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Abstract 

This paper presents an efficient method for frequency-constrained optimization of large-scale 

cyclically symmetric domes. The approach integrates the improved hybrid growth optimizer (IHGO) 

algorithm with an eigenvalue decomposition method. IHGO incorporates the exploration mechanism 

of the improved arithmetic optimization algorithm (IAOA) into its learning phase, along with 

algorithm-specific modifications. While these modifications are general and problem-independent, 

their effectiveness in broader structural optimization tasks remains unexplored. To enhance 

computational efficiency, a decomposition-based method performs free vibration analysis. This 

method partitions the eigenvalue problem into smaller, decoupled sub-eigenproblems through block-

diagonalization of structural matrices, significantly reducing CPU time and memory requirements 

compared to the standard method (which solves the full eigenvalue problem without decomposition). 

The performance of IHGO is demonstrated via optimization of two large-scale domes, comparing 

results against the original growth optimizer (GO) and literature-best solutions. These comparisons 

highlight the outstanding computational efficiency and accuracy of IHGO. The results confirm the 

robustness and computational advantages of IHGO, establishing it as a powerful tool for large-scale 

structural optimization under natural frequency constraints. 
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Natural frequencies, particularly the fundamental frequency and corresponding mode shapes, are 

critical indicators of a structure’s dynamic behavior [1]. Determining the fundamental frequency is 

essential for preventing resonance due to external excitations, making frequency constraints a key 

consideration in structural design, especially in aerospace engineering [2]. For instance, to avoid 

flutter instability, frequency constraints are applied to main structural components and control 

surfaces in aircraft design [2]. Incorporating such constraints into structural optimization enables 

better control over dynamic characteristics, allowing engineers to achieve the desired performance 

more effectively [3]. 

Over the past few decades, significant research has been dedicated to optimizing structures under 

natural frequency constraints. Early studies primarily employed mathematical programming [4] and 

optimality criteria methods [5], but these techniques struggle with highly non-linear, non-convex 

frequency constraints [6,7]. A major drawback is their sensitivity to the initial search point, often 

leading to local optima entrapment [6]. Moreover, these methods require gradient-based sensitivity 

analyses of objective functions and constraints [8], which are computationally expensive and complex 

[6]. Given these challenges, metaheuristic algorithms have emerged as viable alternatives due to their 

independence from gradient information and ability to explore complex search spaces effectively [9]. 

Various metaheuristics have been applied to frequency-constrained structural optimization. 

Pioneering efforts in this area include studies by Lingyun et al. [6,7] and Gholizadeh et al. [10]. 

Gomes [11] utilized particle swarm optimization (PSO) for truss sizing and geometry optimization 

with frequency constraints. Harmony search (HS) and the firefly algorithm (FA) have also been 

employed for similar problems [12]. Additionally, Kaveh and Zolghadr [13] introduced CSS-BBBC, 

a hybrid of the big bang-big crunch (BB-BC) and charged system search (CSS) algorithms, for 

optimizing structures with frequency constraints. However, most of these studies focused on small- 

to medium-scale problems. In recent years, research has shifted towards large-scale frequency-

constrained structural optimization. For instance, Kaveh and Ilchi Ghazaan [14] developed a cascade 

variant of the enhanced colliding bodies optimization (ECBO) algorithm for optimizing large-scale 

domes. Several other studies have also contributed to this field [15–23].  

Metaheuristic algorithms often encounter high computational costs, primarily due to the numerous 

evaluations of the objective function [24]. This challenge becomes more significant as the number of 

design variables increases. In structural optimization, particularly for large-scale structures, a 

substantial portion of CPU time is consumed by structural analyses. When solving frequency-

constrained structural optimization problems using metaheuristic algorithms, multiple free vibration 

analyses must be performed. In the finite element method (FEM), free vibration analysis results in a 

large generalized eigenvalue problem, with a size equal to the degrees of freedom of the structure 
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[25]. Solving this eigenvalue problem provides the natural frequencies and mode shapes of the 

structure. However, the standard method (i.e., solving the full eigenvalue problem without 

decomposition) is computationally intensive in both processing time and memory usage [26], mainly 

due to the large structural matrices involved. The computational resources required heavily depend 

on the size of these matrices, which scale with the degrees of freedom. As a result, standard eigenvalue 

solution methods may not be feasible for large-scale frequency-constrained structural optimization 

problems. This makes it crucial to develop and use efficient computational methods for solving 

eigenvalue problems. Several efficient techniques have been proposed for the free vibration analysis 

of regular and symmetric structures [27,28]. Generally, the idea behind these methods is to exploit 

the inherent properties of structural matrices associated with such structures to reduce computational 

time and memory requirements. For example, Kaveh and his colleagues [29–31] introduced a 

computationally efficient method for the free vibration analysis of structures with cyclic symmetry. 

Their approach employs graph theory to block-diagonalize structural matrices, partitioning the 

original free vibration eigenvalue problem of a cyclically symmetric structure into smaller, decoupled 

sub-eigenproblems, each associated with a substructure. This significantly reduces computational 

time and memory usage.  

The growth optimizer (GO) is a recently developed metaheuristic inspired by human learning and 

reflection strategies [32]. Its search process consists of two main phases: learning, which involves 

cooperative search, and reflection, which enhances global convergence. GO has demonstrated 

competitive performance in benchmark and real-world optimization problems [32,33]. However, 

studies have identified limitations in operator refinement and parameter tuning [34], as well as 

challenges related to exploration and local optima entrapment [35]. To overcome these drawbacks, 

Kaveh and Biabani Hamedani [36] introduced the improved hybrid growth optimizer (IHGO) for 

discrete structural optimization. Their results showed that IHGO significantly outperforms GO in 

accuracy and efficiency. IHGO incorporates four key improvements: (a) enhanced global search by 

integrating the exploration mechanism of the improved arithmetic optimization algorithm (IAOA) 

into the learning phase, (b) a corrected replacement phase that preserves the best solution found so 

far during the search process, (c) an adaptive hierarchical population structure to reduce sensitivity to 

population size, and (d) a refined reflection phase to improve exploitation of promising search 

regions. These modifications are general and independent of specific optimization problems. 

However, the performance of IHGO in solving other types of structural optimization problems has 

not been studied yet.  

Motivated by the potential applications of IHGO, this study integrates the IHGO algorithm with an 

eigenvalue decomposition method for the first time to optimize large-scale cyclically symmetric 
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structures under frequency constraints. Initially, further modifications to IHGO were expected to be 

necessary for this type of structural optimization. However, contrary to expectations, preliminary 

experiments revealed that IHGO, in its current form, effectively handles frequency-constrained 

structural optimization problems. This can be attributed to the general nature of the modifications 

introduced in IHGO. The efficiency and robustness of the proposed approach are demonstrated 

through two large-scale cyclically symmetric dome optimization problems. The performance of 

IHGO is evaluated by comparing its results with those obtained using the original GO and other 

algorithms in the literature. To enhance computational efficiency, free vibration analyses during the 

optimization process are performed using a block-diagonalization method, which significantly 

reduces CPU time and memory requirements compared to the standard method. 

The remainder of this paper is structured as follows: Section 2 presents the mathematical formulation 

of the sizing optimization problem for truss structures with frequency constraints. The free vibration 

analysis of cyclically symmetric structures is expressed in Section 3. A brief description of the 

original GO algorithm is provided in Section 4, followed by a detailed presentation of the IHGO 

algorithm in Section 5. Section 6 evaluates the performance of IHGO through two large-scale 

numerical examples and demonstrates the efficiency and accuracy of the proposed solution method. 

Finally, Section 7 concludes the paper. 

 

2. Sizing optimization of truss structures with frequency constraints 

In truss sizing optimization under multiple frequency constraints, the goal is to determine the optimal 

member cross-sections that minimize total structural weight while satisfying all specified frequency 

constraints [37]. In practical applications, structural members are typically grouped, with a single 

sizing variable assigned to all members within each group. This approach ensures that members in 

the same group will have identical cross-sections, significantly reducing the number of design 

variables [38]. The problem is mathematically formulated as follows [39]: 

Find    1 2, , , dA A A A  (1) 

to minimize   
1 1

imd

i ij ij

i j

M A A L 
 

    (2) 

subject to 

max

min

 for some natural frequencies 

 for some natural frequencies 

n n

k k

n

k

 

 

 



 (3) 

where ;  1,2, ,i i iLb A Ub i d    (4) 
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where  A  is the vector of design variables; d  denotes the number of member groups; iA  is the 

cross-sectional area of the members in the i -th member group;   M A  is the objective function to 

be minimized with respect to  A ; ijL  and ij  are the length and material density of the j -th member 

in the i -th group, respectively; im  is the number of members of the i -th group; n  and k  are 

respectively the n -th and k -th natural frequencies of the truss; min

k  is the lower limit for k ; max

n  

is the upper limit for n ; iUb  and iLb  are respectively the upper and lower limits for the cross-

sectional area of the members in the i -th member group. 

The optimization problem outlined above is a constrained minimization problem with inequality 

constraints. In the literature, various methods and techniques have been developed to address such 

constraints in optimization problems, the most common of which is the penalty function method. In 

this study, a dynamic multiplicative penalty function is employed, defined as follows [40]: 

     2

11penaltyf A


    (5) 

where   penaltyf A  is the penalty function; 1  and 2  are parameters determining the extent of 

penalization for infeasible solutions;   is the penalty term which regards the constraint violations, 

and it is defined as: 

maxmin min max

min max
1 1

max 0, max 0,
nfnf

k k n n

k nk n

   


  

    
    

   
   (6) 

where minnf  and maxnf  are respectively the number of lower- and upper-bounded frequency 

constraints. 

Therefore, the optimization problem can be reformulated using the penalty function method as 

follows: 

Find    1 2, , , dA A A A  (7) 

to minimize         penaltyP A M A f A  (8) 

where ;  1,2, ,i i iLb A Ub i d    (9) 

where   P A  represents the penalized objective function to be minimized with respect to  A . 

For all experiments conducted in this study, 1  is kept constant, while 2  is specified as a linearly 

increasing function of the number of objective function evaluations, consistent with prior studies [16]. 

 

3. Efficient free vibration analysis of cyclically symmetric structures 
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The governing free vibration equation of motion for an undamped structural system can be expressed 

as a generalized eigenvalue problem in the following form [41]: 

2

i i iK M    (10) 

Here, M  and K  represent the mass and stiffness matrices of the structure, respectively. These 

matrices are known. The problem is to determine the N  natural frequencies i  ( 1,2, ,i N ) and 

the corresponding N  mode shapes i , where N  denotes the total number of degrees of freedom of 

the structure. 

The above generalized eigenvalue problem can be interpreted as a system of homogeneous algebraic 

equations with N  unknowns i . Therefore, we rewrite Eq. (10) as follows: 

 2 0i i iK M      (11) 

The above system of equations has a nontrivial solution if and only if the determinant of the 

coefficient matrix  2

iK M  vanishes:  

 2det 0iK M   (12) 

where  2det iK M  denotes the determinant of 2

iK M .  

The standard method solves this global eigenvalue problem directly at full scale (order N , where N  

is the total number of degrees of freedom) without exploiting cyclic symmetry. In contrast, Kaveh 

and his colleagues [29–31] introduced the block-diagonalization method which exploits structural 

symmetry to decouple the problem into smaller sub-eigenproblems. Specifically, by block-

diagonalizing the matrix 2

iK M , the frequency equation is partitioned into independent sub-

eigenproblems, each corresponding to a substructure. This approach provides considerable 

advantages in computational efficiency and memory usage. 

 

4. Original growth optimizer (GO) 

The details of the original GO are explained in subsequent subsections for minimization problems. It 

should be noted here that we found some slight differences between the MATLAB source code 

available from https://github.com/tsingke/Growth-Optimizer and the pseudocode provided by Zhang 

et al. [32]. Here, the original GO is implemented as described by Zhang et al. [32]. 

 

4.1. Initialization 

The GO algorithm begins the optimization process with a set of randomly generated solutions, 

referred to as the initial population of individuals, as represented in Eq. (13): 

https://github.com/tsingke/Growth-Optimizer
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 , ;  1, 2, ,  and 1,2, ,i j i i iX Lb rand Ub Lb i N j d      (13) 

Here, N  stands for the population size; d  denotes the number of design variables; rand  refers to a 

uniformly distributed random number between 0 and 1; ,i jX  indicates the value of the j -th 

component of the i -th individual.  

 

4.2. Hierarchical population structure 

In the original GO, the population is hierarchically structured into three distinct levels using the 

parameter 1P . Following the suggestion of Zhang et al. [32], 1P  is set to 5. Let iGR  represent the 

penalized objective function value of the solution represented by the i -th individual, where lower 

GR  indicates better fitness. At the start of each iteration (prior to the learning phase), individuals are 

sorted in ascending order of GR  values. The resulting hierarchy comprises: (a) an upper level 

containing the leader (best solution at rank 1) and elites (the next 1 1P   best solutions occupying ranks 

2 through 1P ); (b) a middle level spanning solutions ranked 1 1P   to 1N P ; and (c) a bottom level 

consisting of the 1P  worst-performing solutions at ranks at 1 1N P   to N .  

 

4.3. Learning phase 

Four distinct gaps are defined to contribute to the learning process of each individual i . These gaps 

are mathematically modelled as shown below: 

1 21 2 3 4
;  ;  ;  best better best worse better worse L LGap X X Gap X X Gap X X Gap X X         (14) 

where bestX  stands for the leader of the population; betterX  represents a randomly chosen individual 

from the other 1 1P   individuals of the upper level (i.e., the elites); worseX  denotes a randomly chosen 

individual from the bottom level (i.e., the 1P  worst-performing individuals in the population); 
1LX  

and 
2LX  represent two randomly selected individuals different from each other as well as from iX  

(i.e., 1 2L L i  ).  

The difference between the impacts of different gaps is described by a parameter called learning 

factor ( LF ): 

4

1

;  1, 2,3, 4
k

k

k

k

Gap
LF k

Gap


 


 

(15) 
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Here, 
kGap  denotes the Euclidean norm of the gap k  and kLF  is the Euclidean norm of gap k  

divided by the total sum of the Euclidean norms of all the gaps, and it varies from 0 to 1. 

Different individuals exhibit different levels of willingness to learn. This is defined mathematically 

as: 

max

;  1,2, ,i
i

GR
SF k N

GR
   (16) 

where iGR  represents the penalized objective function value of individual i ; maxGR  refers to the 

penalized objective function value of the worst-performing individual within the population; iSF  

signifies the self-perception factor of individual i . 

The amount of knowledge gained by individual i  from the gap k , denoted by kKA , is determined as 

follows:  

;  1, 2,3, 4k i k k
KA SF LF Gap k   (17) 

where kKA  denotes the amount of knowledge acquired by individual i  from gap k . 

With the definitions above, we can now formulate the learning process for individual i  as: 

1
1 2 3 4

It It

i iX X KA KA KA KA       (18) 

where It

iX  and 1It

iX   stand respectively for the current position and the new position of individual i  

and It  denotes the current iteration number. Here, 1It

iX   updates the current position It

iX  by 

accumulating knowledge from the four gaps ( 1KA  to 4KA , defined in Eq. (17)). Each kKA  term is 

scaled by the self-perception factor iSF  (Eq. (16)) and learning factor kLF  (Eq. (15)). 

 

4.4. Reflection phase 

The mathematical expression of the reflection phase of each individual i  is defined as: 

 

 

4 3

2 31

, , 5 ,

,

;  if 
;  if 

;    otherwise

;                                               otherwise

j j j

It It It
i j i j j i j

It

i j

Lb r Ub Lb r AF
r P

X X r R X

X



    
  



 (19) 

 0.01 0.99 1AF FEs MaxFEs      (20) 

where ,

It

i jX  and 
1

,

It

i jX 
 denote respectively the values of the j -th component of the current position 

and the new position of individual i ; 2r , 3r , 4r , and 5r  denote four random numbers uniformly 

distributed between 0 and 1; 3P  is a parameter controlling the reflection probability, typically set to 
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0.3; R  denotes an individual chosen randomly from the best 1 1P   individuals in the population; AF  

is a function of the current number of objective function evaluations, as defined by Eq. (20).  

 

4.5. Boundary constraints of the search space 

During the search process, some components of the new position of an individual may violate the 

boundary constraints of the search space. To handle this, Eq. (21) is used to guarantee that the new 

position remains within the search space boundary: 

1

,1

, 1

,

;  if 

;  if 

It

j i j jIt

i j It

j i j j

Lb X Lb
X

Ub X Ub







 
 



 (21) 

 

4.6. Replacement phase 

During the replacement phase of the original GO, if the penalized objective function value of the 

solution corresponding to the new position of an individual is lower than that corresponding to the 

current position, the individual transitions to the new position. Otherwise, the individual is likely to 

remain in their current position. Indeed, even if the new position is not better, there is a small 

probability 2P  that the individual will move to it. Zhang et al. [32] claim the condition 

   1ind i ind  prevents the best solution (rank 1) from being replaced by inferior candidates. 

However, as will be demonstrated in Subsection 5.2, this formulation does not actually preserve the 

best solution during the search process. The replacement phase of the original GO is formulated as 

follows: 

     
   

1 1

1
1

1 2

;                           if 

;  if  && 1
;  otherwise

;                                   otherwise

It It It

i i i

It
It

i
i

It

i

X P X P X

X X r P ind i ind

X

 




 


   



 (22) 

where 1r  denotes a random number uniformly distributed between 0 and 1;  ind i  is the rank of 

individual i  when the individuals are arranged in ascending order based on their penalized objective 

function values;   It

iP X  and   1It

iP X   are respectively the penalized objective function values 

corresponding to It

iX  and 1It

iX  ; 2P  is a parameter determining whether a newly generated solution 

is retained even if it is not better than the current solution. Zhang et al. [32] suggested that the 

parameter 2P  be set to 0.001. This setting gives a 0.1% chance for inferior solutions to survive, 

promoting population diversity. The replacement strategy is implemented not only following the 
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learning phase but also following the reflection phase. The pseudocode and flowchart of the original 

GO are given in Figure 1 and Figure 2, respectively. 

 

5. Improved hybrid GO (IHGO) 

In our recent study, we introduced an improved hybrid variant of GO, named IHGO, for discrete 

sizing optimization problems of skeletal structures [36]. The results revealed that IHGO successfully 

addresses the limitations of the original GO and delivers significant improvements in both solution 

accuracy and computational cost through four key modifications introduced by Kaveh and Biabani 

Hamedani [36]: (a) hybridization with the exploration mechanism of IAOA (Section 5.1) to avoid 

ineffective search and enhance exploration; (b) correction of the replacement phase to preserve the 

best solution (Section 5.2), (c) implementation of a population-size-independent hierarchy via 

 1 4P round N  (Section 5.3) to reduce performance dependency on population size; (d) refining 

the reflection phase with re-ranking and revised AF  (Section 5.4) to boost exploitation capabilities. 

 

5.1. Hybrid learning phase 

In IHGO, to reinforce the exploration ability, Kaveh and Biabani Hamedani [36] incorporated the 

exploration mechanism of a recently developed improved arithmetic optimization algorithm (IAOA) 

into the learning phase, as outlined below. In the learning phase of IHGO, if 
4

1
0

kk
Gap




(indicating stagnant search), the exploration mechanism of IAOA is activated to diversify solutions 

(Eq. (23)). Otherwise, the learning phase of the original GO is performed. The mathematical formula 

of the exploration mechanism of IAOA is as below [42]: 

   
  

   
  

1,2

, 21

, 1,2

,

1 0.5 1 ;  if 0.5

1 0.5 1 ;    otherwise

randiIt

i jIt

i j randiIt

i j

X rand MOP r
X

X rand MOP


    

 
 

 

 

(23) 

In the above equation,   1,2randi  generates a pseudorandom integer scalar between 1 and 2; 2r  and 

rand  is two random number uniformly distributed between 0 and 1; MOP  represents the following 

function [42]: 

   
  1,2

1
randi

MOP FEs FEs MaxFEs   (24) 

 

5.2. Corrected replacement phase 

As stated by Zhang et al. [32], the condition    1 2  && 1r P ind i ind   is employed during the 

replacement phase of GO to achieve two objectives: (a) to give any inferior solution a 0.1% chance 
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of surviving to the next iteration, and (b) to ensure the preservation of the best solution found so far 

during the replacement phase. The former is fully ensured by the condition 1r P . The condition 

   1ind i ind , however, is not correctly defined and the latter objective does not follow from it. 

Indeed, instead of preserving the best solution found so far for the next iteration, the condition 

   1ind i ind  ensures that the best solution found so far cannot be replaced by 
1It

iX 
 during the 

replacement phase. As a result, Eq. (22) could still lead to the loss of the best solution found so far 

during the search process. In IHGO, to address the weakness described above, the replacement phase 

was reformulated as follows [36]: 

     
 

1 1

1
1

1 2

;                   if 

;  if  && 1
;  otherwise

;                          otherwise

It It It

i i i

It
It

i
i

It

i

X P X P X

X X r P i ind

X

 




 


   



 (25) 

The key correction  1i ind  (replacing    1ind i ind  in the original GO) ensures the global best 

solution is never replaced by inferior candidates, preserving it throughout the optimization process, 

as is desired. 

 

5.3. Adaptive hierarchical population structure 

In GO, as suggested by Zhang et al. [32], the parameter 1P  is fixed at 5, regardless of the population 

size. As a result, both the bottom and upper levels of the hierarchical population structure always 

contain 5 individuals, while the size of the middle level is significantly influenced by the population 

size. This imbalance can affect the distribution of individuals within the hierarchical population 

structure, potentially leading to performance degradation in GO. To address this, IHGO defines 1P  

as a function of the population size [36]: 

 1 4P round N  (26) 

where N  represents the population size, and round  is a MATLAB function that rounds its input to 

the nearest integer. Consequently, in IHGO, both the bottom and upper levels of the hierarchical 

population structure are set to one-quarter of the population size, while the middle level consists of 

half. This design makes IHGO less sensitive to population size variations than GO. 

 

5.4. Refined reflection phase 

In the original GO, solutions are ranked based on their penalized objective function values at the start 

of each iteration, before the learning phase. This ranking impacts both the learning and reflection 
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phases, but since solutions are updated during the learning phase, the initial rankings may become 

invalid. Therefore, rankings should be updated after the learning phase to avoid performance 

degradation in the reflection phase. If rankings are not updated after the learning phase, R , chosen 

randomly from the top 1 1P   individuals in the population, might not actually belong to the best 

1 1P   individuals. IHGO addresses this by re-ranking solutions before the reflection phase to ensure 

the best 1 1P   individuals are accurately identified [36]. Another difference between the original GO 

and IHGO is how R  is selected: in IHGO, R  is chosen randomly from the leader and elites, while in 

the original GO, it is selected from the best 1 1P   individuals [32]. Additionally, IHGO modifies the 

function AF , which controls the rate of re-initializations. In the original GO, AF  starts from 

 0.01 0.99 1 1FEs MaxFEs    at 1FEs   and decreases linearly until reaching 0.01 at 

FEs MaxFEs . This results in a high number of random re-initializations during the reflection 

phase, which can lead to inefficiencies like low computational efficiency and slow convergence rate. 

In IHGO, to resolve this deficiency, AF  is reformulated as given in Eq. (27) [36]: 

 0.01 0.09 1AF FEs MaxFEs    (27) 

From the above equation, it can clearly be seen that AF  starts from 

 0.01 0.09 1 0.1FEs MaxFEs    at 1FEs   and decreases linearly until reaching 0.01 at 

FEs MaxFEs . The updated AF  (Eq. (27)) reduces random re-initializations by narrowing its range 

from [0.01, 0.1] (vs. [0.01, 1] in GO), thus accelerating convergence. 

 

5.5. The IHGO algorithm 

In their recent research, Kaveh and Biabani Hamedani [36] incorporated the modifications described 

in the previous four subsections into the original GO and proposed the IHGO algorithm. Figure 3 and 

Figure 4 show respectively the pseudocode and flowchart of IHGO, both as described in [36]. 

 

6. Results and discussions 

This section evaluates the effectiveness of IHGO for sizing optimization of two large-scale domes 

under frequency constraints: a 600-bar dome with 25 and a 1410-bar dome with 47 design variables. 

Table 1 summarizes material properties, frequency constraints, and cross-sectional area limits. The 

results found by IHGO are compared with GO and the best-known literature results. Each algorithm 

runs independently 20 times with different initial populations. Statistical metrics include the 

minimum (best weight, also referred to as the optimal weight) and corresponding design variable 

values (best or optimal design), the maximum (worst weight), the mean weight, and the standard 
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deviation (SD) of the optimized weights over 20 runs. Additionally, the minimum number of 

objective function evaluations required to obtain the optimal design ( MinFEs ) and the maximum 

number of objective function evaluations ( MaxFEs ) are provided. The finite element method (FEM) 

is used for free vibration analyses. Using the FEM code developed for this study, the feasibility of 

reported designs is verified, and the percentage of constraint violations (CV) is presented. Following 

Kaveh and Biabani Hamedani [36], population sizes of 20 for GO and 30 for IHGO are used. Other 

GO parameters are fixed at 1 5P  , 2 0.001P  , and 3 0.3P  , following Zhang et al. [32], while IHGO 

uses 2 0.001P   and 3 0.3P  . The termination criterion for both algorithms is the maximum number 

of objective function evaluations ( MaxFEs ), set to 20000 and 30000 for the first and second design 

examples, respectively. The CPU time and memory requirements of the block-diagonalization 

method are compared with the standard method. The algorithms and FEM models are programmed 

in MATLAB R2016b, and all experiments are performed on an ASUS notebook PC with the 

following specifications: Intel(R) Core (TM) i5-7200U CPU @ 2.50 GHz 2.71 GHz processor, 8.00 

GB RAM, and Windows 10 Enterprise 64-bit Operating System. Note that the results obtained by 

this study are shown in bold. 

 

6.1. The 600-bar single-layer dome 

The first design example involves the sizing optimization of a 600-bar single-layer dome structure 

illustrated in Figure 5. This dome is cyclically symmetric, consisting of 24 identical substructures. 

Each substructure includes 9 nodes and 25 members. The Cartesian coordinates of the nodes of the 

substructure can be found in [15]. The connectivity details are listed in the first column of Table 3. 

The optimization involves 25 design variables, representing the cross-sectional areas of the members 

of the substructure. Non-structural masses equal to 100 kg are attached to the free nodes. This 

optimization problem has been extensively addressed by researchers using a range of metaheuristic 

algorithms, including both basic and advanced ones [15–22].   

The entire structure has a total of 576 degrees of freedom. Using the standard method, each free 

vibration analysis required during the optimization process involves solving an eigenvalue problem 

of order 576 to determine the natural frequencies. In contrast, the block-diagonalization method 

simplifies this process by breaking it into 24 eigenvalue problems, each of order 24, resulting in a 

substantial reduction in computational time and memory usage. With the block-diagonalization 

method, a single free vibration analysis takes only 0.0055 seconds, whereas the standard method 

requires 0.0360 seconds, making the block-diagonalization method approximately 6.49 times faster. 

Over 20 runs of IHGO, the block-diagonalization method completed the task in 2650 seconds (about 
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44 minutes), compared to an estimated 15359 seconds (about 256 minutes) for the standard method, 

which is roughly 5.80 times slower. A comparative analysis of the computational time and memory 

requirements for both methods is presented in Table 2, with a graphical comparison of computational 

times shown in Figure 6. 

Table 3 presents the optimal designs obtained for the 600-bar dome using the original GO and IHGO, 

while Table 4 compares their performance against eight state-of-the-art metaheuristic algorithms from 

the literature. Compared to the original GO, IHGO demonstrates significantly superior performance 

in both solution accuracy (0.44% lighter best weight, 1.27% lighter mean weight, 3.29% lighter worst 

weight, and 96.03% reduction in standard deviation) and computational efficiency (0.94% fewer 

objective function evaluations), validating the effectiveness of its modifications. IHGO achieves the 

lightest optimal weight (6057.87 kg) among all benchmarked algorithms in Table 4, with weight 

reductions of 0.01% relative to CGFA [16] (6058.49 kg), 0.03% relative to ED [18] (6059.70 kg), 

and 0.08% relative to FAFBI [19] (6062.85 kg). Furthermore, IHGO demonstrates superior 

robustness, achieving the lowest mean weight (6060.99 kg), the lowest worst weight (6063.71 kg), 

and the lowest standard deviation (1.65 kg) among all benchmarked algorithms. Remarkably, the 

worst weight found by IHGO is surprisingly lower than the mean weights of the other algorithms. 

Regarding computational cost, while some algorithms required fewer structural analyses than IHGO 

(19726) to reach their optimal designs, all produced heavier structures than the 6057.87 kg achieved 

by IHGO. Specifically, PFJA [17] (8580), IGWO [20] (≤15000), ED [18] (18089), CGFA [16] 

(≤10000), and FAFBI [19] (≤15000) yielded weight increases of 0.01% to 4.55% relative to that 

achieved by IHGO. This demonstrates the superior efficiency-accuracy balance of IHGO: it delivers 

lighter structures despite moderately higher computational demands. Table 4 also provides the first 

and third natural frequencies of the optimal designs obtained using different metaheuristics, showing 

no violations of frequency constraints. To verify these designs, the first and third natural frequencies 

calculated using the FEM model developed in this study are also presented (see rows *

1  and *

3  in 

Table 4), rounded to four decimal places. The FEM-derived frequencies closely match those in the 

literature, with minor differences and negligible constraint violations (see footnotes and CV values 

in Table 4) likely due to rounding errors in continuous design variables. Figure 7 depicts the optimized 

weights obtained over 20 runs of GO and IHGO. It is clear that IHGO, in contrast to GO, consistently 

converged to high-quality solutions, confirming its high robustness. Figure 8 plots the convergence 

curves of the average results found by GO and IHGO over 20 runs, where IHGO demonstrates a 

significantly faster convergence rate. 
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6.2. The 1410-bar double-layer dome 

The second design example involves the sizing optimization of a 1410-bar single-layer dome 

illustrated in Figure 9. The dome is a cyclically symmetric structure, consisting of 30 identical 

substructures. Each substructure includes 13 nodes and 47 members. The Cartesian coordinates of 

the nodes of the substructure can be found in [15]. The connectivity details are provided in the first 

column of Table 6. The optimization involves 47 design variables, representing the cross-sectional 

areas of the members of the substructure. Non-structural masses equal to 100 kg are attached to the 

free nodes. This optimization problem has been extensively addressed by researchers using a range 

of metaheuristic algorithms, including both basic and advanced versions [15,17–23]. 

The entire structure has a total of 1080 degrees of freedom. Using the standard method, each free 

vibration analysis during the optimization process requires solving an eigenvalue problem involving 

a square matrix of order 1080 to determine the natural frequencies. Alternatively, the block-

diagonalization method divides the problem into 30 smaller eigenvalue problems, each involving a 

36 × 36 matrix. This approach results in substantial savings in both computational time and memory. 

Specifically, the block-diagonalization method takes just 0.0149 seconds for a typical free vibration 

analysis, compared to 0.1808 seconds with the standard method, making it approximately 12.13 times 

faster. For 20 runs of IHGO, the block-diagonalization method required 9474 seconds (about 158 

minutes), while the standard method was estimated to take 108084 seconds (about 1801 minutes), 

which is about 11.41 times longer. A detailed comparison of the computational time and memory 

usage for both methods is presented in Table 5, and the computational time comparison is shown in 

Figure 10. 

The optimization results for the 1410-bar dome are presented in Tables 6 and 7. Table 6 lists the 

optimal designs obtained by GO and IHGO, while Table 7 compares their performance with other 

metaheuristics from the literature. Compared to the original GO algorithm, IHGO achieves markedly 

better performance in both solution accuracy (5.23% lighter best weight, 9.32% reduction in mean 

weight, 12.60% lower worst weight, and 92.48% decreased standard deviation) and computational 

efficiency (2.23% fewer objective function evaluations), demonstrating the efficacy of its algorithmic 

modifications. Across all evaluated metaheuristics in Table 7, IHGO records the lightest optimal 

weight (10248.13 kg), outperforming ED [18] (10257.30 kg) by 0.09%, FAFBI [19] (10257.84 kg) 

by 0.09%, and Rao-2 [22] (10281.06 kg) by 0.32%. IHGO also exhibits superior robustness, 

achieving the lowest mean (10276.16 kg) and worst (10351.57 kg) weights. In terms of computational 

cost, IHGO required 28965 structural analyses to obtain its optimal design. Although algorithms such 

as PFJA [17] (16900), ISMA [15] (20000), IGWO [20] (≤15000), and FAFBI [19] (≤20000) 

consumed fewer structural analyses to reach their optimal designs, their resulting structures were 
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0.09% to 0.99% heavier than that achieved by IHGO. Table 7 also provides the first and third natural 

frequencies of the optimal designs obtained using different metaheuristics, confirming that all satisfy 

frequency constraints. FEM simulation results further validate these findings (see rows *

1  and *

3  in 

Table 7), although a minor frequency constraint violation was observed in the Chaotic WSA [21] 

design, likely due to rounding of continuous variables. Such rounding errors also explain slight 

differences between FEM results and values reported in the literature. Figure 11 illustrates the 

optimized weights over 20 independent runs, showing that IHGO consistently converged to superior 

solutions, while GO often produced suboptimal results. Figure 12 depicts the convergence curves, 

demonstrating that IHGO achieves faster convergence compared to GO. 

 

7. Conclusion  

This paper has presented the successful application of the recently developed improved hybrid growth 

optimizer (IHGO), combined with an exact decomposition-based method, for the free vibration 

analysis and design optimization of cyclically symmetric domes under frequency constraints. 

Originally developed for discrete sizing optimization of skeletal structures, IHGO has already 

demonstrated competitive performance. The key modifications introduced in IHGO include the 

incorporation of the exploration mechanism of the improved arithmetic optimization algorithm 

(IAOA) into its learning phase, as well as several algorithm-specific adjustments. These 

modifications are general in nature, making IHGO adaptable to a wide range of structural 

optimization problems, though its application to other tasks has yet to be explored. 

This study has focused on demonstrating the effectiveness and applicability of IHGO in solving large-

scale frequency-constrained structural optimization problems. Both the original growth optimizer 

(GO) and IHGO were applied to the sizing optimization of two large-scale cyclically symmetric 

structures: a 600-bar and a 1410-bar dome. These two structures were selected to highlight the 

scalability of the algorithms in frequency-constrained structural optimization. The results were 

compared against each other and with the best-known literature results, marking the first time these 

algorithms have been used in such an application. For a fair comparison, results from basic and 

advanced algorithms were evaluated separately. 

The numerical results have shown that IHGO significantly outperforms the original GO in both 

accuracy and efficiency, validating the effectiveness of its modifications. Additionally, IHGO has 

demonstrated highly competitive or superior performance, especially regarding solution accuracy and 

robustness, compared to other basic and advanced algorithms in the literature. These findings suggest 
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that IHGO is a robust and effective optimization tool for frequency-constrained truss optimization 

problems. 

To conduct the free vibration analyses required during optimization, an exact graph-theoretic 

decomposition method was utilized. By block-diagonalizing the mass and stiffness matrices of 

cyclically symmetric structures, this method broke down the free vibration eigenvalue problem of the 

entire structure into smaller, independent eigenvalue problems corresponding to substructures. The 

results showed substantial reductions in CPU time and memory requirements compared to the 

standard method. Specifically, using the standard method, optimizing the 600-bar and 1410-bar 

domes required approximately 256 minutes and 1801 minutes, respectively. In contrast, the block-

diagonalization method reduced these times to just 45 minutes and 158 minutes, making the process 

5.80 and 11.41 times faster, respectively. 
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Figure captions 

Figure 1. Pseudocode of the original GO [32]. 

Figure 2. Flowchart of the original GO. 

Figure 3. Pseudocode of the IHGO algorithm [36]. 

Figure 4. Flowchart of the IHGO algorithm. 

Figure 5. A 600-bar dome: (a) three-dimensional view, (b) top view, and (c) a typical substructure. 

Figure 6. Graphical comparison of computational times (600-bar dome problem). 

Figure 7. Optimized weights obtained over 20 runs of GO and IHGO for the 600-bar dome. 

Figure 8. Convergence curves for GO and IHGO (600-bar dome problem). 

Figure 9. A 1410-bar dome: (a) three-dimensional view, (b) top view, and (c) a typical substructure. 

Figure 10. Graphical comparison of computational times (1410-bar dome problem). 

Figure 11. Optimized weights obtained over 20 runs of GO and IHGO for the 1410-bar dome. 

Figure 12. Convergence curves for GO and IHGO (1410-bar dome problem). 

 

Table captions 

Table 1. Cross-sectional area limits, material properties, and frequency constraints for the design 

examples. 

Table 2. Comparative analysis of computational time and memory requirements (600-bar dome 

problem). 

Table 3. Optimal designs ( 2cm ) of GO and IHGO for the 600-bar dome. 

Table 4. Optimal design results for the 600-bar dome achieved by various metaheuristics. 

Table 5. Comparative analysis of computational time and memory requirements (1410-bar dome 

problem). 

Table 6. Optimal designs ( 2cm ) of GO and IHGO for the 1410-bar dome. 

Table 7. Optimal design results for the 1410-bar dome achieved by various metaheuristics. 
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Tables 

Table 1 

 600-bar dome 1410-bar dome 

Material density (
3kg cm ) 0.00785 0.00785 

Modulus of elasticity (
2N cm ) 2×107 2×107 

Frequency constraints (Hz) 1 5   and 3 7   1 7   and 3 9   

Cross-sectional area limits (
2cm ) 1 100;  1,2, ,600iA i    1 100;  1,2, ,1410iA i    

 

Table 2 

 Memory requirements 
Computational time 

One free vibration analysis 20 runs of IHGO 

Standard method One square matrix of order 576 0.0360 s 15359 s (about 256 min) 

Block-diagonalization method 24 square matrices of order 24 0.0055 s 2650 s (about 45 min) 

Time ratio  6.49 5.80 

 

Table 3 

Design variables 

(end nodes) 

Present study 

GO IHGO 

1A  (1-2) 1.0701 1.4230 

2A  (1-3) 1.4391 1.3897 

3A  (1-10) 4.5604 5.1983 

4A  (1-11) 1.3484 1.3373 

5A  (2-3) 17.3835 17.0320 

6A  (2-11) 34.7019 37.6076 

7A  (3-4) 12.5073 12.7716 

8A  (3-11) 15.4886 15.4432 

9A  (3-12) 10.9628 11.3029 

10A  (4-5) 9.0424 9.2889 

11A  (4-12) 8.1699 8.3500 

12A  (4-13) 8.9705 8.9979 

13A  (5-6) 7.0833 7.1894 

14A  (5-13) 5.4654 5.1356 

15A  (5-14) 7.2635 6.7008 

16A  (6-7) 5.5207 5.1627 

17A  (6-14) 3.5405 3.5791 
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18A  (6-15) 8.5409 7.7180 

19A  (7-8) 4.0977 4.2542 

20A  (7-15) 2.1640 2.1782 

21A  (7-16) 4.4742 4.6957 

22A  (8-9) 4.0223 3.5841 

23A  (8-16) 2.1292 1.8304 

24A  (8-17) 4.4535 4.7384 

25A  (9-17) 1.4143 1.6435 

 

Table 4 

 

Kaveh 

and 

Javadi 

[16] 

Degerte

kin et al. 

[17] 

Kaveh et 

al. [21] 

Kaveh et 

al. [15] 

Truong 

and 

Chou 

[19] 

Dede et 

al. [22] 

Abbasi 

and 

Zakian 

[20] 

Truong 

and 

Chou 

[18] 

Present study 

CGFA 

(2019) 

PFJA 

(2021) 

Chaotic 

WSA 

(2021) 

ISMA 

(2022) 

FAFBI 

(2023) 

Rao-2 

(2022) 

IGWO 

(2024) 

ED 

(2024) 
GO IHGO 

Best weight (kg) 6058.49 
6333.25

1 
6064.04 6068.34 

6062.84

85 

6066.31

23 

6067.87

56 

6059.69

8 
6084.92 6057.87 

MinFEs  N/A 8580 N/A 20000 N/A 44220 N/A 18089 19914 19726 

Mean weight 

(kg) 
6076.67 6380.31 6081.23 6083.93 6075.82 

6070.17

23 

6087.40

38 

6094.94

3 
6139.03 6060.99 

Worst weight 

(kg) 
N/A N/A N/A 6095.41 N/A N/A 

6111.56

16 
N/A 6270.27 6063.71 

SD (kg) 22.42 47.396 8.29 7.36 6.40 1.7832 11.9003 8.5870 41.60 1.65 

MaxFEs  10000 25000 30000 20000 15000 45000 15000 20000 20000 20000 

CV (%) 0.0004 0 0.0005 0 0.0002 0 0 0.0003 0 0 

Number of runs 20 20 20 25 30 10 30 30 20 20 

1  (Hz) 5.000 5.0011 5.0005 5.0003 5.0000 5.0019 5.0006 5.0000 5.0020 5.0000 

3  (Hz) 7.000 7.0000 7.0000 7.0002 7.0000 7.0002 7.0000 7.0000 7.0000 7.0000 

*

1  (Hz) 5.00001 5.0100 5.0005 5.0003 5.00002 5.0019 5.0006 5.00003 5.0020 5.0000 

*

3  (Hz) 7.0000 7.0210 7.00004 7.0002 7.00005 7.0002 7.0000 7.00006 7.0000 7.0000 

 

                                                           

1 4.9999805440 

2 4.9999904937  

3 4.9999934348 

4 6.9999656937  

5 6.9999984292  

6 6.9999907360  
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Table 5 

 Memory requirements 
Computational time 

One free vibration analysis 20 runs of IHGO 

Standard method One square matrix of order 1080 0.1808 s 108084 s (about 1801 min) 

Block-diagonalization method 30 square matrices of order 36 0.0149 s 9474 s (about 158 min) 

Time ratio  12.13 11.41 

 

Table 6 

Design variables 

(end nodes) 

Present study 

GO IHGO 

1A  (1-2) 6.7062 6.1957 

2A  (1-8) 12.5717 4.9792 

3A  (1-14) 27.2736 28.9106 

4A  (2-3) 9.7815 8.7155 

5A  (2-8) 7.4770 5.3079 

6A  (2-9) 1.5483 1.1257 

7A  (2-15) 15.5878 15.7831 

8A  (3-4) 9.5492 8.8416 

9A  (3-9) 1.3643 2.0510 

10A  (3-10) 2.9609 2.7904 

11A  (3-16) 7.8200 10.1139 

12A  (4-5) 10.3349 9.9897 

13A  (4-10) 2.6390 2.0898 

14A  (4-11) 5.0446 4.9902 

15A  (4-17) 15.7627 16.1773 

16A  (5-6) 11.7099 8.2430 

17A  (5-11) 5.0095 3.3566 

18A  (5-12) 5.5726 6.1709 

19A  (5-18) 9.9867 12.3210 

20A  (6-7) 12.0003 13.3990 

21A  (6-12) 5.9915 5.0459 

22A  (6-13) 9.1682 7.4871 

23A  (6-19) 1.7542 1.0004 

24A  (7-13) 3.8653 4.6944 

25A  (8-9) 4.0597 2.8845 
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26A  (8-14) 6.3957 4.9705 

27A  (8-15) 7.9448 5.6938 

28A  (8-21) 7.2963 11.3754 

29A  (9-10) 3.6399 3.7371 

30A  (9-15) 1.0009 1.5501 

31A  (9-16) 1.3369 2.1109 

32A  (9-22) 4.7585 4.6317 

33A  (10-11) 5.7677 5.3102 

34A  (10-16) 2.3466 2.8785 

35A  (10-17) 1.6140 2.0992 

36A  (10-23) 1.6779 3.2080 

37A  (11-12) 7.7679 7.6168 

38A  (11-17) 5.8565 5.1908 

39A  (11-18) 3.0653 3.0738 

40A  (11-24) 1.5759 1.0237 

41A  (12-13) 7.4482 6.8026 

42A  (12-18) 6.5613 6.0202 

43A  (12-19) 4.5542 5.0093 

44A  (12-25) 1.8282 1.0000 

45A  (13-19) 5.1004 7.3985 

46A  (13-20) 3.9122 4.5707 

47A  (13-26) 1.1472 1.0010 

 

Table 7 

 

Degerte

kin et al. 

[17] 

Kaveh et 

al. [21] 

Kaveh et 

al. [15] 

Dede et 

al. [22] 

Van TH 

et al. 

[23] 

Truong 

and 

Chou 

[19] 

Abbasi 

and 

Zakian 

[20] 

Truong 

and 

Chou 

[18] 

Present study 

PFJA 

(2021) 

Chaotic 

WSA 

(2021) 

ISMA 

(2022) 

Rao-2 

(2022) 

C-

HCLPS

O 

(2023) 

FAFBI 

(2023) 

IGWO 

(2024) 

ED 

(2024) 
GO IHGO 

Best weight (kg) 
10326.2

96 

10318.9

9 

10309.4

1 

10281.0

6 

10541.3

3 

10257.8

4 

10349.6

353 

10257.3

0 
10813.9

4 

10248.1

3 

MinFEs  16900 N/A 20000 44850 N/A N/A N/A 40737 29625 28965 

Mean weight 

(kg) 

10399.8

28 

10521.6

7 

10556.6

7 

10289.2

2 

10626.1

3 

10280.5

9 

10455.9

838 

10283.5

2 
11332.7

0 

10276.1

6 

Worst weight 

(kg) 
N/A N/A 

10825.0

0 
N/A N/A N/A 

10571.2

224 
N/A 

11843.9

6 

10351.5

7 

SD (kg) 75.441 
122.145

8 
130.92 3.06 79.56 13.70 62.6789 5.7429 317.20 23.84 

MaxFEs  25000 30000 20000 45000 40000 20000 15000 45000 30000 30000 
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CV (%) 0 0.0034 0 0 0 0 0 0 0 0 

Number of runs 20 20 25 10 30 30 30 N/A 20 20 

1  (Hz) 7.0009 7.0000 7.0001 7.0040 7.000 7.0000 7.0002 7.0000 7.0041 7.0001 

3  (Hz) 9.0001 9.0021 9.0002 9.0013 9.000 9.0000 9.0001 9.0000 9.0050 9.0001 

*

1  (Hz) 7.0125 6.99987 7.0001 7.0040 7.0467 7.0000 7.0002 7.0000 7.0041 7.0001 

*

3  (Hz) 9.0083 9.0021 9.0002 9.0013 9.0012 9.0000 9.0001 9.0000 9.0050 9.0001 

 

                                                           

7 6.9997617653 


