at this stage is performed by the first machine.
The number 2.75 indicates that the first operation of the
fourth job is performed by the second machine at this stage.
In the second row, the numbers 1.05 and 1.15 indicate that
the first operation of the first and third jobs is processed in
the second stage by the first machine. Because the decimal
part of the number in the second row and the third column is
smaller than the number in the second row and the first
column, so first the first operation of the third job and then
the first operation of the first job is done on the first machine.
Finally, in the third row, the first operation of the sixth job on
the first machine and the first operation of the fifth job on the
second machine are done.

4.2. Crossover operator

In this paper, as shown in Figure 4, a single-point method is
used to create a crossover. This is where a point is randomly

Parent 1
J. 12 I3 J4 J5 J6
S1 1.25 2.75
S2 1.2 1.05
S3 25115
Parent 2
J1 J2 I3 J4 J5 J6
S1 2.21 1.28
S2 | 295 1.75
S3 1.25 2.3
Child 1
J1 )2 J3 J4 J5 J6
S1 1.25 1.28
S2 (1.2 1.75
S3 1.25 2.3
Child 2
J1 J2 J3 J4 J5 J6
S1 2.21 2.75
S2 1 2.95 1.05
S3 25115

Figure 4. Crossover operator.

i J2 13 J4 J5 J6

S1 1.25 2.75

S2 1.2 1.05

S3 25 | 1.5
i J2 13 J4 J5 J6

S1 2.75 | 1.25

S2 1.2 1.05

S3 2.5 1.5

Figure 5. Mutation operator.

assigned along the two chromosomes selected as parents, and
the chromosomes are split from that point into two portions.
They are replaced with one another and result in the
production of children.

4.3. Mutation operator

Mutation operators are random-shift operators in which one
or more cells of a specific chromosome are taken into
account, and values in those chromosomes change. In this
study, as shown in Figure 5, two cells are randomly selected,
and the values within those cells are exchanged.

4.4. Selection operator

After the new population is created using the crossover and
mutation operators, it merges with the new population, and
the best of the original population is selected.

5. Computational results

To investigate the efficiency of the developed model, using
75 test problems, the performance of the proposed algorithm



M. Hajibabaei and J. Behnamian / Scientia Iranica (2025) 32(8): 5431 9

is evaluated by the e-constraint method in small-size
instances and by the NSGA-II in Ahmadi et al. [40] in large-
size instances. The algorithms are coded by MATLAB and
implemented on a Win 7 (64Bit) with 16GB RAM.

5.1. Parameter setting

Following Cuiyu et al. [41] and Ehtesham Rasi [42], in the
present study, an experimental method was used to determine
the parameter. In this regard, after solving several test
problems in different sizes and different rates, the crossover
and mutation rates were set to 0.8 and 0.2, respectively, and
the number of replicates was set to 50. Weights were also
assigned to each subpopulation, from zero to one with a

distance of "0.1".

5.2. Evaluation metric

There are many criteria to evaluate the performance of multi-
objective algorithms, each with its own advantages and
disadvantages. Some of these criteria only take into account
the number of Pareto solutions, whereas, in the problem-
solving environment, the quality of the solutions is usually
the most important. However, given that there is no single
solution as an optimal solution in multi-objective space,
another criterion is called the diversity of solutions is
considered in this paper.

Following Ref. [38], after normalizing the objective
functions, we used three performance measurements that
cover both the quality of the solution and the variety of

solutions. These criteria are:

e Mean Ideal Distance (MID);

e The Rate of Achievement to two objectives
Simultaneously (RAS);

e The Spread of Non-dominance Solution (SNS);

Eq. (38) is used to calculate the first criterion. In this respect,
n is the number of vectors in the Pareto layer, and ¢; is the
Euclidean distance between each member of the set of

coordinates, obtained from the equation \/ fil it

In this respect, f}; is the k value of the objective function in

the Pareto i vector solution vector. Obviously, the lower the
value, the greater the utility of that set.

_Z et (25)

n

MID =

In relation to the second criterion, if the solution is along one
axis because it is only fit for one objective and does not perform
well for the other, it is less desirable, but where we have
achieved an acceptable balance between objectives. Eq. (26)

represents the second criterion where F;=min{ f;, f5;}.

" fli_E' fzz‘_E‘
ZHH F }L[ F H (26)

n

RAS =

Finally, Eq. (27) is used to calculate the last criterion:

| 2 MID =)’ @n
n—1 ’

Note that the lower values of MID and RAS criteria are better
and the higher value of SNS is better.

5.3. Computational results in small-size instances

Table 2 shows the results obtained by comparing the SPGA
and the e-constraint method in the small-size instances.
Then, these results are analyzed considering controlled
factors, algorithms and used evaluation metrics in Figure 6.
This figure shows that in all cases, the e-constraint method
with respect to the MID has better performance than the
SPGA. Also, Figure 6 shows that considering the RAS and
SNS, the SPGA has a better performance.

5.4. Computational results in large-size instances

Table 3 shows the results of 45 randomly generated large-
size instances in which the SPGA and NSGA-II are
compared. As the table shows, considering the two criteria of
MID and RAS, there is a relative superiority with the
proposed algorithm, but in the SNS criterion, which is the
criterion for the diversity of the generated solutions, it is the
SPGA that has absolute superiority.

The results of Table 3 are analyzed according to
controlled factors, algorithms and used evaluation metrics in
Figure 7. Figure 7(a) shows that in all cases, the NSGA-II,
with respect to the MID, performs better than the proposed
algorithm. Considering the RAS, Figure 7(b) shows that the
performance of the proposed algorithm and NSGA-II are
similar in small-size instances but in large test problems, e.g.,
in 15 and 50, the SPGA performs better than the NSGA-II.

Figure 7(c) shows that according to SNS, the proposed
algorithm, in most cases, performs better than the NSGA-II. To
further examine the results, statistical analysis has been
performed, the results of which are presented in Tables 4-6.

The results of the Tukey test in small size show that in all
criteria, the difference between the e-constraint method and
the proposed algorithm and the difference between the &-
constraint method and NSGA-II are significant. But the
difference between the NSGA-II and SPGA is not
significant. Figure 8 shows the mean and error bar of the
algorithms according to the three criteria.

Furthermore, as the results of the Tukey test in large size
shown in Tables 7-9, there is no significant difference
between SPGA and NSGA-II in MID, SNS and RAS criteria.
Figure 9 shows the mean and error bar of the proposed
algorithm compared to NSGA-II in three criteria of MID,
RAS and SNS.
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Table 2. Computational results in small-size instances.
Jobs * Test MID RAS SNS
Machines PTOPl™  gpgy  NSGA- & gpgy NSGA- & gpp, NSGA- e
11 constraint I constraint 11 constraint

1 325.95 258.86 1373.98 6.78 12.06 26.24 151.76 97.84 745.89

2 690.88 541.01 1337.83 7.89 6.5 265.22 391.69 64.26 734.68

3 1225.97 543.58 1409.66 6.74 6.6 29.7 588.52 104.02 758.07
4 2292.74 2102.6 3542.05 8.94 15.8 197.72 3385.35 273.62 2400.44

5 2566.18 3203.34 1337.63 15.07 9.11 29.68 1011.12 183.16 734.85

5*2 6 4362.97 2074.17 1383.58 10.97 7.13 31.05 2763.83 95.14 759.1
7 4002.73 4165.25 1381.53 12.63 9.5 31.6 1400.21 960.92 758.17
8 4945.06 3016.22 2393.12 12.03 13.08 54.62 2387.02 589.99 1316.87
9 4535.18 7207.08 5219.76 13.04 13.23 124.41 1741.84 346.16 2661.48
10 6356.76 3050.38 5104.26 11.87 12.03 121.9 2266.5 55.34 2809.45

Average 3140.42 2616.24 2448.34 10.59 10.50 91.21 1608.78 277.04 1367.9
1 823.86 162321 1073.85 2.19 9.68 12.65 117478  233.88 1425.86
2 1623.05  1124.86 896.26 3.32 1.33 48.6 1530.86  20.009 2663.26
3 2290.03 344604  1162.48 7.6 45 19.21 1167.12  557.82 2429.51
4 4400.77  4086.18 3576.15 7.18 18.51 124.41 2868.09  116.44 3261.93
5 6547.86  3058.54 1001.55 14.36 7.6 121.94 2887.35 59.54 2557.48
103 6 12646.17  3383.85 1073.73 8.71 1.85 617.66 2084.88  2696.08  2742.83
7 11712.04 1066691  1125.04 14.66 8.6 73.41 4911.86  843.84 3083.23
8 13188.52  9026.74 909.76 7.61 6.08 63.47 6390.96  5373.81 2686.26
9 13164.01  2204.94 900.65 6.48 11.43 64.43 716048 20142.66  2667.24
10 15021.33  8157.23 1110.92 5.28 6.8 84.07 6743.61  159.83 3394.38
Average 8141.76  4677.85 1283.03 7.73 7.63 122.98 3691.99  3020.39 2691.19
1 1622.12 114791 1362.53 3.25 6.46 73.39 1113.59 550.76 3480.71
2 4554.44 833.76 1476.49 2.33 1.66 102.91 2103.99 60.83 3771.95
3 7400.54 6957.08 1850.35 3.33 2.006 124.38 4510.55 1474.95 1438.76
4 23363.1 23762.84 1580.97 4.8 15.52 124.36 22575.88  2025.05 4038.92
5 139773  25635.97 1604.86 5.68 3.8 131.61 7721.09 2900.81 4089.85
15%*5 6 20042.44  12492.78 1200.97 5.1 3.87 101.59 13575.66 547.36 3068.02
7 20393.02 37305.88 1636.05 4.69 4.05 144.02 13905.24 15171.51 4179.69
8 36027.13  9353.77 1449.86 3.7 4.07 128.28 33326.05 326.67 3703.95
9 34167.02  10790.16 978.71 11.6 5.58 133.14 27943.94 3223 4062.97
10 50613.65 36638.75 1225.96 5.07 8.1 117.39 4564593  3231.65 3223.81
Average 21216.07 16491.89 1436.67 4.95 5.51 118.1 17242.19  2661.18 3505.86
l_ « SPGA Epsilon-constraint
20000 . / 120 16000 /,
/ 80
g : 2 2 /
s 10000 / ~ & 2000 :
e K J
0 0 —— c e . -— 0 —
5 10 15 5 10 15 5 10 15
Jobs Jobs Jobs

Considering the MID criterion

Figure 6. Comparisons of the e-constraint method and SPGA.

Considering the RAS criterion

Considering the SNS criterion
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Table 3. Computational results in large-size instances.

Jobs x Test MID RAS SNS
Machines problem SPGA NSGA-II SPGA  NSGA-II SPGA NSGA-II
1 43334 10882.19 5.26 0.95 2056.009 1324.86
2 11140.13 21603.34 2.43 0.26 4279.85 29429.1
3 19706.49 4253.75 1.44 0.13 9565.36 1299.23
4 57237.5 31186.01 2.68 2.68 59965.7 10371.53
5 50910.97 48861.49 2.5 1.74 48678.88 1438.21
6 55376.03 13275.72 1.63 0.42 18848.76 4023.26
7 161510.32 83474.2 1.9 2.8 229358.84 43068.9
30%6 8 89796.53 19760.74 1.76 1.98 31405.93 1264.13
9 93314.52 132008.69 1.9 1.65 78044.66 3665.79
10 115893.54 53154.76 1.78 1.53 57909.53 2580.25
11 152219.39 115472.41 2.06 2.13 84060.74 3037.21
12 90149.19 104973.8 2.36 2.002 51720.005 43900.36
13 142337.31 100313.17 8.38 2.1 70191.82 21966.84
14 165544.91 212943.99 2.33 233 150712.73 48300.09
15 160852.4 82669.69 4.84 2.16 72131.51 920.33
Average 97570.65 68988. 93 2.88 1.65 64595.35 14439.33
1 17016.04 18761.93 4.06 0.72 13290.66 5106.2
2 34093.11 18003.38 1.91 0.38 35405.37 5573.79
3 83768.32 29610.83 0.68 1.09 74624.37 1940.49
4 57816.35 67078.68 0.91 2.76 118350.48 6918.54
5 120212.6 144254.11 0.83 0.19 55732.36 38984.47
6 165645.83 48475.95 1.79 0.4 211904.25 7018.59
7 113019.47 206681.24 0.34 0.4 79943.18 192453.89
50*8 8 247863.49 245373.2 2.75 11.99 236020.96 10475.82
9 197662.8 217937.07 0.64 1.03 172556.3 50304.9
10 161097.17 263347.01 1.07 14.14 106821.87 76759.94
11 378178.71 255297.34 0.78 0.95 395352.9 7951.76
12 196968.12 63812.42 0.76 0.27 324687.64 3075.95
13 262847.87 262713.33 4.43 0.78 133696.29 9676124.57
14 260656.68 71091.81 0.85 1.63 149771.05 51080.59
15 450472.35 467839.27 3.7 0.56 347488.4 37549.01
Average 183154.59 158685.17 1.7 2.48 163709.73 678087.9
1 44161.72 15138.73 8.6 1.62 34252.01 385788.81
2 111760.16 73492.12 2.87 1.69 223480.12 5782.45
3 158320.44 21425.56 1.82 1.05 232807.93 1817.11
4 212199.58 201660.16 1.15 0.70 383493.13 6372.27
5 317530.45 67732.17 2.81 0.89 511114.24 5179.58
6 277298.86 299425.15 1.81 0.1 140435.72 11025.48
7 542362.06 852384.2 0.33 1.49 798158.55 1606868.18
100%6 8 715527.13 424537.99 1.72 0.03 1404039.67 101922.45
9 302113.11 554287.27 1.2 0.11 188018.9 105556.1
10 403661.83 436321.61 1.15 0.51 201272.42 24861.86
11 472083.42 293809.84 2.03 0.26 207686.83 20958.25
12 523411.69 760693.33 0.87 0.17 259353.18 88374.04
13 1422182.04 687892.45 3.35 0.43 2939556.25 11009.31
14 1195072.67 723506.95 4.38 0.36 2343493.81 15537.02
15 702018.34 374524.96 3.42 8.29 8796135.17 41385.07
Average 493313.56 385788.83 2.5 1.18 1244219.86 162162.53

11
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Figure 7. Comparisons of the SPGA and NSGA-II (a): Comparisons of SPGA and NSGA-II considering the MID criterion, (b): Comparisons
of SPGA and NSGA-II considering the RAS criterion (c): Comparisons of SPGA and NSGA-II considering the SNS criterion.

Table 4. Tukey analysis with a confidence interval of 95% considering the MID criterion in small-size instances.

Contrast Difference Standardized difference Critical value Pr > Diff  Significant
SPGA vs. e-constraint 9106.743 3.886 2.384 0.001 Yes
SPGA vs. NSGA-II 2900.764 1.238 2.384 0.434 No
NSGA-II vs. € constraint 6205.978 2.648 2.384 0.026 Yes

Table 5. Tukey analysis with a confidence interval of 95% considering the RAS criterion in small-size instances.

Contrast Difference  Standardized difference Critical value Pr > Diff Significant
g-constraint vs. SPGA 103.005 6.213 2.384 <0.0001 Yes
g-constraint vs. NSGA-II 102.884 6.205 2.384 <0.0001 Yes
NSGA-II vs. SPGA 0.121 0.007 2.384 1.000 No

Table 6. Tukey analysis with a confidence interval of 95% considering the SNS criterion in small-size instances.

Contrast Difference = Standardized difference  Critical value Pr > Diff Significant
SPGA vs. NSGA-II 5528.117 3.119 2.384 0.007 Yes
SPGA vs. g-constraint 4992.671 2.817 2.384 0.016 Yes

g-constraint vs. NSGA-II 535.445 0.302 2.384 0.951 No
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Figure 9. Comparison of algorithms in large-size instances.

Table 7. Tukey analysis with a confidence interval of 95% considering the MID criterion in large-size instances.

Contrast Difference Standardized difference Critical value  Pr > Diff Significant

SPGA vs. NSGA-II 52672.299 0.980 1.987 0.330 No

Table 8: Tukey analysis with a confidence interval of 95% considering the RAS criterion in large-size instances

Contrast Difference  Standardized difference  Critical value  Pr > Diff Significant

SPGA vs. NSGA-II 0.603 1.236 1.987 0.220 No

Table 9. Tukey analysis with a confidence interval of 95% considering the SNS criterion in large-size instances.

Contrast Difference

Standardized difference

Critical value  Pr > Diff Significant

SPGA vs. NSGA-II

224990.980 0.767

1.987 0.445 No

6. and future research

The main purpose of this research is to determine the
sequence of operations on machines, reducing the amount of
completion time and noise generated by increasing speed. In
this problem, jobs are manufactured in a flexible job-shop
environment where job interruption is permitted. The
purpose of this study is to minimize the sum of part
completion times and the sum of the speed increases using
the e-constraint method. To compare the algorithm, three
criteria were used. Due to the bi-objective problem and its
NP-hardness, the Subpopulation Genetic Algorithm (SPGA)
was used to solve it. The proposed algorithm was compared
with the e-constraint method and the NSGA-II in small and
large-size instances, respectively. In the small-size instances,
the e-constraint method and the proposed algorithm were
compared. The results showed that in the Mean Ideal
Distance (MID) criterion the e-constraint method was better
compared to the proposed algorithm, but considering the

Rate of Achievement to two objectives Simultaneously
(RAS) and Spread of Non-dominance Solution (SNS)
criteria the proposed algorithm had a better performance than
the e-constraint method. The proposed algorithm was also
compared with the NSGA-II in large-size instances. The
results showed that considering the MID criterion, the
NSGA-II was somewhat better than the SPGA, in the RAS
criterion, the proposed algorithm was better in more
instances (especially in larger size), but in the SAS criterion,
complete superiority was with the SPGA. Considering MID,
SNS and RAS criteria, the results of the Tukey test in small
dimensions showed that the difference between the -
constraint method with the SPGA and NSGA-II were
significant. But the difference between SPGA and NSGA-II
was not significant. Furthermore, the results of the Tukey test
in large-size instances showed that there is no significant
difference between the SPGA and NSGA-IIL
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Given that our aim in this paper was to present an
applied model that is close to reality, further assumptions can
be made to get closer to the real issues. Therefore, the
following are suggestions for further research:

e  Considering uncertainty in the problem parameters;

e Simultaneous studying of energy issues, speeding
up and noise pollution;

e  Using the exact method to solve the problem, and
Developing novel algorithms such as math-
heuristic and hyper-heuristic algorithms.
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