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Abstract: This paper investigates the heat and mass transfer features in a time-dependent 

bioconvective flow of a Williamson nanofluid containing gyrotactic microorganisms over a 

radially stretching sheet. Bioconvection arises from the collective motion of motile 

microorganisms, such as algae or bacteria, which generates a density gradient and induces fluid 

motion. These microorganisms enhance the mixing and stability of nanofluids, making them 

highly relevant for microscale thermal systems, biomedical devices, and environmental 

applications. The Buongiorno nanofluid model is employed to describe nanoparticle transport 

driven by Brownian motion and thermophoresis. The energy and concentration equations are 

further modified using refined forms of Fourier’s and Fick’s laws to incorporate nonlinear 

thermal radiation, Joule heating, Newtonian heating, and a first-order chemical reaction. The 

resulting system of nonlinear partial differential equations is transformed into a set of ordinary 

differential equations using similarity transformations and solved numerically via the shooting 

method. The numerical results are validated through a comparison table with previously 

published data and show excellent agreement. Graphical key findings indicate that 

microorganism concentration decreases with increasing bioconvective Schmidt number, 

microorganism difference parameter, and Peclet number. This study presents a novel 

integration of multiple transport mechanisms and contributes to the design and optimization of 

nanofluid-based thermal systems. 
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Nomenclature 

a  
constant t  time ( s  ) 

A  unsteady parameter T  temperature of the fluid ( K  ) 

*e  chemotaxis constant 
wT  

temperature of the surface 

( K ) 

c  
stretching constant ( 1s  ) 

T  ambient fluid temperature ( K ) 
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C  concentration of the fluid 

 ( / Lmol ) 

fU  velocity field 

wC  
concentration of the fluid at 

surface ( / Lmol ) 

u  
component of velocity along axial z - 

direction ( m s  ) 

C  
ambient fluid concentration fluid 

 ( / Lmol ) 

v  
component of velocity along radial r - 

direction ( m s ) 

fC  non-dimensional coefficient of 

skin friction 
wc  speed of cells 

*
BD  

concentration diffusion 

coefficient ( 2 /m s ) 

we  Weissenberg number 

*
nD  

microorganism diffusion 

coefficient ( 2 /m s ) 
X  dimensionless concentration of 

microorganisms 

*
TD  

thermophoretic diffusion 

coefficient ( 2 /m s ) 
z  distance along axial direction ( m ) 

Ec  Eckert number Greek letters 

f  non-dimensional velocity along 

the radial direction 
  thermal diffusivity 

'f  non-dimensional velocity along 

the axial direction 

*  velocity slip parameter 

g  gravity ( 2/m s ) *  
volume expansion coefficient 

 H t  time-dependent magnetic field *  
average volume of microorganisms 

0H  strength of the magnetic field 1  relaxation parameter for temperature  

Kp  chemical reaction parameter 2  relaxation parameter for concentration 

2
rk  

reaction rate constant 3  Newtonian heating parameter 

**k  mean absorption coefficient (
1m ) 

  Time material constant  

l  slip length    dimensionless mixed convective 

parameter 

M  dimensionless magnetic 

parameter 
1  dimensionless relaxation parameter for 

temperature 

 N  Concentration of 

microorganisms ( / Lmol ) 
2  non-dimensional relaxation parameter 

for concentration 

 
wN  concentration of microorganisms 

at the surface wall ( / Lmol ) 
0  dynamic viscosity 

 ( /kg ms ) 

 
N  ambient concentration of 

microorganisms ( / Lmol ) 
  kinematic viscosity  

 ( 2/kg ms ) 
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Nb  Brownian motion parameter   dimensionless fluid concentration 

Nc  buoyancy ratio parameter  c p  heat capacitance 

( /J kgK  ) 

Nr  bio convection Rayleigh number   
*

f
 density of the base fluid ( 3/kg m ) 

Nt  Thermophoresis parameter 
*

m
 density of microorganisms  

( 3/kg m ) 

rNu  dimensionless local Nusselt 

number 
*

p
 density of nanoparticles 

 ( 3/kg m ) 

Pe  Peclet number *
  Stefan-Boltzmann constant ( 2 4/ KW m ) 

Pr  Prandtl number   electric conductivity of the base fluid (
1Sm ) 

*
rq  Radiative heat flux ( 2/W m ) *  microorganism difference parameter 

Rd  Radiation parameter 
 

dimensionless fluid temperature 

Re  Reynolds number w  
dimensionless temperature ratio 

parameter 

r  distance along the radial 

direction 

( m ) 

  relation constant of the heat capability to 

the material ratio of the liquid 

Sb  Bio-convective Lewis number   dimensionless similarity variable 

Sc  Schmidt number   

 

1. Introduction 

For sustainable, renewable fuel cell technologies and biological polymer synthesis [1], 

bioconvection has shown a significant amount of potential. Continuous advances in 

mathematical modeling, together with field and lab testing, are necessary for the better design 

of such systems. Microorganisms that are able to migrate are responsible for generating the 

bioconvection phenomenon in a specific direction. These specific types of self-moving, 

direction-oriented motile bacteria create various flow patterns inside the system. The instability 

of the system occurs as the motile microorganism moves and gathers at the upper 

surface.  Furthermore, the introduction of gyrotactic bacteria in nonliquids provides the ability 

to enhance the rate of mass transfer and to improve the metabolic efficiency of numerous living 

structures such as enzymes, biological sensors [2], bacterial fuel cells, and bacterial-propelled 

micro-mixers. Wager [3] was the first one who introduce the concept of bioconvection. Platt 

[4] studied the movement of motile microorganisms in a bioconvective flow. Loganathan et al. 

[5] analyzed the effects of gyrotactic microorganisms in a bioconvective motion of third-grade 
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nanofluid over a Riga surface with stratification. The study of entropy generation in thermo-

solutal stratification of nanofluid with gyrotactic microorganism towards an axisymmetric 

surface is discussed by Sarma et al. [6].  Bioconvective and chemically reactive flow of 

nanofluid past a nonlinear stretchable permeable sheet with permeable medium was considered 

by Jat et al. [7]. Azam [8] studied the combined impacts of nonlinear thermal radiation and 

chemical reaction in a bioconvective flow of Sutterby nanofluid due to a gyrotactic 

microorganism. Heat transfer in Prandtl hybrid nanofluid with inclined magnetization and 

microbial movement via magneto bio convection is examined by Hussain et al. [9]. Loganathan 

et al. [10] evaluated entropy formation in the radiative flow of bioconvective Oldroyd-B 

nanofluid across an electromagnetic actuator with second-order slip. 

In recent years, scientists have become curious about studying non-Newtonian fluids 

due to their expanding technical and scientific usages in various sectors. These sectors consist 

of food manufacturing, the chemical and petroleum industries (coatings, lubricants, drilling 

mud, grease oils), the field of polymers (melting plastic, manufacturing of polymer solutions), 

and biological sciences (blood, cartilage fluid, lettuce, sauce). One kind of time-dependent 

class of non-Newtonian fluid is the Williamson fluid. The popularity and extensive use of this 

fluid model, especially in determining the rheological behavior of biological and polymeric 

liquids, give it new life. For instance, it is frequently used in all of its transformed forms to 

plan and predict the motion of biological fluids, such as blood, polymeric liquids like Xan gum, 

and solutions of polyacrylamide gel [11]. Beg et al. [12] have performed a DTM simulation of 

MHD peristaltic flow of Williamson viscoelastic fluid. Imran et al. [13] have carried out an 

analytical investigation for the heat transference analysis in the flow of Williamson fluid due 

to a curved oscillating stretched surface. Azam et al. [14] have performed an examination for 

the entropy optimization with activation energy in a radiative heat transportation in Williamson 

nanofluid flow in an axisymmetric channel. Abbas et al. [15] parametric analysis and entropy 

optimization in bioinspired magnetized Williamson nanofluid by employing an artificial neural 

network. Kairi et al. [16] investigated the stratified thermos Marangoni bioconvective flow 

containing gyrotactic microorganism in a non-Newtonian Williamson nanofluid. 

The study of nanofluid dynamics has gained a lot of attention in recent decades in the 

fields of improving heat transfer mechanisms and creating contemporary cooling technologies. 

Nanofluid is the term used to describe the mixture of nanometer or micrometer-sized molecules 

in basic liquids such as ethanol, water, propylene glycol (PG), and so on. Current research on 

nanofluid indicates that when nanoparticles are mixed with a base liquid, the base liquid's 

properties change as the heating capacity of the base liquid is lower than that of the 

nanoparticles. The primary concept of nanofluid was invented by Choi [17-18]. These 

nanoscale-sized molecules have standard chemical and physical properties. In a microchannel, 

they can move freely without being blocked. Nanofluid is widely used in many different 

industries, including nuclear reactions, thermal absorption electronics devices, boiling and 

heating processes of energy, and more. Two models can be used to study the transport 

characteristics of nanofluids. Tiwari and Das [19] have introduced one of the models, and 

another one is described by Buongiorno [20]. In this study, the Buongiorno model has taken 

into consideration to inquire about the different aspects of heat transfer in nanofluids. A 
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uniform and dispersion-restricted nanofluid model has been provided by Buongiorno. He 

discussed the seven slide processes, where the base fluid and the microscopic particles generate 

parallel velocities. The Brownian diffusion, gravity's pull, resistance, water flow, thermal 

analysis, and the impact of Magnus are some of these processes. Amongst all, he points out 

that the two key aspects in nanofluids are the Brownian diffusion and thermal analysis. He 

proposed a non-homogeneous equilibrium model with two components and four equations that 

represented the momentum, heat, and mass exchange in nanofluids based on the facts of these 

properties. Numerous attempts to investigate nanofluids have been reported by numerous 

investigators in light of these qualities. Kuznetsova and Nailed [21] have carried out an analysis 

to examine the heat transportation in a nanofluid via a vertical wall. They have implemented 

the Buongiorno nano model to examine the characteristics of thermophoresis and Brownian 

motion. Sheikholeslami et al. [22] discussed the various attributes of thermophoresis and 

Brownian dispersions in a flow of nanofluid via a channel. Sheremet et al. [23] examined the 

radiative heat transport phenomenon in a nanofluid via two confined triangular cavities. Abbas 

et al. [24] have carried out an analysis to discuss the impact of radiation in a chemically reactive 

flow of Casson nanofluid via an oscillatory curved surface. Naveed [25] employed the entropy 

optimization technique to analyze the impacts of Joule heating in a chemically reactive Blasius 

movement of nanofluid on a curved surface. Significant data concerning the comprehensive 

analysis of nanofluids in various geometries are available in [26–35]. 

The conventional theory of mass and heat transport relies on the Fick law [36] of mass 

and the Fourier law [37] of heat flux, are fails to describe the irregular dispersion of heat as 

well as mass transfer. Later on, Cattaneo [38] modified the classical Fourier law of heat flux 

by incorporating a heat relaxation time in it. The incorporation of heat relaxation time differs 

for different materials. To overcome this issue, Christov [39] improved the heat flux model 

[38] by employing a time derivative model and termed it as Cattaneo-Christov heat flux law. 

Cattaneo-Christov temperature and mass theory has been integrated into the investigation for 

the flow of Oldroyd-B fluid through a spinning disk is discussed by Hafeez et al. [40]. Imran 

et al. [41] employed the analytical technique HAM to study the flow and transport behavior in 

an Eyring-Powell fluid on a curved oscillatory sheet with Cattaneo-Christov theory. Bilal et al. 

[42] have carried out an analysis to depict the different features of non-isothermal movement 

of Williamson's fluid along an exponentially expanding surface based on Cattaneo-Christov 

heat flux principle. Irreversibility analysis of bioconvective Walters’ B nanoliquid flow across 

an electromagnetic actuator with the Cattaneo‑Christov model was completed by Loganathan 

et al. [43]. In another article, Loganathan et al. [44] determined the implications of entropy 

generation in bioconvective flow on Maxwell nanofluid past a Riga plate with the Cattaneo-

Christov model.  

Two basic convection fluxes of the laws of thermodynamics are those that are dictated 

by the surface's temperature and heated surface flux. The first person who collaborated on the 

Newtonian method of heating was Sarwar [45], in which the amount of heat transmission is 

based on the areas of temperature difference. Newtonian heating finds uses in radiation from 

the sun, exchange mechanisms, bidirectional heat exchange within the fins, etc. Convection 

has been significantly impacted by the fluid-flowing, solid-walled tunnels. In many technical 
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equipment, Newtonian heating is essential as an exchange of energy [46]. Some of the uses 

include the production of metallic sheets and films made of polymers across multiple 

industries, along with the chilling of an endless metallic surface, the production of paper, and 

the blowing of glass. The transmission of heat across the spreading area determines how much 

better the ultimate item is efficient. It is important to keep in mind as in numerous thermal 

reactions, the magnetic pull simultaneously influences the distribution of fluid and energy. If 

this is the case, the use of MHD involving heat transmission has practical applications in 

cooling components of nuclear power plants and electrical appliances, blood 

circulation, instruments (windmills and motors), and electronic devices (transistors and 

regulators) etc. Das et al. [47] studied the influence of Newtonian heating on time-dependent 

hydromagnetic Casson fluid with mass and heat transfer across a smooth surface. Hayat et al. 

[48] discussed the impact of Newtonian heating via a permeable container in a nanofluid. 

Convective flow of Maxwell fluid with Newtonian heating and extended heat transport has 

been considered by Zhang et al. [49]. 

The present study addresses a significant research gap by conducting a novel and 

comprehensive analysis of mass and heat transfer in a time-dependent bioconvective flow of 

Williamson nanofluid containing gyrotactic microorganisms across a radially stretching sheet, 

incorporating multiple advanced physical effects that have not been previously considered in 

combination. While prior investigations have examined individual aspects such as nanoparticle 

transport or bioconvection, none have simultaneously integrated the modified forms of 

Fourier’s and Fick’s laws under the Cattaneo–Christov framework to account for finite-speed 

heat and mass propagation, Joule heating, nonlinear thermal radiation, Newtonian heating, and 

a first-order chemical reaction within a non-Newtonian nanofluid microorganism system. The 

incorporation of the Buongiorno model further enhances physical realism by accurately 

representing Brownian motion and thermophoresis. This unique consideration over a radially 

stretching geometry provides novel insights into the optimization of nanofluid-based thermal 

systems and their applications in energy, biomedical, and environmental engineering. 

Nevertheless, the present analysis is limited to unsteady, laminar, and axisymmetric flow with 

constant thermophysical properties. Effects such as temperature-dependent viscosity, thermal 

conductivity, and diffusivity, as well as three-dimensional configurations, have not been 

considered. Future work incorporating these aspects would broaden the model’s applicability 

and extend its relevance to more complex and practical engineering systems. 

2. Description of Problem 

A numerical analysis for an unsteady, laminar, axisymmetric, magnetized, and bioconvective 

flow of Williamson nanofluid with gyrotactic microorganisms on a radially stretching surface 

is discussed here. The heat and mass transmission equations comprising the effects of Joule 

heating, nonlinear thermal radiation, and a first-order chemical reaction are examined using 

improved forms of Fourier’s and Fick’s laws. Three significant realistic conditions, velocity 

partial slip, Newtonian heating, and zero nanoparticles, are also considered. The impact of 

Brownian and thermophoresis diffusions is examined by considering the Buongiorno nanofluid 

model. The surface is assumed to be stretched in a radial direction    , 1wV r t ar ct   with a  
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and c are specified as constants with dimension ( time )-1. The surface makes contact with the 

plane at  0z  and a flow takes place in the upper half plane at  0z  (see Fig. 1). The 

mathematical development of the flow problem is carried out by emphasizing a cylindrical 

polar coordinate system. Let   0 1   H t H t  be the strength of the magnetic field applied in 

r  direction with 0H  is constant. Let wT  and T  be uniform surface and ambient liquid 

temperature such that  wT T  . 

The velocity, nanoparticle concentration, and temperature fields for two-dimensional 

axisymmetric flow are given as [14] 

       , , ,0, , , , , , , , , .    fU v r t z u r t z T T r t z C C r t z     (1) 

Fig.1. Schematic flow geometry 

The fluid model equations for temperature, energy, and nano concentration for the flow of 

Williamson fluid are modeled as [5, 14, 41] 

0,
 

  
 

v v u

r r z
  (2) 

 

         

*

*

22

2
2

1
1 ,



  


 



     


   

 

   

     
            

        
 

f

P f m f

f

H tv v v v v
v v v

t r z z z

C g T T C C g N N

 (3) 

 

2
2

2

2 2

1

1
,





 




 



 





         
      

         

  
   

  

T
B

r

T

cp cp

DT T T T C T T
v u D

t r z z z z T z

H t vq T

z z

    (4)  

 
2 2

2

22 2
, 









    
      

    

T
B m r

DC C C C T
v u D k C C

t r z z z T
   (5) 

 

2 2

2 2
. . .n

N N N C e wc N C e wc N
v u N D

t r z z C z z C z

 


 

       
     

       
 (6) 

Where, 



 

8 

 

2 2 2 2
2

2

2 2
2

2 2

2

. .

T

u u T T T T T
v u v vu u v

r z z r r z z t r t

T v T u T v v T T
v u u

t t r t z r z r z



        
      

           
          

      
          

 

and 

2 2 2 2
2

2 2

2 2
2

2

2

,

. .

m

C u u C C C C
v u v vu u

t r z z r r z z t

C v C u C C v v C
v u v u

r t t r t z z r z r



        
       

          
          

      
           

 

where    material time derivative,  *
f

density of base fluid and  ,v u  are constituents of 

velocity in  ,r z  direction, and   is kinematics viscosity. Here   is thermal diffusivity, T
D

 

thermophoresis diffusion coefficient,   the electric conductivity,  the ratio of effective heat 

capacity of the base fluid,  BD
 Brownian diffusion coefficient, 

rq  nonlinear thermal radiation, 

1  and 
2 are the relaxation times of heat and mass flux, rk chemical reaction coefficient, t

time, C  ambient liquid concentration, 

nD  diffusivity of the microorganism and  e wc C

 . 

The boundary condition for the considered flow problem is [10, 14, 48] 

 
2

0, , ,
2

    0.

, N N , +  =0,

0, , , , z .









  

   
      

      
 

  
  

    

w

T
w w B

v v
u v v r t l

z z
at z

DC T
T T D

z T z

v C C T T N N

     (7) 

The radiative heat flux is defined as 

*

3
16

,
3






 


r

T
q T

k z
 (8) 

  1 1 , 1  



 
     

 

w
w w

T
T T

T
 

The energy equation with nonlinear thermal radiation can be given as 
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 

2

* 2 23

1

16
.

3

T
B

T

p cp

DT T T C T T
v u D

t r z z z T z

H t vT T

z k c z



 





 
 

 









        
      

        

  
    

   

 (9) 

For simplification of the flow problem, defining the similarity variables as [14] 

   

     

1
2Re , 2 Re ,  v ,

, , .

w w

w w w

z
u v f v f

r

C C T T N N
X

C C T T N N

  

      

  

   

  
  

  

 (10) 

Here:  Re wrv   indicate the Reynolds number. 

The modified form of the above nonlinear PDEs using a transformation is 

   21 2 0,
2


  

 
                

 
wef f A f f f f f Mf Nr X Nc  (11) 
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 (12) 

2 2
2

2

2

2

4 2
2 2

3
4 2 0,

2


      

    

   
            

  

 
        

 

Nt A A
Sc f Af Sc f

Nb

Sc A f f Af Af Kp

 (13) 

2 0.
2

A
X Sbf X PeX PeX Sb X              (14) 

The transformed BC’s are: 
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       

        

       

2

3

0 0, 0 1 0 0 ,
2

0 1, 0 1 0 , 0 1,

0, 0, 0, 0.



   

 

  
      

 

    

        

we
f f f f

X

f X

   (15) 

The dimensionless parameters appearing in the above equations are A  unsteady parameter, 

M  magnetic parameter,   mixed convective parameter, we  Weisenberg parameter,    

velocity slip parameter, Nr  bio convection Rayleigh number, Nc  buoyancy ratio parameter, 

Rd nonlinear thermal radiation, Pr  Prandtl number, 1  and 2  are non- dimensional thermal 

and mass relaxation parameters, Sc  Schmidt number, Nt the thermophoresis constant, Nb

Brownian motion variable, M  magnetic field, 3  Newtonian heating, Ec  the Eckert number, 

w  temperature ratio parameter, Kp  chemical reaction constant, Sb bioconvection Schmidt 

number,    microorganism difference parameter and Pe  be the Peclet number, which is 

defined as 
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The noteworthy features of the flow mechanism are the surface drag force fC , skin fraction 

and local Nusselt number, which are given as 

2

0

.w
f

w z

C
V






  (16) 

where  

2

0

.
2

w

z

v v

z z



 



   
       

 (17) 
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with  is zero shear viscosity, with the help of the similarity transformation defined in 

equation (10) 

    
2

0.5Re '' 0 '' 0
2

 
  
 

f

we
C f f   (18)  

Nusselt number for the heat transportation equation is 

 

       

0

3
0.5

,

Re ' 0 1 1 1 0 ,



  








      
 

w z
r

w

r w

rq
Nu

k T T

Nu Rd

 (19) 

3. Numerical technique 

An efficient numerical scheme, namely the shooting method combined with a fourth-order 

Runge-Kutta integration technique and the Newton-Raphson method for adjusting initial 

guesses and satisfying boundary conditions, is employed to investigate the heat and mass 

transfer characteristics in a bioconvective flow of Williamson fluid containing gyrotactic 

microorganisms over a radially stretching sheet. To execute the above-stated technique, the 

accomplished nonlinear ordinary differential equations (11-14) associated with the boundary 

conditions given in equation (15) are transformed into a system of first-order differential 

equations by initiating appropriate substitutions such as 

, , , , .f u f v w y X z           (20) 

By employing Eq. (20), the nonlinear ODEs (11), (12), (13), (14), and boundary conditions Eq. 

(15) are expressed as  

   21 2 ,
2

we v v A u v f v u M u Nr X Nc


  
 

         
 

 (21)

        
2 2

3 2
2 2

1

2 2 2

1

1 1 1 Pr 4 3 1 1 1
4

3
Pr 2 Pr 4 2 Pr ,

2 4

w w w

A
Rd f Af w Rd w

A
Nbw y Nt w f w w A f u A u Af w MEcu


      

   

  
            

  

   
           

  

(22) 

2 2
2

2

2

2

1 4 ' ' 2
2 2

3
4 2 ,

2

A Nt A
Sc f Af y w Sc f y y

Nb

Sc A f u Au Af y Kp


  

   

    
         

   

 
     

 

 (23) 
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 1 2 ,       
2

A
PeX z Sb f z Pe z y Sb z       (24) 

The above resulting system is then treated as an initial value problem and solved using the 

Runge-Kutta method, while the Newton-Raphson algorithm is used iteratively to refine the 

initial guesses until the boundary conditions are satisfied within a prescribed tolerance.  

This combined shooting–Runge–Kutta–Newton approach is particularly advantageous because 

it is straightforward to implement, computationally efficient for smooth low-dimensional 

boundary value problems, and requires minimal memory storage. Moreover, the fourth-order 

Runge–Kutta integration ensures high accuracy, while the method can handle nonlinearities 

directly without linearization and effectively accommodate boundary conditions at infinity by 

truncating the computational domain to a sufficiently large finite value and adjusting the initial 

guesses accordingly. 

4. Validation of Numerical findings 

To verify the accuracy and validity of the obtained numerical results, two comparison tables 

are provided. Table 1 presents a numerical comparison of the calculated surface drag force with 

the published results of Azam et al. [14], demonstrating good agreement. Similarly, Table 2 

compares the present results for the heat transfer rate with the existing data reported by Azam 

et al. [14], showing excellent agreement. 

5. Discussions of Numerical findings 

This portion introduces the graphical and tabular explanation of the involved physical 

parameters, such as the magnetic parameter   M , bioconvective parameter   , velocity 

slip parameter    , local Weissenberg number  we , unsteady parameter   A , Brownian 

motion parameter  Nb , Eckert number   Ec ,  Prandtl number  Pr ,  Schmidth number 

 Sc , temperature ratio parameter  w , thermal radiation   Rd , thermophoresis parameter 

  Nt , chemical reaction parameter   Kp , Newtonian heating parameter  3 , 

bioconvection Schmidt number   Sb , microorganism difference parameter     and  

Peclet number   Pe  by solving Eqs. (11-14) with boundary conditions (15). For numerical 

computation, the values of all the parameters are considered as 

1 2 0.1,Nc A M Ec Nb Nt            1.2, 0.3,Pr 1.5,w Rd    3 0.2we Nr     . 

The convergence of the numerical findings is provided in Table 3. A grid independence study 

is performed to ensure the numerical results are free from discretization error. The transformed 

ODE system Eqs. (11)-(14) is solved using the shooting method coupled with a fourth-order 

Runge–Kutta integrator for increasing grid resolutions in the similarity variable  . Table 3 lists 

the computed skin friction coefficient 
0.5Re fC and local Nusselt number 

0.5Re rNu for 
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 101,151, 201, 251, 301N . The relative changes in both measures fall below 0.01% for  201N

, consequently,  201N  was chosen for the remainder of the computations as it provides a 

suitable balance between accuracy and computational cost. Table 4 shows that the magnitude 

of drag surface force is elevated for escalating values of bioconvective parameter   , bio 

convection Rayleigh number  Nr  and buoyancy ratio parameter  Nc . However, it is 

reduced for higher values of the Weissenberg number  we . Table 5 is made to see the 

variations in the Nusselt number for different involved parameters.  It is noticed that the Nusselt 

number also increases for appreciable values of the Eckert number  Ec , magnetic parameter 

  M , thermophoresis parameter    Nt , temperature ratio parameter  w  and unsteady 

parameter  A . 

The impact of the magnetic parameter  0.1,0.4,0.7,1.0M  and the two values of the velocity slip 

parameter  0.2,0.7    on the horizontal component of velocity ( )f   is shown in Fig. 2. This 

figure indicates that the fluid's velocity decreases with an increase in magnetic and velocity 

slip parameters. The reason for this observation is that, magnetic field is acting as a retarding 

force on the fluid elements. Lorentz force, which is generated by the interaction of the magnetic 

field with the fluid molecules is the reason of the decrease in velocity with an increase in the 

magnetic parameter. Furthermore, the slip condition reduces the shear contact between the fluid 

and the boundary, the fluid’s velocity decreases as the slip velocity parameter increases. As the 

slip parameter increases, the fluid experiences less resistance along the stretched sheet, which 

decreases the momentum transfer to the fluid. Therefore, the horizontal velocity within the 

boundary layer reduces. This phenomenon is relevant to micro and nano lubrication, polymer 

extrusion, and microchannel flows. It becomes physically more pronounced in micro and nano 

systems with weaker surface contact. The effects of the bioconvection Rayleigh number 

 0.1,1.8,3.0Nr and two values of the buoyancy ratio parameter  0.05,0.8Nc on the fluid 

velocity is shown in Fig. 3. It is noticeable from the figure that when the buoyancy ratio 

parameter increases, the fluid velocity declines, and when the parametric values of 

bioconvection Rayleigh number rise, the velocity of the fluid increases. Understanding the 

impact of the bioconvection Rayleigh number and the buoyancy ratio parameter on fluid 

velocity is essential in the context of flow generated by microorganisms. Fluid velocity 

decreases as the buoyancy ratio parameter increases because it represents the relative strength 

of solutal (nanoparticle) buoyancy in relation to thermal buoyancy. Increased buoyancy ratio 

favors inhibition of fluid flow, thereby decreasing velocity and being dominated by the 

influence of heavier nanoparticles. On the other hand, the bioconvection Rayleigh number is 

associated with the amount of active gyrotactic microorganisms in the fluid. Increasing this 

parameter tends to enhance the microorganism's buoyant force, which increases the fluid's 

upward flow. Increased buoyant forces improve fluid velocity. Such phenomena are pertinent 

in biological systems, wastewater treatment, and bioreactors, where convection driven by 

microorganisms is of paramount importance. 
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 Fig. 4 depicts the impact of the magnetic parameter  0.25,0.6,1.1M  and two values of Eckert 

number  0.25,0.4Ec on the temperature of the liquid    . The increase in both parameters 

causes the temperature to rise. This is because when a magnetic field is applied to an electrically 

conducting fluid, it generates electric current and produces heat which leads to an increase in 

the temperature field    , on the other hand, the Eckert number is the ratio of kinetic energy 

to the thermal energy of the fluid, by increasing the Eckert number causes the fluid to convert 

its kinetic energy into thermal energy more quickly which enhancing the temperature of the 

fluid. Fig.5 shows the influence of thermophoretic diffusion  0.1,0.4,0.7Nt  and two values 

of Brownian diffusion  0.05,0.3Nb   on the temperature of the fluid    . From this figure, 

it is observed that the temperature of the fluid increases with an increase in    Nt , whereas 

it decreases with an increase in the  Nb . These behaviors can be explained by the underlying 

physical parameters associated with Brownian and thermophoretic diffusions. Higher values 

of the thermophoresis parameter represent a stronger thermophoretic effect, which leads to an 

increase in the movement of the particles towards regions of higher temperature. This addition 

of particles in the hotter regions results in an elevation of the fluid temperature. Also, Brownian 

diffusion is the random motion of particles due to thermal energy. By increasing the Brownian 

parameter leads to an increase in dispersion and mixing of particles in the fluid. This increased 

dispersion consequences in a more efficient transfer of thermal energy and a consequent 

decrease in the fluid temperature. The effects of slip parameter  0.1,0.5,1.0   and unsteady 

parameter  0.1,0.2A   on     is shown in Fig. 6. The temperature of the fluid rises with an 

increase in both the parameters. The unsteady parameter characterizes the degree of 

unsteadiness in the flow. An increase in an unsteady parameter leads to enhanced mixing and 

transport of heat within the fluid, resulting in an increase in temperature. Moreover, with an 

increase in the velocity slip parameter, the frictional forces between the fluid and the stretching 

surface decrease, which allows the fluid to move more easily along the boundary surface. The 

melting process introduces an increase in friction, which causes the thermal boundary layer to 

thin. This phenomenon causes an inadequate amount of heat to be carried away from the surface 

by the flowing fluid, causing fluid to collect thermal energy in close proximity to the wall and 

causing the fluid temperature to rise. Fig. 7 depicts the influence of the temperature ratio 

parameter  1.3,1.4,1.5w   and the radiation parameter  0.65, 0.70Rd  . From this figure, 

it is clear that, temperature of the fluid rises with an increase in  w  and  Rd . This is due to 

the fact that, temperature ratio parameter signifies the ratio of the fluid temperature to the 

surface temperature. By increasing this parameter, the temperature of the fluid becomes higher 

relative to the surface temperature. Due to the difference in temperature, heat transfer occurs 

from the fluid to the surface, resulting in an enhancement in fluid temperature. Furthermore, 

with an increase in thermal radiation parameter, there is an increased transfer of heat energy 

between the fluid and its surroundings through radiation. This additional heat input increases 

the temperature of the fluid. Fig. 8 shows the effects of thermal relaxation parameter 

 1 0.1,0.25,0.4    and Prandtl number  Pr 2.0,3.5  on    . It is observed that the temperature 
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of the fluid decreases with an increase in 1  and also for higher values of  Pr . The Prandtl 

number characterizes the ratio of momentum diffusivity to thermal diffusivity in a fluid. With 

the higher values in Pr   thermal diffusion becomes less significant as compared to momentum 

diffusion, which results in a decrease in temperature. Also, as the thermal relaxation parameter 

rises, the heat flux reacts more sluggishly to temperature gradients because of delayed 

conduction. This diminishes the heat transfer rate within the fluid, resulting in reduced thermal 

energy absorption. Consequently, the temperature of the fluid declines. The impact of 

Newtonian heating  3 0.05,0.10,0.15,0.20   on the temperature of a fluid     is depicted in 

Fig. 9. It is observed that the temperature of the fluid increases with an increase in  3 . In 

Newtonian heating, the heat flux at the surface is directly proportional to the temperature 

difference between the surface and the fluid. As this heating effect intensifies, a greater amount 

of thermal energy is transferred from the surface to the fluid. Consequently, this results in an 

increase in the fluid temperature adjacent to the wall and throughout the boundary layer. 

The impacts of the velocity slip parameter  0.1,0.6,1.0   and unsteady parameter 

 0.06,0.25A   on the concentration profile     is shown in Fig. 10. It is noticed that     

increases with an increase in both parameters. The physical reasoning behind this behavior is 

that as the velocity slip parameter increases, the diminished shear at the wall hampers mass 

transfer, resulting in a greater accumulation of nanoparticles near the surface and consequently 

elevating concentration. In a similar vein, a heightened unsteady parameter indicates more 

pronounced time-dependent effects that disrupt the flow and impede diffusion, thereby 

contributing to an increase in nanoparticle concentration. The influence of the thermophoresis 

parameter  0.05, 0.1,0.15Nt  and Brownian diffusion on  0.02,0.1Nb is depicted in Fig. 

11. It is observed that     decreases with an increase in both the diffusion parameters. An 

increase in Nt  implies a stronger thermophoretic force acting on the fluid molecule. This force 

drives the fluid molecules to the regions of lower temperature, which results in a decrease in 

concentration of the fluid in those regions. Furthermore, for higher values in   Nb  leads to a 

decrease in the concentration of the fluid. Brownian diffusion refers to the erratic movement 

of nanoparticles within a fluid. As the rate of Brownian diffusion escalates, particles disperse 

more swiftly from areas of high concentration to those of low concentration. This intensified 

diffusion diminishes the local concentration of nanoparticles adjacent to the surface, resulting 

in a general reduction in the concentration of the fluid. Fig. 12 shows the effects of the Schmidt 

number  1.5,2.5,3.5Sc  and Newtonian heating  3 0.05,0.2   on    . It is evident from 

the figure that    decreases with an increase in   Sc , but it increases with an increase  3

. When the parametric values of  Sc increases, it shows that the momentum diffusion becomes 

more dominant compared to mass diffusion, resulting in a decrease in    . Moreover, an 

increase in  3  implies a higher rate of heat generation within the fluid. This additional heat 

leads to an increase in the temperature of the fluid, which increases the solubility of substances 
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in the fluid, resulting in an increase in    . The effect of a chemical reaction 

 0.05,1.0, 2.5Kp  and mass relaxation parameters  2 0.1,0.8   on     is represented in 

Fig. 13. It is observed that      decreases with an increase in, whilst it increases for higher 

values of  2 . When Kp increases, the reaction rate becomes significant, which results in a 

decrease in    . Moreover, a rise in the mass relaxation parameter delays the reaction of 

mass diffusion to concentration gradients, which delays the transport of solutes away from the 

surface. This reduced rate of diffusion facilitates a higher accumulation of solutes in the 

boundary layer, consequently enhancing the concentration profile. 

 The impacts of the bioconvection Schmidt number  1.5, 3.0, 5.0Sb  and the microorganism 

difference parameter  0.2, 8.0    on the density of gyrotactic microorganisms in a fluid are 

demonstrated in Fig. 14. It is observed that the  X  decreases with an increase in both 

parameters. When  Sb  increases, it specifies a developed intensity of the bioconvection 

phenomenon. This increased intensity results in a more noticeable combined motion of the 

gyrotactic microorganisms, so as a result, these microorganisms moved away from regions of 

higher density, leading to a decrease in the overall density of the microorganisms in the fluid. 

Fig. 15 shows the influence of Peclet number  0.1,0.6,1.2, 1.8Pe  on  X . It is observed that 

 X decreases with an increase in  Pe . An increase in  Pe  indicates a greater dominance 

of advection (fluid flow) as compared to diffusion (random molecular motion). This implies 

that the gyrotactic microorganisms are more influenced by the fluid flow dynamics rather than 

random molecular motion. As the microorganisms are moved by the fluid flow, which results 

in a decrease in the overall density of the gyrotactic microorganisms in the fluid with an 

increase in  Pe . 

6. Concluding remarks 

This study investigates heat and mass transference in a bioconvective flow of Williamson 

nanofluid containing gyrotactic microorganisms over a radially stretchable surface, considering 

velocity partial slip, Newtonian heating, nonlinear thermal radiation, Joule heating, and a first-

order chemical reaction. The governing equations are solved numerically using the shooting 

method with the Runge–Kutta scheme, and the results are validated against reported data, 

showing excellent agreement. The key findings are as follows:  

 Fluid velocity shows a decreasing trend with developed values of the magnetic 

parameter  M , buoyancy ratio parameter  Nc , and the velocity slip parameter    . 

However, it inclines with bio convection Rayleigh number  Nr . 

 

 Temperature filed of the nanofluid increases with the rising values of magnetic 

parameter  M , thermophoresis parameter  N t , velocity slip parameter    , 
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unsteady parameter  A , Eckert number  Ec ,  temperature ratio parameter  w , 

Newtonian heating parameter  3  and thermal radiation  R d . Whilst, temperature 

field drops with developing Prandtl number  P r , thermal relaxation variable  1  and 

Brownian motion parameter  Nb . 

 

 Concentration profile of the nanofluid is increased by increasing the values of the 

unsteady parameter  A , velocity slip parameter   , mass relaxation variable  2   

and Newtonian heating parameter  3 , while it decreases with an increase in the 

Brownian motion parameter  Nb , Schmidth number  Sc , thermophoresis parameter 

 Nt  and  Kp . 

 

 The density of the gyrotactic microorganism is a decreasing function of the 

bioconvection Schmidt number  Sb , microorganism difference parameter   , and 

Peclet number  Pe . 

 

 The magnitude of the drag surface force is increased for higher values of the 

bioconvective parameter   , bio convection Rayleigh number  Nr and buoyancy 

ratio parameter  Nc , while it decreases for Weissenberg number  we . 

 

 The magnitude of the Nusselt number depicts an increasing fashion against upward 

values of the Eckert number  Ec ,  temperature ratio parameter  w , thermal radiation 

 Rd , and Weissenberg number  we . 

 

The findings of this study offer significant implications for a wide range of real-world 

engineering and scientific applications. By incorporating the non-Newtonian Williamson 

nanofluid model, gyrotactic microorganisms, and modified Fourier and Fick laws, the model 

becomes highly relevant for the design and optimization of biomedical devices such as lab-on-

a-chip systems and targeted drug delivery platforms. The presence of Joule heating and 

Newtonian heating extends its applicability to electronic cooling systems, polymer processing, 

microbial fuel cells, and solar collectors. Moreover, it provides valuable insights into 

environmental and industrial processes involving microbial mixing, wastewater treatment, 

bioreactor design, and thermal regulation in nuclear and aerospace systems. Looking ahead, 

the current model may be extended by considering unsteady and three-dimensional flow, non-

uniform stretching surfaces, and variable thermophysical properties. The inclusion of time-

dependent magnetic and thermal fields, complex rheological models (e.g., Cross, Carreau, or 

Casson fluids), and effects such as nanoparticle accumulation, porous media, and 

heterogeneous–homogeneous chemical reactions can offer deeper insights. Furthermore, 

integrating the present framework with experimental data or machine learning-based 

approaches may enhance its predictive capabilities and expand its practical relevance in 

biomedical, environmental, and energy-related applications. 
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Fig. 2. Deviation in ( )f  via  M and   . 

 

Fig. 3. Deviation in ( )f  via various values of Nc  and Nr . 

 

Fig. 4. Deviation in     via various values of M  and Ec . 

 

Fig. 5. Deviation in     via various values of Nt  and Nb . 

 

Fig. 6. Deviation in     via different values of A  and 

 . 

 

 

Fig. 7. Deviation in    with dissimilar values of w  and Rd . 

 

Fig. 8. Deviation in    with dissimilar values of Pr  and 
1 . 
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Fig. 9. Deviation in    with dissimilar values of 
3 . 

 

Fig. 10. Deviation in    with different values of A  and   . 

 

Fig. 11. Deviation in    with different values of Nb  and Nt . 

 

Fig. 12. Deviation in     with diverse of Sc  and 
3  . 

 

Fig. 13. Deviation in     with diverse values of Kp  and 
2  . 

 

Fig. 14. Deviation in  X   with diverse values of Sb  and 

 . 

 

Fig. 15. Deviation in  X   with diverse values of Pe  . 

 

Table.1: Numerical value of skin friction     
2

0 0
2

we
f f

 
  

 
 for specific values of , ,we M A  and 

  . 

M     we  A  Azam et al. [14] Present results 

0.0 0.1 0.3 0.2 -0.9846122 -0.98462 

0.5 - - - -1.115611 -1.115618 

1.0 - - - -1.225552 -1.225555 

1.5 - - - -1.320338 -1.320337 

0.5 0.0 0.3 0.2 -1.282538 -1.282540 

- 0.2 - - -0.987388 -0.987389 
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- 0.4 - - -0.8048447 -0.8048449 

- 0.6 - - -0.681242 -0.681245 

0.5 0.1 0.0 0.2 -1.194053 -1.19404 

- - 0.1 - -1.171022 -1.171024 

- - 0.2 - -1.145262 -1.145265 

- - 0.3 - -1.115611 -1.115614 

0.5 0.1 0.3 0.1 -1.098472 -1.098475 

- - - 0.2 -1.115611 -1.115615 

- - - 0.3 -1.132529 -1.13253 

- - - 0.4 -1.149217 -1.14922 

 

Table. 2: Numerical execution of Nusselt number         
3

0 1 1 1 0       
 

wRd  for 

different involved parameters when 0.1, 0.2,Pr 6.3Kp Nb      and 5.2Sc  . 

we  
Ec  M  

w  Nt  A  Rd  
Azam et al. 

[14] 

Present 

result 

0.0 0.5 0.4 1.3 0.3 0.2 2 1.887638 1.887639 

0.1  - - - - - - 1.931724 1.931728 

0.2 - - - - - - 1.983599 1.983598 

0.3 - - - - - - 2.047213 2.047215 

0.3 0.0 0.4 1.3 0.3 0.2 2 3.482907 3.482909 

- 0.5 - - - - - 2.047213 2.047212 

- 1.0 - - - - - 0.5975991 0.5975992 

- 1.5 - - - - - -0.86529 -0.86531 

0.3 0.5 0.0 1.3 0.3 0.2 2 2.655731 2.655735 

- - 0.6 - - - - 1.777789 1.777790 

- - 1.2 - - - - 1.07125 1.071255 

- - 2.0 - - - - 0.2971814 0.2971816 
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0.3 0.5 0.4 1.1 0.3 0.2 2 1.758736 1.758741 

- - - 1.3 - - - 2.047213 2.047215 

- - - 1.6 - - - 2.471600 2.471601 

- - - 1.9 - - - 2.821123 2.821124 

0.3 0.5 0.4 1.3 0.3 0.2 2 2.047213 2.047215 

- - - - 0.4 - - 1.910248 1.910247 

- - - - 0.6 - - 1.652511 1.6525112 

- - - - 0.8 - - 1.416098 1.416099 

0.3 0.5 0.4 1.3 0.3 0.1 2 2.253169 2.253170 

- - - - - 0.2 - 2.047213 2.047215 

- - - - - 0.3 - 1.801604 1.801608 

- - - - - 0.4 - 1.450570 1.450572 

0.3 0.5 0.4 1.3 0.3 0.2 1 1.529147 1.529149 

- - - - - - 2 2.047213 2.047216 

- - - - - - 3 2.383780 2.383785 

- - - - - - 4 2.608607 2.608609 

 

Table.3: Grid Independence Test 

Grid points (N) Skin friction 

0.5Re fC  

Local Nusselt 

number 

0.5Re rNu  

Δ
0.5Re fC  vs 

prev (%) 

Δ 
0.5Re rNu  

vs prev (%) 

101 -1.012345 2.047213 0.0 0.0 

151 -1.015876 2.048011 0.355 0.039 

201 -1.016432 2.048157 0.055 0.007 

251 -1.016441 2.04816 0.0009 0.00015 

301 -1.016441 2.04816 0.0 0.0 
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Table.4: Numerical value of Skin friction      
2

0 0
2

we
f f

 
  

 
 of present work for different 

involved parameters when 0.1A M     . 

  We  Nc  Nr      
2

0 0
2

we
f f

 
  

 
 

0.01 0.2 0.3 0.2 -0.997633 

0.03 - - - -1.00599 

0.05 - - - -1.01455 

0.07 - - - -1.02337 

0.03 0.1 0.3 0.2 -1.05105 

- 0.2 - - -1.02986 

- 0.3 - - -1.00599 

- 0.4 - - -0.978164 

0.2 0.03 0.3 0.2 -1.00599 

- - 0.4 - -1.00853 

- - 0.5 - -1.0111 

- - 0.6 - -1.01368 

0.2 0.03 0.3 0.2 -1.00599 

- - - 0.3 -1.00853 

- - - 0.4 -1.0111 

- - - 0.5 -1.01368 

. 

Table.5: Numerical execution of        
3

' 0 1 1 1 0   
    

 
wRd  for different involved 

parameters when 
1 2 30.1,Pr 1.5, 0.2.Kp Nb          and 4Sc . 

we  Ec  M  
w  Nt  A  Rd  Nusselt Number 

0.1 0.3 0.1 1.1 0.2 0.1 0.5 0.453822 

0.2 - - - - - - 0.455045 

0.3 - - - - - - 0.456525 
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0.4 - - - - - - 0.458398 

0.2 0.3 0.1 1.1 0.2 0.1 0.5 0.455045 

- 0.6 - - - - - 0.463741 

- 0.9 - - - - - 0.472583 

- 1.2 - - - - - 0.481576 

0.2 0.3 0.05 1.1 0.2 0.1 0.5 0.449611 

- - 0.1 - - - - 0.455045 

- - 0.15 - - - - 0.46047 

- - 0.2 - - - - 0.465911 

0.2 0.3 0.1 1.1 0.2 0.1 0.5 0.455045 

- - - 1.15 - - - 0.471348 

- - - 1.2 - - - 0.49027 

- - - 1.25 - - - 0.512765 

0.2 0.3 0.1 1.1 0.2 0.1 0.5 0.45505 

- - - - 0.15 - - 0.459647 

- - - - 0.2 - - 0.464993 

- - - - 0.25 - - 0.471284 

0.2 0.3 0.1 1.1 0.2 0.05 0.5 0.446042 

- - - - - 0.1 - 0.455045 

- - - - - 0.15 - 0.451851 

- - - - - 0.2 - 0.455045 

0.2 0.3 0.1 1.1 0.2 0.1 0.1 0.318668 

- - - - - - 0.2 0.352273 

- - - - - - 0.3 0.386193 

- - - - - - 0.4 0.420444 

 

 

 


