
 

* Corresponding author 

e-mails: mypala@uludag.edu.tr (Y. Pala) 

ckahya@uludag.edu.tr (Ç. Kahya) 

New frequency predictions for a simple pendulum: Application of 

Harmonic Balance and Akbari-Ganji methods 

Yaşar Palaa, Çağlar Kahyaa,*  

Bursa Uludağ University, Mechanical Engineering Department, Bursa, Türkiye 

Abstract 
In the analysis of nonlinear dynamical systems, developing an accurate understanding of simple mechanical models—

such as the pendulum—is of fundamental importance in both engineering and physics. Although the simple pendulum 

is often introduced in its linearized form for small oscillations, its true behavior becomes highly nonlinear at larger 

amplitudes. The nonlinear pendulum, therefore, serves as a classical yet powerful example for exploring the rich 

dynamics that emerge in real-world systems where linear approximations fail. In this study, the non-linear dynamic 

analysis of a simple pendulum is revisited. Two new formulas for the period and frequency are proposed based on the 

Harmonic Balance Method and the Akbari-Ganji Method. Furthermore, to obtain more accurate results, improvements 

are made to the formulas of the harmonic balance method and the Akbari-Ganji method. These improvements provide 

more reliable outcomes, especially in systems requiring high accuracy. Two of the most prominent formulas in the 

literature are derived using the Akbari-Ganji Method. As a result of this, the frequencies obtained by the present method 

and the other methods are compared. The obtained results emphasize the accuracy and efficiency of the proposed 

approaches. Consequently, this study encourages the use of alternative methods in the analysis of non-linear dynamic 

systems. 
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1. Introduction 

Dynamic analysis of a simple pendulum is a practically important problem that has been 

extensively investigated in the literature. The large-amplitude oscillations of the pendulum have 

also attracted considerable attention, leading to the proposal of several useful formulas for 

estimating the period and frequency. Since an exact analytical solution is not attainable, most 

studies have focused on developing better approximations. Cumber [1] examined various forced 

pendulum systems, including horizontally, vertically, radially, and angularly forced pendulums, as 

well as the angularly forced double pendulum. He concluded that simple pendulums are highly 

interesting and worthy of detailed analysis. Wang et al. [2] analyzed the dynamics of a simple 

pendulum subjected to variable damping and solved the governing equations using numerical 

methods. Ganley [3] suggested a formula for the period for very large amplitudes. Parwani [4] also 

estimated the period of the non-linear pendulum by comparing the modified equation of motion 

with the perturbative solution and gave a new useful result. Fulcher and Davis [5] investigated the 

pendulum’s motion experimentally and theoretically. They solved the equation using the 

perturbation method of Kryloff and Bogoliuboff [6] to find the two lowest order corrections to the 

amplitudes and the period. Kidd and Fogg [7] suggested an approximate formula for the period. 

Beléndez et al. [8] investigated the non-linear oscillation of a simple pendulum and presented the 

formulas not only for the period, but also for the angular displacement and amplitude. Some 

researchers [9-11] revisited the non-linear oscillation of the simple pendulum and obtained the 

frequency and period using the Homotopy Perturbation Method (HPM). Butikov [12] studied the 

non-linear motion of the pendulum for extremely large amplitudes. New handy-used formulas 

based on concrete theories are still welcome since the analytical solution cannot be obtained. 



 

 

Compared to other semi-analytical methods such as the Differential Transform Method (DTM), 

the Adomian Decomposition Method (ADM), and the Homotopy Perturbation Method, the Akbari-

Ganji Method is much easier to use [13]. According to this method, the solution depends only on 

the use of the initial conditions and the governing equation itself and its derivatives. The most 

advantageous feature of the AGM is that it transforms the problem into a system of algebraic 

equations [14]. Due to its simplicity and versatility, AGM has found wide application in various 

engineering problems [15–24]. In the present paper, we revisit the non-linear motion of the simple 

pendulum. Two new formulas are proposed. For this purpose, the harmonic balance method and 

the Akbari-Ganji method [25] developed for non-linear differential equations are utilized. 

2. Analysis 

The equation of motion for the simple pendulum is simply shown to be in the form 
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Here, l  is the length of the pendulum,   is the angle measured from the vertical, and g  is the 

acceleration due to gravity. For small displacements, Eq.1 takes the form 

  2

0 0     (2) 

whose solution is given by 

    0 0( ) cos sin .t A t B t     (3) 

Here, 0  is the frequency, and A  and B  are the constants to be determined from the initial 

conditions. 

2.1. Harmonic Balance Method 

To solve Eq.1, we will use the harmonic balance method. First, we expand sin( )  into the Taylor 

series : 
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We take the first three terms and insert Eq.4 into Eq.1: 
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Let us now assume a solution 

 cos ,A t   (6) 

where A  and   are the amplitude and the frequency, respectively. Inserting this term and its 

derivatives into Eq.1 gives 
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Using the equalities 
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we find 
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Equating now the coefficients of like terms yields 
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Eq.10 gives 2.6637   rad/s for (0) / 2   and 2.92005   rad/s for (0) / 3  . This formula 

is identical to the one obtained by Belendez and colleagues for small values of x  using the 

Homotopy Perturbation Method [9]. They propose the formula     0 12 /J A A   for the 

same problem. For small A ’s, expanding Bessel function into the series and taking the first three 

terms, we obtain the same as Eq.4 and this leads to Eq.10. Since the interval of interest in the 

present problem is 0 / 2   ,  we can infer that the results of HPM will also be valid for small 

angles as well. To improve the correctness of the results, we take the first four terms in Eq. 4 and 

find the frequency again: 
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Eq.11 gives 2.6607   rad/s for  0 / 2   and 2.9198   rad/s for  0 / 3  . A 

comparison of the results of Eq.11 with the results of the Runge-Kutta method and some of the 

other techniques available in the literature is given in Table 1. 

 

2.2. Akbari-Ganji Method 

To obtain more correct values, one could include additional terms in Eq. 4 or assume a more general 

solution of the form 1 2cos cos3 ...A t A t    , where  , 1A , 2A  are constants to be determined. 

However, this procedure requires tedious computations. Instead, we wish to use a relatively simpler 



 

 

and more effective Akbari-Ganji method (AGM). It will be demonstrated shortly that several 

previously obtained solution forms can also be derived using this method. According to the Akbari-

Ganji Method, the process begins by assuming a trial solution that includes a set of unknown 

coefficients. The initial conditions are then applied to this assumed form, resulting in a system of 

algebraic equations. To fully determine all unknowns, the original differential equation, along with 

its necessary derivatives, is used to generate as many independent equations as there are unknowns. 

The main differential equation and its derivatives are used to reach the number of algebraic 

equations that equal the number of unknowns. Since there is no damping in the system, we choose 

the solution of Eq.1 in the form 

  ( ) sint K t     (12) 

where K ,   and   are constants to be determined. Let us assume that the initial conditions are in 

the form    0 , 0A B   . Appealing to Eq.12 yields 

    sin , cos .A K B K     (13) 

We need an extra equation. To this end, we differentiate Eq.12 and replace 0t   in the equation as 

follows: 
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Inserting the terms in      0 , 0 , 0    into Eq.1, we have 

          2 2 2

0 00 sin 0 0 sin sin sin 0.K K             (15) 

Solving the equations in Eqs. 13 and 15 simultaneously, we get 
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Thus, the angle ( )t  is obtained in the form 
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It is important to note that the present method incorporates the initial angular velocity into its 

formulation. As an illustrative example, we consider the initial conditions (0) / 6  , (0) 0  , 

1l  , and plot the angular displacement   as a function of time t . Figure 1a presents a comparison 

between the results obtained using the proposed method and those obtained via the Runge-Kutta 

method. As shown, the two curves nearly coincide, indicating good agreement. In Fig.1b, the values

(0) / 3A   , (0) 0   are taken. It is observed that as the initial angular displacement (0)  

increases, the discrepancy between the results of the present method and the Runge-Kutta solution 



 

 

becomes more noticeable. When the results of the present method are compared with those 

obtained by other methods, it can be said that the present formula in Eq. 16 yields accurate results 

between o0 30  . Table 1 summarizes the frequencies calculated by the present and various 

previously proposed methods for initial angles in the range 0 / 2    . Taking the Runge-Kutta 

method as the reference solution, the present method provides acceptable frequency estimates for 
o0 30  . After the angles o30  , the proposed method tends to underestimate the frequency 

compared to other methods. To improve the accuracy of Eq. 16 in the range o30 90   a 

corrective transformation is introduced: k  , where k  is a constant. Taking the derivatives and 

inserting them into Eq.1 gives 

  
2

0 sin 0.k
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
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We assume a solution 

  ( ) sint b t     (19) 

from which we can write 

    2( ) cos , ( ) sin .t b t t b t             (20) 

Here, b  is a constant to be determined. Inserting these expressions into Eq.18 and evaluating at 

0t   , we obtain 
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The new form of the frequency expression   is more general, incorporating the correction factor 

k , which must be determined to ensure consistency between the results obtained using the Akbari-

Ganji Method and those from the Runge-Kutta Method. As shown in Table 1, for an initial angle 

of / 2  , the frequency obtained via the Runge-Kutta Method is 2.6536   rad/s. Substituting 

this value into Eq. 21 yields 0.8679k  , which closely approximates 3 / 2 , a value also noted by 

Parwani in his analysis. This result implies that the constant 3 / 2  in Parwani’s formula 

corresponds to the specific case of an initial angle / 2A  .  However, upon closer examination 

of the Runge-Kutta results, it becomes evident that the value of k  is not fixed but varies with the 

initial angle A . This dependency is clearly illustrated in Table 2, where different values of A  

correspond to distinct values of k . However, it does not show enormous changes between 
o0 90  . Thus, while Eq.16 can be used without k  between o0 30  , Eq.21 can also be 

used in the entire interval using the values of k ’s from Table 2 for each initial angle. Figure 2 

presents the angular displacement   as a function of time t , with each curve computed using a 

different correction coefficient k . The results obtained via the improved Akbari-Ganji Method are 

compared with those from the Runge-Kutta Method for three different initial angles. The close 

agreement between the two approaches demonstrates the effectiveness of incorporating the 

correction factor k  into the analytical formulation. 



 

 

3. Discussion and Conclusions 

In this study, two new analytical formulas have been developed for estimating the period and 

frequency of a simple pendulum using the Harmonic Balance Method (HBM) and the Akbari-Ganji 

Method (AGM). A key distinction between the two approaches lies in the treatment of initial 

conditions: while the HBM assumes a zero initial angular velocity  0 0  , the AGM formulation 

incorporates the initial angular velocity directly into the analysis. The accuracy of the proposed 

formulas has been validated through comparisons with numerical results obtained using the Runge-

Kutta method, as well as with several other approximate analytical methods. The Harmonic 

Balance Method was found to yield satisfactory results for small amplitude oscillations. However, 

Eq. 16, derived initially via AGM, showed limitations at higher amplitudes and required refinement 

for improved accuracy. To address this, an enhanced version of Eq. 16 was proposed using a 

correction coefficient k  based on the Akbari-Ganji framework. This improved formula coincides 

with Parwani’s result when the initial angle is / 2A  , yielding 3 / 2k  .  Further analysis 

revealed that k  is not a universal constant but rather depends on the initial angular displacement 

A , as documented in Table 2. This angle-dependent behavior provides a more flexible and accurate 

model for predicting the pendulum’s frequency across a broader range of initial conditions. As an 

alternative formulation, the solution form  ( ) cost b t     was also investigated. When 

applying AGM to this form, the resulting frequency expression  0 cos    did not yield 

acceptable accuracy. However, modifying this to  0 cos k    and calibrating k  using the 

known result / 2   for 2.6536   rad/s, led to 0.4903k  . This value is nearly identical to 

Kidd and Fogg’s well-known approximation  0 cos / 2   , highlighting the AGM's capacity 

to reproduce other established formulas through appropriate transformations. For students in 

physics and mechanics, these two proposed formulas can serve as useful alternatives for analyzing 

non-linear pendulum motion. Moreover, the ability of the Akbari-Ganji Method to accommodate 

non-zero initial angular velocity offers a distinct advantage over many traditional approaches. 

Several formulas derived in previous studies were shown to be recoverable using AGM, 

emphasizing its generality and utility. Looking ahead, the Akbari-Ganji Method shows strong 

potential for broader applications, including damped pendulums and multi-degree-of-freedom 

systems such as the double pendulum. It is also well-suited for tackling other systems governed by 

non-linear differential equations. However, one limitation of the method lies in its scalability—

solving the resulting system of algebraic equations becomes increasingly complex as the number 

of variables and equations grows, and may become intractable in some cases. 
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Table 1: Comparison of angular frequency values   calculated using different methods. Results 

are presented for various initial angles  , including values obtained using the Akbari-Ganji Method 

(AGM), the corrected AGM with the coefficient k , the Runge-Kutta Method, the Harmonic 

Balance Method (HBM), Homotopy Perturbation Method (HPM) and other formulas reported in 

the literature.  

 [rad]    [rad/s] 

 AGM 
AGM 

(Corrected) 

Runge

-Kutta 
HBM 

HPM 

[9] 

Parwani 

[4] 

Molina 

[26] 

Kidd and 

Fogg [7] 

Lima and 

Arun [27] 

/18  3.1241 3.1262 3.1262 3.1261 3.1261 3.1261 3.1261 3.1261 3.1261 

/12  3.1142 3.1191 3.1191 3.1187 3.1187 3.1187 3.1187 3.1187 3.1187 

/ 9  3.1003 3.1088 3.1088 3.1083 3.1083 3.1083 3.1082 3.1082 3.1082 

5 / 36  3.0825 3.0954 3.0954 3.0949 3.0949 3.0949 3.0948 3.0947 3.0948 

/ 6  3.0607 3.0796 3.0796 3.0786 3.0786 3.0785 3.0784 3.0783 3.0784 

7 / 36  3.035 3.0602 3.0602 3.0593 3.0593 3.0592 3.059 3.0588 3.059 

2 / 9  3.0054 3.038 3.038 3.0372 3.0372 3.037 3.0366 3.0362 3.0367 

/ 4  2.9719 3.0125 3.0125 3.0121 3.0121 3.0118 3.0112 3.0105 3.0113 

5 /18  2.9345 2.9851 2.9851 2.9842 2.9842 2.9837 2.9827 2.9818 2.983 

11 / 36  2.8933 2.9547 2.9547 2.9534 2.9534 2.9527 2.9513 2.9498 2.9516 

/ 3  2.8483 2.9215 2.9215 2.9198 2.9198 2.9188 2.9167 2.9147 2.9173 

13 / 36  2.7995 2.8851 2.8851 2.8834 2.8834 2.8821 2.8792 2.8764 2.8799 

7 /18  2.7469 2.8443 2.8443 2.8443 2.8443 2.8424 2.8385 2.8348 2.8395 

15 / 36  2.6905 2.8015 2.8015 2.8024 2.8024 2.8 2.7947 2.7898 2.796 

4 / 9  2.6304 2.7554 2.7554 2.7578 2.7579 2.7547 2.7478 2.7413 2.7495 

17 / 36  2.5666 2.706 2.706 2.7106 2.7107 2.7065 2.6976 2.6894 2.6998 

/ 2  2.499 2.6536 2.6536 2.6607 2.6608 2.6556 2.6442 2.6338 2.647 

 

 

 

 

 

 

 

 



 

 

Table 2: Computed values of k  for various values of  , illustrating the relationship between these 

parameters.  

   and k  values 

  /18  /12  / 9  5 / 36  / 6  7 / 36  2 / 9  / 4  5 /18  

k  0.8595 0.8522 0.8558 0.8596 0.8571 0.8599 0.8611 0.8633 0.8619 

  11 / 36  / 3  13 / 36  7 /18  15 / 36  4 / 9  17 / 36  / 2   

k  0.8612 0.8606 0.8606 0.8632 0.8640 0.8651 0.8666 0.8679  

 

 

Figure 1: Comparison of numerical solutions for the angular displacement   as a function of time 

t , obtained using the Runge-Kutta Method (solid line) and the Akbari-Ganji Method (dotted line). 

(a) (0) / 6A   , (0) 0  . (b) (0) / 3A   , (0) 0  . 

 

 

 

 

 

 

 



 

 

 

Figure 2: Comparison of numerical solutions for the angular displacement   as a function of time 

t , obtained using the Runge-Kutta Method (solid lines) and the Akbari-Ganji Method with 

correction coefficient k  (dotted lines).  (a) (0) / 6A    and 0.8571k  ; (b) (0) / 3A  

and 0.8606k  ; (c) (0) / 2A   and 0.8679k  . 
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