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Abstract

[ J
In the analysis of nonlinear dynamical systems, developing an accurate understanding of simple mec ANJ models—
such as the pendulum—is of fundamental importance in both engineering and physics. Although the stgple pendulum

is often introduced in its linearized form for small oscillations, its true behavior becomes high inear at larger
amplitudes. The nonlinear pendulum, therefore, serves as a classical yet powerful exam xploring the rich
dynamics that emerge in real-world systems where linear approximations fail. In thjg(st the non-linear dynamic
analysis of a simple pendulum is revisited. Two new formulas for the period and freque e proposed based on the
Harmonic Balance Method and the Akbari-Ganji Method. Furthermore, to obtain more acctirate results, improvements
are made to the formulas of the harmonic balance method and the Akbari-Gapji . These improvements provide
more reliable outcomes, especially in systems requiring high accuracy. Twoﬁ most prominent formulas in the
literature are derived using the Akbari-Ganji Method. As a result of this, the@ cies obtained by the present method
and the other methods are compared. The obtained results emphasize accuracy and efficiency of the proposed
approaches. Consequently, this study encourages the use of alternati ethods in the analysis of non-linear dynamic
systems. o
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1. Introduction

Dynamic analysis of a simple pend IS a practically important problem that has been
extensively investigated in the i e. Bhe large-amplitude oscillations of the pendulum have
also attracted considerable attenti leading to the proposal of several useful formulas for
estimating the period and fr ncy. Since an exact analytical solution is not attainable, most
studies have focused on d g better approximations. Cumber [1] examined various forced
pendulum systems, inc %ﬁorizontally, vertically, radially, and angularly forced pendulums, as
well as the angularly double pendulum. He concluded that simple pendulums are highly
interesting and wo f detailed analysis. Wang et al. [2] analyzed the dynamics of a simple
pendulum subje, variable damping and solved the governing equations using numerical
methods. Ga suggested a formula for the period for very large amplitudes. Parwani [4] also
estimated @iod of the non-linear pendulum by comparing the modified equation of motion
with the rbative solution and gave a new useful result. Fulcher and Davis [5] investigated the
s motion experimentally and theoretically. They solved the equation using the
pertufbation method of Kryloff and Bogoliuboff [6] to find the two lowest order corrections to the
amplitudes and the period. Kidd and Fogg [7] suggested an approximate formula for the period.
Beléndez et al. [8] investigated the non-linear oscillation of a simple pendulum and presented the
formulas not only for the period, but also for the angular displacement and amplitude. Some
researchers [9-11] revisited the non-linear oscillation of the simple pendulum and obtained the
frequency and period using the Homotopy Perturbation Method (HPM). Butikov [12] studied the
non-linear motion of the pendulum for extremely large amplitudes. New handy-used formulas
based on concrete theories are still welcome since the analytical solution cannot be obtained.
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Compared to other semi-analytical methods such as the Differential Transform Method (DTM),
the Adomian Decomposition Method (ADM), and the Homotopy Perturbation Method, the Akbari-
Ganji Method is much easier to use [13]. According to this method, the solution depends only on
the use of the initial conditions and the governing equation itself and its derivatives. The most
advantageous feature of the AGM is that it transforms the problem into a system of algebraic
equations [14]. Due to its simplicity and versatility, AGM has found wide application in various
engineering problems [15-24]. In the present paper, we revisit the non-linear motion of the simple
pendulum. Two new formulas are proposed. For this purpose, the harmonic balance methpd,and
the Akbari-Ganji method [25] developed for non-linear differential equations are utilizeb
[ J

2. Analysis &
The equation of motion for the simple pendulum is simply shown to be in the(@
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the vertical, and g is the
e form

0+afsind=0, 6(0)=80,, 6(0)=6,, o, = 1)

Here, | is the length of the pendulum, & is the angle meaSL&
acceleration due to gravity. For small displacements, Eq.l@

é+(a)§)az @
whose solution is given by C}
o(t) = Acog a)?) +Bsin(awyt). (3)

Here, , is the frequency, and A aﬁ% are the constants to be determined from the initial
conditions.

)

2.1. Harmonic Balance Met

To solve Eq.1, we will@ harmonic balance method. First, we expand sin(8) into the Taylor
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We take @irst three terms and insert Eq.4 into Eq.1:
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9+a)0 Q—E‘F@ =0. (5)

Let us now assume a solution
6 = Acos wt, (6)

where A and o are the amplitude and the frequency, respectively. Inserting this term and its
derivatives into Eq.1 gives
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—Aw’ cos ot + Aw? cos wt —% A® cos® wt + % A® cos® wt =0. (7

Using the equalities
cos® wt = %cos ot + % cos 3at,

cos® wt = 10 cos wt + S cos 3wt + 1 cos5awt, (b’
16 16 16

we find '&
~Aw’ cos wt + Aw] cos wt — ? A3 G coswt += cos 3a>t
. gg
a)" A°| —cos wt tos cos 3a)t +-—C0s 5a>t
120 16
Equating now the coefficients of like terms yields &

=@, 1—’?&% (10)

Eq.10 gives w = 2.6637 rad/s for 6(0) =/ d 2.92005 rad/s for 6(0) = = /3. This formula
is identical to the one obtained by Belen apld colleagues for small values of x using the
Homotopy Perturbation Method [9]. Théy propose the formula o=, (2J1(A))/(A) for the

same problem. For small A’s, e ing Bessel function into the series and taking the first three
terms, we obtain the same as Eqg. this leads to Eqg.10. Since the interval of interest in the
present problem is 0 <8 < /2% we can infer that the results of HPM will also be valid for small
angles as well. To improv rectness of the results, we take the first four terms in Eg. 4 and
find the frequency aga
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Eq.11 gl@ =2.6607 rad/s for 6(0)=7/2 and ®=29198 rad/s for 6(0)=x/3. A
0

f the results of Eq.11 with the results of the Runge-Kutta method and some of the
otheEechques available in the literature is given in Table 1.

2.2. Akbari-Ganji Method

To obtain more correct values, one could include additional terms in Eg. 4 or assume a more general
solution of the form @ = A cosat + A, cos3at..., where @, A, A, are constants to be determined.

However, this procedure requires tedious computations. Instead, we wish to use a relatively simpler



and more effective Akbari-Ganji method (AGM). It will be demonstrated shortly that several
previously obtained solution forms can also be derived using this method. According to the Akbari-
Ganji Method, the process begins by assuming a trial solution that includes a set of unknown
coefficients. The initial conditions are then applied to this assumed form, resulting in a system of
algebraic equations. To fully determine all unknowns, the original differential equation, along with
its necessary derivatives, is used to generate as many independent equations as there are unknowns.
The main differential equation and its derivatives are used to reach the number of algebraic
equations that equal the number of unknowns. Since there is no damping in the system, we chgose
the solution of Eq.1 in the form O%

0(t) = Ksin(at+¢)

\ (12)
where K, » and ¢ are constants to be determined. Let us assume that the ini@'@tions arein
the form 6(0)= A, 6(0)=B . Appealing to Eq.12 yields ,x&

A=Ksin(p), B=Kwcos(p (13)

We need an extra equation. To this end, we differentiate Eq. 127®Eplace t =0 in the equation as
follows:

0 = Kacos(ot+¢)— 0( @cos 14)

0 = -Ka? Sln a)t+¢) Ko Sln
Inserting the terms in ©(0),0(0),8(0) into Eg,¥, we have
6(0)+ ¢ sin(0(0))£0=% K’ sin(p) + o sin(Ksin(p))=0. (15)

Solving the equations in Eqs.”a3 and 15 simultaneously, we get

2
) , Q= arctan(A j K= |A*+ 2|3—A (16)
B w, sin(A)
Thus, the angle @%btamed in the form

O 2 sin(A
C) o(t)= A+ 2B—A sin| w, ( )t+arctan(éwj . 7)
? @, sin(A) A B
It is important to note that the present method incorporates the initial angular velocity into its

formulation. As an illustrative example, we consider the initial conditions #(0) =z /6, 8(0)=0,

| =1, and plot the angular displacement & as a function of time t. Figure 1a presents a comparison
between the results obtained using the proposed method and those obtained via the Runge-Kutta
method. As shown, the two curves nearly coincide, indicating good agreement. In Fig.1b, the values

0(0)=A=r/3, 6(0)=0 are taken. It is observed that as the initial angular displacement 6(0)
increases, the discrepancy between the results of the present method and the Runge-Kutta solution




becomes more noticeable. When the results of the present method are compared with those
obtained by other methods, it can be said that the present formula in Eq. 16 yields accurate results
between 0< 6 <30°. Table 1 summarizes the frequencies calculated by the present and various

previously proposed methods for initial angles in the range 0 <8<z /2 . Taking the Runge-Kutta
method as the reference solution, the present method provides acceptable frequency estimates for

0< 6 <30°. After the angles & >30°, the proposed method tends to underestimate the frequency
compared to other methods. To improve the accuracy of Eq. 16 in the range 30<6<90° a
corrective transformation is introduced: 8 =k@&, where k is a constant. Taking the derivati d
inserting them into Eq.1 gives O

2

5+%sin(k¢9) 0. ,& (18)
We assume a solution ,x&z

o(t) =bsin (ot +¢)
@

6(t) =bawcos(at+¢), 4(t)=-b ot+¢). (20)

(19)

from which we can write

Here, b is a constant to be determined. Inserting th&@pressmns into Eg.18 and evaluating at
=0, we obtain

sm B?

ar an b = [E] (21)
The new form of the frequency ex orf w is more general, incorporating the correction factor
k , which must be determined te,ensure consistency between the results obtained using the Akbari-
Ganji Method and those fro unge-Kutta Method. As shown in Table 1, for an initial angle
of &=rx1/2,the frequenc ained via the Runge-Kutta Method is @ = 2.6536 rad/s. Substituting
this value into Eq. 2 =0.8679, which closely approximates J372, avalue also noted by
Parwani in his . This result implies that the constant \/5 /2 in Parwani’s formula

corresponds tQ t e€ific case of an initial angle A=x/2. However, upon closer examination
of the Run tta results, it becomes evident that the value of k is not fixed but varies with the
initial ané( This dependency is clearly illustrated in Table 2, where different values of A

o distinct values of k. However, it does not show enormous changes between
0!% . Thus, while Eq.16 can be used without k between 0< @ <30°, Eq.21 can also be
used 1n the entire interval using the values of k ’s from Table 2 for each initial angle. Figure 2
presents the angular displacement & as a function of time t, with each curve computed using a
different correction coefficient k. The results obtained via the improved Akbari-Ganji Method are
compared with those from the Runge-Kutta Method for three different initial angles. The close
agreement between the two approaches demonstrates the effectiveness of incorporating the
correction factor k into the analytical formulation.



3. Discussion and Conclusions

In this study, two new analytical formulas have been developed for estimating the period and
frequency of a simple pendulum using the Harmonic Balance Method (HBM) and the Akbari-Ganji
Method (AGM). A key distinction between the two approaches lies in the treatment of initial

conditions: while the HBM assumes a zero initial angular velocity 6(0)=0, the AGM formulation

incorporates the initial angular velocity directly into the analysis. The accuracy of the proposed
formulas has been validated through comparisons with numerical results obtained using the %e-
Kutta method, as well as with several other approximate analytical methods. The @N nic
Balance Method was found to yield satisfactory results for small amplitude oscnlatlox ever,
Eq. 16, derived initially via AGM, showed limitations at higher amplitudes and re finement
for improved accuracy. To address this, an enhanced version of Eq. 16 wa 9%ed using a
correction coefficient k based on the Akbari-Ganji framework. This impro mula coincides

with Parwani’s result when the initial angle is A=x/2, yielding k Further analysis
revealed that k is not a universal constant but rather depends on the initial’angular displacement
A, asdocumented in Table 2. This angle-dependent behavior previ ore flexible and accurate
model for predicting the pendulum’s frequency across a broa of initial conditions. As an

alternative formulation, the solution form H(t)—bcos b was also investigated. When
Sio

N @=aw,,/cos(8) did not yield

acceptable accuracy. However, modifying this to cos( ké?) and calibrating k using the

known result @=x/2 for @=2.6536 radj 04903 This value is nearly identical to
Kidd and Fogg’s well-known apprOX|mat|on a)o cos 0/ 2) , highlighting the AGM's capacity

to reproduce other established form through appropriate transformations. For students in
physics and mechanics, these twosgrépesed formulas can serve as useful alternatives for analyzing
non-linear pendulum motion. MoreOwet, the ability of the Akbari-Ganji Method to accommodate
non-zero initial angular velo ffers a distinct advantage over many traditional approaches.
Several formulas derive vious studies were shown to be recoverable using AGM,
emphasizing its generalityand utility. Looking ahead, the Akbari-Ganji Method shows strong
potential for broade ications, including damped pendulums and multi-degree-of-freedom
systems such as th le pendulum. It is also well-suited for tackling other systems governed by
non-linear d@a uations. However, one limitation of the method lies in its scalability—

applying AGM to this form, the resulting frequency

solving the r g system of algebraic equations becomes increasingly complex as the number
of variablc) equations grows, and may become intractable in some cases.

Yy

4. Author Declarations

The authors have no conflicts to disclose.

References

[1] Cumber, P. “There is more than one way to force a pendulum”, International Journal of
Mathematical Education in Science and Technology, 54(4), pp. 579-613 (2023).



https://doi.org/10.1080/0020739X.2022.2039971

[2] Wang, J., Xue, Q., Li, L., et al. “Dynamic analysis of simple pendulum model under variable
damping”, Alexandria Engineering Journal, 61(12), pp. 10563-10575 (2022).
https://doi.org/10.1016/j.aej.2022.03.064

[3] Ganley, W. P. “Simple pendulum approximation”, American Journal of Physics, 53 (1), pp.
73-76 (1985).

https://doi.org/10.1119/1.13970 (b
[4] Parwani, R. R. “An approximate expression for the large angle period of a simpf lum”,
European Journal of Physics, 25 (1), pp. 37-39 (2004).
https://doi.org/10.1088/0143-0807/25/1/006 0

pendulum”, American Journal of Physics 44 (1), pp. 51-55 (1976).

[5] Fulcher, L. P. and Davis, B. F. “Theoretical and experimental study % ion of the simple
https://doi.org/10.1119/1.10137

o
[6] Kryloff, N. M. and Bogoliuboff, N. N. Introduction t v&ar mechanics, Princeton
University Press, (1949). K

[7] Kidd, R. B. and Fogg, S. L. “A simple formula ft Qarge-angle pendulum period”, The
Physics Teacher 40 (2), pp. 81-83 (2002). ¢ @

https://doi.org/10.1119/1.1457310 C}

[8] Beléndez, A., Pascual, C., Méndez, D.I . “Exact solution for the nonlinear pendulum”,
Revista Brasileira de Ensino de Fisica 29 (4), pp? 645-648 (2007).
https://doi.org/10.1590/S1806-11172007000400024

[9] Beléndez, A., Herndndez, A.;'Belendez, T., et al. “Application of the homotopy perturbation
method to the nonlinear pendélum”, Blropean Journal of Physics, 28(1), pp. 93-104 (2007).
https://doi.org/10.1088/0143- 28/1/010

[10] Sharif, N., AlamyM{S{, and Molla, H. U. “Dynamics of nonlinear pendulum equations:
Modified homotopy perttsbation method”, Journal of Low Frequency Noise, Vibration and Active
Control, 44(3), pp.A460-1473 (2025).

https://doi.org/l@ 14613484251320219

[11] Has Qand Rana, M. M. “Approximate Solution of Simple Pendulum Equation for
Damped Undamped Oscillatory Motion by Using Homotopy Perturbation Method”,
Inteww Journal of Mathematics and Computational Science, 5(2), pp. 24-35 (2019).

[12] Butikov, E.I. “Oscillations of a simple pendulum with extremely large amplitudes”, European
Journal of Physics, 33 (6), pp. 1555-1563 (2012).
https://doi.org/10.1088/0143-0807/33/6/1555

[13] Mohammadian, M. and Shariati, M. “Application of AG method and its improvement to
nonlinear damped oscillators™, Scientia Iranica, 27(1), pp. 203-214 (2020).
https://doi.org/10.24200/sci.2018.21093


https://doi.org/10.1080/0020739X.2022.2039971
https://doi.org/10.1016/j.aej.2022.03.064
https://doi.org/10.1119/1.13970
https://doi.org/10.1088/0143-0807/25/1/006
https://doi.org/10.1119/1.10137
https://doi.org/10.1119/1.1457310
https://doi.org/10.1590/S1806-11172007000400024
https://doi.org/10.1088/0143-0807/28/1/010
https://doi.org/10.1177/14613484251320219
https://doi.org/10.1088/0143-0807/33/6/1555
https://doi.org/10.24200/sci.2018.21093

[14] Yokeswari, G., Paulraj Jayasimman, I. and Rajendran, L. “Mathematical modeling of non-
linear reaction-diffusion process in autocatalytic reaction: Akbari-Ganji method”, International
Journal of Electrochemical Science, 19(4), pp. 100536 (2024).
https://doi.org/10.1016/j.ijoes.2024.100536

[15] Shateri, A., Moghaddam, M. M., Jalili, B., et al. “Heat transfer analysis of unsteady nanofluid
flow between moving parallel plates with magnetic field: analytical approach”, Journal of Central
South University, 30(7), pp. 2313-2323 (2023).

https://doi.org/10.1007/s11771-023-5388-3 (bd
[16] Jalili, B., Emad, M., Jalili, P., et al. “Thermal analysis of boundary layer nanoflui Qv over
the movable plate with internal heat generation, radiation, and viscous dissipation™ e Studies
in Thermal Engineering, 49, pp. 103203 (2023). (b’

https://doi.org/10.1016/j.csite.2023.103203
[17] Sivasundari, S. A. S., Rani, R. U, Lyons, M. E. G., et al. ‘%rt and Kinetics in

Biofiltration Membranes: New Analytical Expressions for Concentration Profiles of Hydrophilic
and Hydrophobic VOCs Using Taylor’s Series and Akbari-Ganfi s”, International Journal

of Electrochemical Science, 17(4), pp. 220447 (2022). &
https://doi.org/10.20964/2022.04.08 Q
. “Analytical solution of fractional

[18] Attar, M. A., Roshani, M., Hosseinzadeh, K.,@l
differential equations by Akbari—Ganji’s method”; 1a

Mathematics, 6, pp. 100450 (2022).
https://doi.org/10.1016/j.padiff.2022.10045%

| Differential Equations in Applied

processing parameters on temperatur ory in Directed Energy Deposition: an analytical and

[19] Ghasempour-Mouziraji, M., Afonsa, D., 'Hosseinzadeh, S., et al. “Modeling the effect of
Sg Journal, 30(2), pp. 338-349 (2024).

finite element approach”, Rapid pi
https://doi.org/lO.llOS/RPJ-QE—ZOZ 65

[20] Chari, F. N., Ganiji,
nanofluid flow under t
and numerical conce

Mahboobtosi, M., et al. “Heat transfer analysis of GO/water
luence of Joule heating and chemical reactions with MHD: analytical
ultiscale and Multidisciplinary Modeling, Experiments and Design,

[22] Jalili, P., Sharif Mousavi, S. M., Jalili, B., et al. “Thermal evaluation of MHD Jeffrey fluid
flow in the presence of a heat source and chemical reaction”, International Journal of Modern
Physics B, 38(08), pp. 2450113 (2024).

https://doi.org/10.1142/S0217979224501133

[23] Majidi Zar, P., Shateri, A., Jalili, P., et al. “Radiative effects on 2D unsteady MHD Al,Oz-
water nanofluid flow between squeezing plates: A comparative study using AGM and HPM in


https://doi.org/10.1016/j.ijoes.2024.100536
https://doi.org/10.1007/s11771-023-5388-3
https://doi.org/10.1016/j.csite.2023.103203
https://doi.org/10.20964/2022.04.08
https://doi.org/10.1016/j.padiff.2022.100450
https://doi.org/10.1108/RPJ-05-2023-0165
https://doi.org/10.1007/s41939-025-00843-x
https://doi.org/10.1016/j.chaos.2025.116197
https://doi.org/10.1142/S0217979224501133

Python”, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fiir Angewandte
Mathematik und Mechanik, 105(2), pp. €202400546 (2025).
https://doi.org/10.1002/zamm.202400546

[24] Jalili, B., Ganji, A. M., Shateri, A., et al. “Thermal analysis of non-Newtonian visco-inelastic
fluid MHD flow between rotating disks”, Case Studies in Thermal Engineering, 49, pp. 103333
(2023).

https://doi.org/10.1016/j.csite.2023.103333

[25] Ahmadi, A., Akbari, M.R., and Ganji, D. D. Nonlinear dynamics in engineering l@(@'ﬁ-
Ganji’s method, Xlibris Corporation, (2015). \

[26] Molina, M. 1. “Simple linearizations of the simple pendulum for any amplirL@T he Physics
Teacher, 35 (8), pp. 489-490 (1997).

https://doi.org/10.1119/1.2344777 x&
1od

[27] Lima, F. M. S. and Arun, P. “An accurate formula for the per f a simple pendulum
oscillating beyond the small angle regime”, American Journak of gbics, 74 (10), pp. 892-895
(2006).

https://doi.org/10.1119/1.2215616 0&
R,

=


https://doi.org/10.1002/zamm.202400546
https://doi.org/10.1016/j.csite.2023.103333
https://doi.org/10.1119/1.2344777
https://doi.org/10.1119/1.2215616

Table 1: Comparison of angular frequency values « calculated using different methods. Results
are presented for various initial angles @, including values obtained using the Akbari-Ganji Method
(AGM), the corrected AGM with the coefficient k, the Runge-Kutta Method, the Harmonic
Balance Method (HBM), Homotopy Perturbation Method (HPM) and other formulas reported in
the literature.

0 [rad] ® [rad/s]

Jo

AGM AGM Runge HBM HPM  Parwani Molina Kidd ande L@and

(Corrected) -Kutta [9] [4] [26] Fogg wn [27]
7118 3.1241 3.1262 3.1262 3.1261 31261 3.1261 3.1261 3. 3.1261

/12 31142 31191 3.1191 3.1187 31187 3.1187 3.115\?@7 3.1187
82

7/9 3.1003 3.1088 3.1088 3.1083 31083 3.1083 3.10 11082 3.1082
57/36 3.0825 3.0954 3.0954 3.0949 30049 3.0949, 3.0947 3.0948
716 3.0607 3.0796 3.0796 3.0786 30786 3.078 84 3.0783 3.0784

77136 3.035 3.0602 3.0602 3.0593 3.0593 3.059  3.0588 3.059
2719 3.0054 3038 3038 3.0372 30372 ﬁ 3.0366  3.0362 3.0367
/4 29719 3.0125 3.0125 3.0121 3.015 118 3.0112 3.0105 3.0113
57/18 29345 29851 29851 2.9842 2.@ 2.9837 2.9827 2.9818 2.983
117/36 2.8933  2.9547  2.9547 2-953%5 4 29527 29513 2.9498 2.9516
713 28483 29215 29215 2.9198 90198 29188 2.9167 2.9147 2.9173
137/36 2.7995 2.8851  2.8851 4 28834 28821 2.8792 2.8764 2.8799
Trx118 27469  2.8443 2.8&@84 2.8443 2.8424 2.8385 2.8348 2.8395
157/36 2.6905  2.8015 015~ 2.8024 28024 2.8 2.7947 2.7898 2.796
4719 2.6304 27554 4 2.7578 27579 2.7547 2.7478 2.7413 2.7495
177136 2.5666 @2706 27106 27107 2.7065 2.6976 2.6894  2.6998
xl2 2499 2.6536 2.6607 26608 2.6556 2.6442 2.6338 2.647
o
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Table 2: Computed values of k for various values of 4, illustrating the relationship between these
parameters.

@ and k values

0 /18 7112 719 57136 716 77136 2719 xl4 57/18
k 0.8595 0.8522 0.8558 0.8596 0.8571  0.8599 0.8611 0.8633 @%
[ ]

0 11z/36 x/3 137/36 7x/18 1572/36 4x/9 17x/36 @\'

k 08612 0.8606 0.8606 0.8632 0.8640 0.8651 0&6&( .8679

A

—Runge-Kutta * AGM —Runge-Kutta *+ AGM

0.5}

¢ [radian]
<=

6 [radian]
e
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Time [s] Time [s]

@ O (b)

t, obtained using t nge-Kutta Method (solid line) and the Akbari-Ganji Method (dotted line).
(@) 0(0) = A=6 )=0.(b) 6(0)=A=7r/3, 8(0)=0.
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Figure 1: Compari@merical solutions for the angular displacement & as a function of time
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Figure 2: Comparison of n | solutions for the angular displacement & as a function of time

-Kutta Method (solid lines) and the Akbari-Ganji Method with
tted lines). (a) O(0)=A=r/6 and k=0.8571; (b) 6(0)=A=x/3
=A=r/2and k=0.8679.
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