An Aging-Aware Early Cache Eviction Strategy to Enhance Static

Random-Access Memory Cells’ Lifetime

Mohammad Maghsoudloo®”

@ Department of Computer Engineering, Faculty of Engineering, Golestan University

Abstract (b,

NEVERIXDE This paper presents a comprehensive analysis of the irﬁ%Cd early

cache eviction on the aging of cache cells. It highligh n addition

to the previously identified factors contributin@ noise margin

(SNM) degradation in cache cells, the s@ ched data plays a
critical role in this process. The analygis reveals that the uneven

[]
distribution of clean and dirty da[&b(& across the lines of a cache
SNM degradation. To address

cache memory;
bias temperature
instability;

static noise margin;

soft errors;

set can also be a significant f@
static random-access this issue, this study propo early cache eviction strategy aimed

at balancing the distri @;«of dirty and clean data blocks over cache
aging. lines, thereby @ SNM degradation. To achieve this, the
therPs

decision tree of

memory;,

eudo-LRU replacement policy is redesigned to
incorporat che line states and address conflict miss types.

t

Experi al results demonstrate that the enhanced cache improves
@d and read SNM by approximately 10% and 12%, respectively,

@ﬂle incurring negligible cache hit reduction and minimal area and

Y energy overheads.

©2024 Sharif Uni)g%nology. All rights reserved.
1. Introdg;kﬁ)

As @MOSTechnology continues to scale, reliability concerns have become increasingly critical in
the%of integrated circuits [1]. Among these, transistor aging has emerged as a significant
reliability challenge in nanoscale CMOS technology, often leading to permanent hardware faults
[2]. Bias Temperature Instability (BTI) is the primary aging mechanism, causing an increase in the

absolute value of transistor threshold voltage and a reduction in charge carrier mobility [3]. These

* Corresponding author. Tel: +98 911 371 7182, E-mail address: mo.maghsoudloo@gu.ac.ir, Postal address: Golestan University, Shahid
Beheshti St., Gorgan, Iran, postal code: 49138-15759

mailto:mo.maghsoudloo@gu.ac.ir

BTI-induced effects can significantly increase propagation delays in combinational circuits [4] and
degrade the Static Noise Margin (SNM) of sequential elements such as Static Random-Access
Memory (SRAM) [5]. Furthermore, the operating conditions of circuits—including temperature,
voltage bias, and current density—can exacerbate BTI-induced SNM degradation, leading to
premature vulnerabilities [4, 6].

SNM s a critical metric for evaluating the stability and reliability of SRAM cells,
representing the maximum voltage noise that a memory cell can tolerate without a state %8
9]. Reliability concerns in SRAM must be prioritized, as these cells occupy a signi.fwgortion

of the chip area and are central to on-chip cache memories, which make up over 6Q%’6f a modern

TI-induced SNM
degradation is most severe when a constant value is stored in ap S cell for extended periods
[11, 12, 13, 14]. A typical SRAM cell comprises six MOSFE@ igured as two cross-coupled

inverters and two access transistors. When storing a contigqudgs “0” or “1,” one PMOS and one

microprocessor’s transistors [6]. This makes SRAM highly susceptible t and soft errors,
especially as SNM degradation compromises their stability [10]. N&/ B

NMOS transistor are particularly vulnerable to BTP&C threshold voltage variation [2].
Efforts to address BTI-induced SNM egr@i

aging sensing and aging mitigation. Aging g methods often involve embedding sensors in

can be categorized into two main areas:

SRAM memory arrays to monitor the system's runtime behavior and detect signs of degradation
[15-18]. However, these metho ‘%allenges due to reduced sensor accuracy caused by
process variation and enviro emanges [19-21], as well as the complexity of implementing
circuit-level modifications in@
SRAM cells from st%n@xed values for extended periods, aiming to balance the Signal
Probability (SP) fa f cache cells to 50% [8, 9, 19, 20, 22].

This p&@@es a detailed analysis of the SP factor's probability distribution for cache

is end, the Multi-facet GEMS (gem5) [23] simulation environment, was utilized.

M cells [22]. Aging mitigation techniques focus on preventing

line bits.@
Additionaly, the study evaluated the Stanford Parallel Applications for Shared Memory
(SPLASH-3) benchmark suite [24]. BTI-induced aging was analyzed using the HSPICE reliability

tool [25], while cache energy consumption was estimated using the CACTI 6.5 simulator [26]. An
RTL model of the cache control logic was implemented for area analysis, with hardware synthesis
performed using the Synopsys Design Compiler [27]. Experimental results revealed that the
observed SP factor distribution deviates significantly from the normal distribution, with an average
deviation of 88.3%. This paper identifies that, alongside locality principles and Narrow-Width

Values (NWVs), the unbalanced distribution of clean and dirty data blocks across the lines of a
cache set also contributes to this deviation.

Based on these findings, this paper proposes a BTI-aware cache eviction strategy designed
to balance the placement of data blocks associated with different states across cache lines. The
proposed method modifies the cache control logic to balance the cumulative intervals between
consecutive writes on various cache lines in a set. The strategy leverages two key factors—the
state of cache lines (clean or dirty) and the type of address conflict miss. The enhan e
achieves improvements of approximately 10% and 12% in Hold-SNM and.& -SNM,
respectively, for the 4-way, 8-way and 16-way caches, with minimal performanc@mties: about
1% reduction in cache hit ratio, about 3% increase in write-backs, abo ynamic energy
consumption overhead, and area overheads of about 1% and 2%%" and net counts,
respectively. °

The ideas, implementations, and results presented in thi Ner build upon and extend the
foundational analyses from our initial work publis [28]. The enhancements and
improvements outlined below are aimed at extending the scope and depth of the original study.
While the initial work in [28] was designed sp@c ly for 4-way set-associative caches, the
extended version introduces a generalizabl cache eviction strategy that can be effectively
applied to caches with varying degrees of assaciativity (e.g., 8-way and 16-way caches). It also
includes deeper SP factor analysis, A%Iity tests for 8-way and 16-way caches, and detailed
pseudocode for the new evicti nmy, ensuring adaptability to workload types.

The remainder of thmer is structured as follows: Sections 2 and 3 discuss the
background and exper e@setup. Sections 4 and 5 describe the motivation and structure of the

proposed BTI-awar, ction strategy. Finally, Sections 6 and 7 summarize the results and present

conclusions. @
O
2. Backg@]d

Nur?@! studies have addressed the challenges posed by BTI-induced errors in SRAM cells,
which can be broadly divided into two categories: aging sensing and aging mitigation strategies
[29]. Aging sensing approaches aim to detect critical signs of BTI-induced degradation in SRAM
cells to prevent catastrophic system failures [30, 31]. These techniques often employ sensors that
monitor the runtime behavior of memory systems at various levels of abstraction. At the circuit
level, they leverage electrical parameters such as subthreshold leakage current, threshold voltage,

drain current, transconductance, signal rise and fall rates, margin delays, reference voltages, and

bit-line currents as indicators of aging [14, 15]. Additionally, architectural-level techniques, such
as Error Detecting/Correcting Codes (EDC/ECC), are used to identify soft and hard errors in
SRAM cells by validating stored data integrity [31]. However, despite their effectiveness, aging
sensing techniques face notable limitations, including substantial area and power overheads and
the complexity of integrating circuit-level modifications into SRAM designs [16]. In contrast to
sensing, aging mitigation strategies focus on proactively addressing conditions that accelerate BTI-
induced degradation in SRAM cells [16]. The primary goal of these methods is to preve @M
cells from storing fixed values ("0" or "1") for extended durations, as this exacerba.t Qstress
[16, 19]. Structural enhancements, such as enabling drowsy mode for idle cach@tﬁns, power-

gating specific cells, or even processor overclocking, and SP factor bal c'@ niques, such as
bit flipping, dynamic cache indexing, and NWV-aware cache managerr&

ve been proposed to
extend cache relaxation times and reduce stress on SRAM cells [16, 0, 22, 33, 34, 35]. Another
architectural-level technique exists that specifically targe& -way set-associative cache
architecture [28]. The proposed enhancement to the repl t policy, including modifications
to the cache management structure and the integratfon erency-state-aware victim selection,
is structurally bound to the binary-tree format N’ay caches, and the techniques were not
generalized for 8-way or 16-way cache ations [28]. Generally, unlike aging sensing

methods, mitigation techniques often present a more practical solution by significantly reducing
‘a%th sensing methods [16].

the area and power overheads asg%

3. Experimental setup

For evaluating both the e@ng and newly introduced design decisions, an extended version of
Multi-facet GEMS) [23] was utilized. The specifications of the baseline system are
summarized in @In this study, the entire set of applications and kernels from the Stanford
Parallel App a?@s for Shared Memory (SPLASH-3) benchmark suite was analyzed within the
simulatio@vironment. The SPLASH-3 suite is widely regarded as a comprehensive collection
of p?h(programs designed for cache-coherent shared address space architectures and has been
extenSively used in modern research [24]. Each program was simulated for 900 million
instructions, with the initial 100 million instructions fast-forwarded to ensure the evaluation

focused on steady-state execution.

4. Motivation

In an ideal scenario for preventing SNM degradation, the value of a bit stored in an SRAM cell

should be an independent random variable with equal probabilities of being “0” or “1.” In this
case, the probability distribution of the SP factor for all bits stored in the cache over time would
follow a normal distribution with a mean of 50%. A detailed analysis was conducted to investigate
the probability distribution of the SP factor for the simulated cache bits. Fig. 1 illustrates the
distribution of the SP factor for 524,288 bits (64 KB) of the cache, categorized into clean and dirty
data. As shown in Fig. 1, the Baseline does not exhibit a perfect normal distribution with a mean
of 0.5. More than 68% of the SP factors are below 0.5, reflecting a higher likelihood for e‘&e
bits to hold constant “0” values during their lifetime. This deviation is attribute. Q
reasons: locality principles and NWVs [16]. This behavior is exacerbated in m@ache lines,
where sequences of write operations lead to a greater frequency of bit cha pared to clean
data. Consequently, dirty cache lines exhibit an SP factor distribw

distribution, with an average error of 28.9%, compared to 91.2%Mor clean cache lines. This

observation underlines the potential for fairer distribution of (@ata blocks across cache lines.

o key

ser to the normal

5. BTl-aware early cache eviction strategy Q)Q

Today, most primary caches employ a Pseudo- Least Recently Used (PLRU) algorithms to avoid
the disadvantages of a complex hardware deS|gn of base Least Recently Used (LRU) [36, 37]. In
order to determine how close the deusm@ade by the PLRU to LRU, we extended the
experiments to assess the chances of cache block in a set to be selected as the replacement
candidate by the PLRU and LRU@e g their access history. Fig. 2 shows the distribution of
block selection as the replace@victim in an 8-way cache. The blocks are ranked based on their
access history, and the bIo@o ding the first/last rank is the least/most recently accessed one. The

second, third, a ranks with an average frequency of 21.5%, 19.4%, 15.1%, and 13.0%,

experimental resulQ‘ that the PLRU algorithm selects blocks of 8-way cache from the first,
respectively. ctlon of blocks with ranks two, three, and four deviates from the least recently
accessed blogk (rank one) by approximately 2.1%, 6.4%, and 8.5%, respectively, highlighting the
non%mity of the PLRU replacement policy. Based on the experimental results, the block
holding the second rank has almost the same chance as the least-recently-used block to be
victimized by the PLRU. Generally, the results show that the data block replaced by the PLRU is
not the least-recently-used one.

In order to investigate how much different replacement decisions can affect the cache hit
ratio, an experiment was conducted so that different blocks were forcibly selected as the

replacement candidate concerning their access histories. Fig. 3 shows the hit ratio of the simulated

cache after executing a specified number of instructions in the case of victimizing different blocks
holding different ranks in a cache set for an 8-way cache. The results are the average cache hit
ratio for all the workloads. As demonstrated by Fig. 3, for the 8-way cache set, replacing the blocks
ranked second, third and fourth results in approximately less than 10% reduction in the cache hit
ratio. In a set-associative cache, the data blocks ranked first and second are located in the same
branch of the replacement tree structure, either left or right. As a result, selecting any leaf from the
left or right branch yields similar outcomes, depending on the configuration of the tree. ‘&
Taking advantage of relative freedom to victimize the least recently used ca.dx s, the
structure of the decision tree has been modified to balance the distribution offd\@éche blocks
over different ways of a cache set. In other words, the main concentration of the enhanced eviction
strategy is on the fact that giving the cache lines approximately thé‘sa’m\e chances of storing
dirty/clean data could reduce the time cache lines store fixed values. Th,e pseudo-code for the
enhanced tree-based PLRU replacement policy for a n-way a%%t%; cache is shown in Fig. 4.
Table 2 describe symbols and functions used by Algori The cache set is structured as a
binary tree, with log:(n) internal decision bits (B) guid raversal to find the least recently used
portion of the set. Each decision bit indicates he@S

right half of the current candidate pool. T ent continues recursively using LeftHalf() and

e traversal should continue into the left or

RightHalf() helper functions. This process continues until only two candidates remain, referred to
as C1_candidates, which are th luated for replacement. The final decision considers the

are prioritized for eviction d write misses to minimize unnecessary write-backs, while dirty

dirty/clean status of the two ﬁd to balance cache performance and reliability. Clean lines
lines are preferred duri&@ misses to preserve clean data for future modifications. This scalable
algorithm maintain core principles of PLRU replacement while introducing enhanced logic to
prevent SNM d ﬁn caused by an imbalance in clean and dirty cache blocks.

An @ial feature of the enhanced PLRU algorithm is its adaptability to dynamic
WO ad@y leveraging the ConflictType parameter, the algorithm differentiates between read
and%zmisses, enabling it to apply enhanced replacement strategies. This context-awareness
ensures that the replacement decisions align with the current access patterns of the workload. In
write-intensive scenarios, the prioritization of clean blocks for eviction helps mitigate the overhead
of excessive write-back operations. On the other hand, during read-heavy workloads, retaining
clean blocks improves future cache efficiency by reducing the need for reloads from main memory.

Moreover, the hierarchical decision-making process of the binary tree inherently supports

parallelism. Each level of the tree operates independently, allowing decision bits for different
branches to be evaluated concurrently. This feature can be particularly advantageous in hardware
implementations, where parallel processing of decision bits can significantly reduce the latency of
replacement decisions. Furthermore, the compact representation of decision bits in the B array
minimizes memory overhead, making the algorithm lightweight. The logic depth of tree-based
eviction strategies grows with the associativity. In hardware terms, for a general n-way
(where n is a power of 2), the proposed mechanism generalizes this procedure. It u (n)
decision bits to traverse a binary tree of n lines, halving the candidate pool at each I; C‘?{ll only
two remain (the final two candidates). The algorithm then applies the same final:stép check on
those two lines’ dirty bits and the ConflictType. A tree-based PLRU polic es storing ~n—1
bits per set to represent the binary decision tree. Our strategy uses th&&bits, which is O(n)
growth in storage. It leverages the existing PLRU tree bits a flags, plus the runtime
ConflictType signal (read vs. write miss) which is an input, no% in the cache. The PLRU tree
logic itself scales with n roughly in proportion to the num internal nodes (also O(n) gates in
total), but this is a very small structure in absolute ¢ rr@.g. a 16-way set uses 15 1-bit nodes).
The dirty-bit comparator is a simple XNOR/AN xhecking two 1-bit values, and the logic to
choose victim based on ConflictType is as#iff§) multiplexer. Therefore, the incremental area

independent of n). In summary, ~0O(n) (dominated by the need to store more bits as

overhead of the proposed strategy ‘%PL U is negligible (on the order of a few gates,
ways increase), and enhanc seo not change that asymptotic growth. Both PLRU and
enhanced strategy have a tin&mplexﬂy on the order of O(log n) for choosing a victim. The
critical path in hardwa \@pass through roughly log-(n) bit-checks. Our strategy adds at most
one additional coan and a final 2-way select based on either a PLRU bit or the ConflictType.
These additions

@ trates the transition probabilities between different states of a cache block (clean

tant-time operations and thus do not change the overall O(log n) scaling.

and)edring workload execution. These probabilities are derived by monitoring state changes
in t%:i(he coherence directory and analyzing the transitions among various coherency states
associated with cache lines. The results reveal that, on average, a cache block loaded into a cache
line due to an address conflict read miss remains clean until eviction in over 72% of cases.
Similarly, for an address conflict write miss, a cache line is updated with a data block fetched from
lower-level memory and remains dirty until a write-back occurs, with this behavior observed in

more than 80% of cases on average.

To address the above findings, the proposed mechanism aims to balance the distribution of
clean and dirty data blocks across the lines of a cache set. This is achieved by selecting the victim
cache line based on the dirty bits of the blocks ranked first and second in the set, as well as the
type of address conflict miss prompting the replacement. The process involves two scenarios:

e Scenario 1: For an address conflict write miss, a cache line containing a clean data block is
chosen for eviction to make room for a new data block with a high likelihood of being modified.

e Scenario 2: For an address conflict read miss, a cache line containing a dirty dat
o

selected for eviction to accommodate a new data block with a lower probability of
The action proposed for the second case aims to increase the likelihood g incoming

data blocks with high modification potential in cache lines that curren %fain clean data.
Experimental results further reveal that the majority of changes to dirt%locks occur within
the first 50% of their lifetime in the cache. Fig. 6 illustrates the ge percentages of writes
performed on modified cache blocks during different inter%&f their lifetime. On average,
approximately 67% and 75% of updates to dirty cache blo made within the first half of their

lifetime for Kernels and Applications workloads, ely. Additionally, dirty blocks tend to
move from the third or fourth ranks to the first or se%ﬂ ranks in the replacement hierarchy after
82.3% of their lifetime. Beyond this point,@mber of write accesses to these modified data
blocks decreases, on average, to less thaff 3%. This indicates that most dirty data blocks ranked
first and second remain unchan ‘%placement. Therefore, the early eviction of such dirty
blocks could help mitigate S gmaﬁon.

To investigate the i %lncreasing associativity on design parameters, we also repeated
the experiments for ca&a
ratio reduction in Qse of victimizing blocks holding second to fourth ranks in a cache with

different Iev&@ss

as the replacement candidate concerning their access histories. The results,

th 8-way and 16-way configurations. Fig. 7 compares the cache hit

iativity. In this experiment, the second/third/fourth-ranked blocks were

forcibly
pre dwFig. 7, are the average cache hit ratio reduction compared to the case in which the
firsmd block is evicted. Regarding Fig. 7, the cache hit ratio is less affected by the eviction
of the second/third/fourth-ranked blocks as the level of the cache associativity increases. Using a
4-way cache, victimizing the blocks holding the second, third, and fourth ranks (instead of the
least-recently-used one) leads to about 1%, 23%, and 31% reduction in the cache hit ratio,
respectively. These values are, on average, about 0.2%, 15%, and 14% for an 8-way cache, and

0.2%, 9%, and 6% for a 16-way cache. By increasing the level of cache associativity, more choices

will be revealed as the alternative for the least-recently-used data block to be replaced with the aim
of SNM degradation prevention. The conditions intended in the structure of the proposed decision
tree can be similarly extended to manage the chance of storing the data blocks with the higher
potential of modification among cache lines of a set with higher levels of associativity. In this case,
the lower-ranked cache lines can also be considered along with the first and second-ranked ones,

while adjusting the distribution of clean/dirty data blocks among cache lines is taken into account.

6. Result analysis and discussion O

6.1. Aging mitigation

Metal Oxide Semiconductor Reliability Analysis (MOSRA) [25] has been u TI induced
aging analysis of the 32nm SRAM cells before and after applying mo‘g/%o

circuits of the simulated cache. The amount of threshold voltage variation th) of the SRAM cell

the controller

transistors can be estimated at different temperatures using'% flt-in aging model of the
MOSRA. As a first step, the probability distribution of the SP&;

after using the enhanced replacement policy, and the average percentage error between the
(/)

r for cache bits is investigated

observed and normal distributions is compared W|th the results of the baseline cache. Fig. 8 (a)
shows the distributions of the SP factor of cache blts in the case of using Baseline and Enhanced

(i =™
architectures. The Fair distribution curve has been included in the graph to give a clear comparison
2 A d
in terms of the average percentage error between the obtained results and the completely fair
—~—
distribution. Regarding Fig. 8 (a), the average percentage error between the results of Enhanced
-~/

cache and normal distributions is about 71%, implying about 20% improvement compared to the

average percentage error betv‘veew the Baseline and Normal distributions. Moreover, the average
percentage error betwée'rﬁhe) results of the Enhanced cache and Fair distribution is about 16%
which indicates the’e?ectiveness of the proposed replacement policy in reaching a nearly fair
distribution okf ti}{e/déta‘t;locks with a high potential for modification among cache lines.

As a second step, the amount of BTI-induced threshold voltage shift (AV7) is studied
acc%\tolthe built-in aging model of MOSRA. Fig. 8 (b) illustrates the average amount of AV~
for the' whole SRAM cell transistors of a cache line with 32-nm technology for 200 months. The
results have been obtained based on the duty cycles of the SRAM cell transistors extracted from
gem5 after running all workloads on the simulated architectures, including the cache design
decisions. Regarding Fig. 8 (b), Vr shifts of SRAM cell transistors of the Baseline and Enhanced
cache can be increased over time up to 101.33 mV and 87.12 mV, leading to about 14.0% threshold

voltage degradation reduction by the proposed architecture. Moreover, the average percentage

error between the results of the Enhanced and Fair caches is about 1% compared to the about 17%
percentage error between the results of the Baseline and Fair caches.

The stability of SRAM cells depends on the SNM, and asymmetric AVt of SRAM cell
transistors can degrade the SNM of the cell by unbalancing the VTC. SNM of an SRAM cell can
be measured in terms of two sub-stability metrics: Hold- and Read-SNM (H-SNM and R-SNM).
The H-SNM and R-SNM degradation of the SRAM cells used in the Baseline and Enhanced cache
is compared in Fig. 9. The H-SNM and R-SNM of the fresh SRAM cells in 32-nm tech gbﬁre
about 108.7 mV and 102.2 mV. The H-SNM and R-SNM are reduced to about 77.7.&d 74.7

mV after 180 months of cache operation, leading to 29% and 27% SNM degradat@spectively.

Enhanced cache. In this case, the H-SNM and R-SNM are degraded b 0% and 19% after
180 months, translating into about 10% and 12% improyemfbjn H-SNM and R-SNM

degradation. &N
For the experiments conducted on the 8-way cachegthgyresults indicate a more significant
improvement in the reduction of H-SNM and R- I@?Enhanced cache compared to the
S‘a&, the degradation of R-SNM and H-SNM

However, the SNM of the SRAM cells degrades more moderately under & agement of the
y%u 2

Baseline cache. As Fig. 10 shows, In the Baselin
after 180 months of operation is approxim .9% and 28.5%, respectively. However, in the
Enhanced cache, these values reduce t0 approximately 19.2% and 19.6%, respectively. As
observed, the baseline exhibits a pr ‘%d AV7 shift in specific SRAM cells due to imbalanced
switching activity, particular m dirty lines persist for extended periods. In contrast, the
proposed early cache evictio@ategy (ECE), by managing dirty and clean block distribution
adaptively based on a s@pe, leads to a more uniform toggle probability across all cache bits.
This translates into@ced AVr drift and improved aging balance.

Tocom @15 ely evaluate the aging mitigation effectiveness of the ECE, we analyze its
impact o é and SNM degradation under various Process—Voltage-Temperature (PVT)
congli 'onQer an extended operational period. The results summarized in Table 3 are derived
fror%aware simulations using MOSRA [25] over 180 months, reflecting realistic lifetime
behavior of SRAM-based caches. Under nominal conditions (25°C, 1.0V), which reflect typical
operating environments, the baseline cache shows significant degradation: 477 reaches 101.3 mV,
while SNM degrades by 29% (hold) and 27% (read). In contrast, the ECE limits 477 to 87.1 mV
and reduces SNM degradation to 20% and 19%, respectively. These improvements stem from

ECE’s signal-balancing policy, which adaptively evicts clean or dirty lines based on miss type.

Under stress-prone conditions (85°C, 0.9V), where aging effects are amplified due to increased
BTI sensitivity and slower charge recovery, degradation is naturally more severe. The baseline
configuration shows a 4Vt of 115.5 mV and SNM degradation levels of 33% (hold) and 31%
(read). Despite this challenging environment, ECE continues to provide substantial mitigation,
lowering 4V1to0 98.7 mV and improving SNM margins by 10% points in both hold and read modes.
This confirms that ECE’s architectural-level balancing remains effective even under accelerated
degradation scenarios. Conversely, in conservative corners (—10°C, 1.2V), aging slo @'to
reduced BT]I stress and better carrier mobility. As expected, the baseline system p;&m better
here, with A4V1 at 84.9 mV, and SNM degradations of —24% (hold) and —22% @Still, ECE
further enhances stability, achieving 471 of 69.3 mV, and lowering SNM de{ on to —16% and

—15%, respectively. x

6.2. Performance overhead °
Two metrics are considered to compare the effects of design (&ﬁpns on the cache performance:
cache hit/miss ratio and the number of write-backs. Fi demonstrates the effects of the
Enhanced cache on the aforementioned metrics. R ar@ ig. 11, the ECE increases the cache

e%érage by about 1.25%, 0.81%, and 0.67%

in the case of using 4-way, 8-way, and 16 t-associative caches. The experimental results

miss ratio in comparison with the Baseline cache

ratio since the proposed techni alidates most replacement candidates after being idle.

demonstrate that the early eviction of thesselected data blocks does not drastically degrade the hit
<y

Increased associativity decreages thenumber of conflict misses and subsequently can generally
improve the cache miss rate.%é, the hit rate degradation, observed due to the proposed early
eviction, is moderated &@asing the degree of associativity. Moreover, the proposed technique
increases the numb@write-backs compared to the Baseline cache on average by about 3.66%,
3.17%, and 2.34%) inY4-way, 8-way, and 16-way caches. By increasing the level of cache
associativity \the distance between the practical results of selecting two consecutive data blocks in
replacem anking is reduced. Therefore, evicting the second-ranked replacement candidate, as
an mive for the least-recently-used data block, imposes less performance overhead while
cache associativity increases from 4-way to 16-way.

6.3. Energy and area overhead

The activity factor of the SRAM cells, which is mainly concentrated to prevent SNM degradation
by the aging-aware cache management techniques, can directly affect the dynamic energy

consumption of the cache. The CACTI 6.5 simulator [26] is used to estimate the dynamic energy

consumption of Baseline and Enhanced caches using the 32nm technology node. The dynamic
energy consumption increases as a result of the increased bit-switching activities of the Enhanced
cache’s cells. Balancing the probability distribution of the SP factor of cache lines’ bits by the
proposed selective early eviction of unused clean/dirty data blocks leads to the increased cache
miss rate and the activity factor. The Enhanced 4-way, 8-way and 16way caches increase the
dynamic cache energy consumption compared to the Baseline cache on average by about 4.07%,
4.39% and 4.74%, respectively.

Moreover, the additional circuity in the cache controller, inserted to m& nt the
enhanced replacement policy, raises the need for area consumption analysis. Due@'llmltations
of the CACTI tool for area modelling of the cache-controlling circuits, dest to enforce the
replacement policy and coherence protocol, we take advantage ofﬁvel modelling and
synthesis for the area evaluation. To this intent, an RTL mqdel e cache control logic is
implemented. Further, the Synopsys Design Compiler [27] is &N perform hardware synthesis.
We used the Nangate 45nm standard-cell library which is based on the open FreePDK45 PDK
[38]. Fig. 12 shows the results of the aforementiore @ware synthesis of the HDL models of
the cache design decisions. The effects of the En cache on the area of the different parts of
the data cache and its control logic, mclud%p acement Policy Enforcement (RPE) circuits,
Coherence Protocol Enforcement (CP)€ircuits, and other cache control logic are reported. The
4-way, 8-way and 16-way cach pletely modelled with respect to the configuration
mentioned in Table 1. Sum izm results of area analysis, the numbers of cells and nets of
the total control logic of the%ced cache grow by about 4.78% and 6.51% in the 4-way cache
implementation, by ap tely 4.81% and 6.52%, for the 8-way cache implementation, and by
5.42% and 7.56%, @I e 16-way cache implementation. Concerning total cache circuits (memory
banks and total ogic), using the Enhanced cache leads to about 1.08% and 1.56% area
overhead ms of the numbers of cells and nets, respectively, for the 4-way cache
im erQon. The 8-way cache implementation results in about 1.1% and 1.58% area overhead
in tpfg’t;rms, and the 16-way cache leads to about 1.2% and 1.7% area overhead in the same
terms.

6.4. Comparison with the state-of-the-art
In this section, we present a comprehensive comparison between the proposed method (ECE) and
four representative aging mitigation techniques that, like ECE, aim to reduce SRAM aging by

regulating signal probability, include: Intra-word Bit Swapping (IBS) [34], Cell Flipping with

Distributed Refresh (CFDR) [35], Double Capacity Cache (DCC) [19], and Cache Size
Management (CSM) [22].

Fig. 13 presents the signal probability values for each individual bit position (0 to 63) across
a 64-bit cache line. In the base configuration, the signal probabilities show significant imbalance,
with extreme values ranging from as low as 1% to as high as 65%. IBS improves signal balance
for some bits through bit permutation, it fails to normalize the extremes of the word-line and
introduces switching overhead. CFDR performs better in global balancing but is cons if]ﬁf)y
refresh timing and workload sensitivity. DCC does not explicitly target signal balan.c&d, asa
result, leaves many bits with biased activity patterns, particularly when narrow-midth data is not

exhibits uneven effectiveness. In contrast, ECE maintains bit-level si probabilities tightly

dominant. CSM, while indirectly reducing stress via power gating, I%i{ resolution and
within the 48-52% range across all bit positions. o

Fig. 14 illustrates the normalized dynamic energy c%mption of cache memory cells
across various benchmark applications, considering diffepgnt®¢ache associativities. In the 4-way
configuration, the average normalized energy for E@ i@ 1, outperforming IBS (0.232), CFDR
(0.085), DCC (0.172), and CSM (0.102). As asso. t%(y increases, energy consumption slightly
rises for all methods, however, ECE mainta%?antage, with averages of 0.044 and 0.047 for
8-way and 16-way caches, respectively.4This efficiency stems from ECE’s fine-grained control

y.
over signal probability and swit%c%ity, which directly reduces unnecessary transitions in
d

SRAM cells. In contrast, IB§,an C, while effective in aging mitigation, lead to increased
switching overhead and enerhste. CFDR perform moderately well, but its global refresh and
power gating strategie he precision targeting of ECE. Also, CSM performs well in some
scenarios but lack %ad consistency. These findings confirm that ECE offers a favorable
reliability—energ@a -off, as it achieves substantial aging mitigation with only a marginal
increase | Qﬁmic energy, making it a compelling solution even for moderately energy-
con mgﬂgystems.

%?é impact of each method on cache miss ratio is detailed in Fig. 15, which shows
normalized miss rates across standard workloads. ECE maintains miss ratios nearly identical to
the baseline cache, indicating that its aging mitigation logic does not interfere with standard access
or replacement behavior. IBS and CFDR introduce minor increases in miss rates, likely due to
their additional access redirection logic. DCC exhibits larger deviations, especially in higher-

associativity caches, likely due to the complexity of packing and tag matching. Fig. 16 compares

the normalized write-back rate to L2 cache. ECE shows a moderate increase in write-back activity
compared to other methods, as it proactively evicts blocks that contribute disproportionately to
aging.

Fig. 17 illustrates the area overhead associated with both the control logic and the overall
cache system, relative to a baseline design. Techniques such as IBS and DCC require additional
circuitry for bit manipulation, multi-mode handling, or access redirection, leading to noticeably
larger control and overall area footprints. CFDR is particularly hardware-intensive e(é"lts
distributed refresh logic and the need to track and coordinate refresh phases across.e&gélocks.
While CSM also maintains a low area overhead similar to ECE, it does so at the e@'e of precise
control over aging and is less effective in maintaining performance co%{bﬁ contrast, ECE

achieves its goals through a streamlined control structure that integrates lessly with existing

cache architecture, avoiding invasive modifications to data paths o@‘nory structures.

7. Conclusion &N

This paper introduces an enhanced cache eviction strathed to extend the cache's lifespan
under aging stress. The proposed enhancement spe'c' i targets mitigating hard errors caused
by Static Noise Margin (SNM) degradati @ Imental results indicate that the uneven
distribution of data blocks with varying stat€S acfoss the lines of a cache set intensifies the SNM
degradation in SRAM cells. To address this, the paper presents a BTI-aware cache replacement
policy that ensures a balanced p %f data blocks with different states across cache lines.
This is achieved by revisitiﬁmision tree of the pseudo-LRU algorithm, incorporating
considerations for the dirty-pi cache lines and the type of address conflict miss. The enhanced
cache demonstrates ir&ments in both hold and read static noise margin degradation by
approximately 1% 12%, respectively, while incurring less than a 1.0% reduction in cache hit

ratio.

Referen(@o

[1] ?vwal, A., Paul, B., Mahmoodi, H., Datta, A., and Roy, K. "A process-tolerant cache
rchitecture for improved yield in nanoscale technologies™, IEEE Trans. Very Large Scale
Integr. Syst., 13(1), pp. 27—38 (2005). doi: 10.1109/TVLSI.2004.840407

[2] Bansal, A, Rao, R., Kim, J., Zafar, S., Stathis, J., and Chuang, C. "Impacts of nbti and pbti

on sram static/dynamic noise margins and cell failure probability", Microelectron. Reliab.,
49(6), pp. 642-649 (2009). doi: 10.1016/j.microrel.2009.03.016
[3] Bagatin, M., Gerardin, S., Paccagnella, A., and Faccio, F. "Impact of nbti aging on the single-

https://dl.acm.org/doi/10.1109/TVLSI.2004.840407
https://doi.org/10.1016/j.microrel.2009.03.016

event upset of sram cells”, IEEE Trans. Nucl. Sci., 57(6), pp. 3245-3250 (2010). doi:
10.1109/TNS.2010.2084100

[4] Jafari, A., Raji, M., and Ghavami, B. "BTI-Aware Timing Reliability Improvement of Pulsed
Flip-Flops in Nano-Scale CMOS Technology”, IEEE Trans. Device Mater. Reliab., 21(3),
pp. 379-388 (2021). doi: 10.1109/TDMR.2021.3102521

[5] Firouzi, F., Kiamehr, S., and Tahoori, M. "Statistical analysis of BTI in the presi(n&of

process-induced voltage and temperature variations”, 18th Asia South Pacific Deo m.
Conf., pp. 594-600 (2013). doi: 10.1109/ASPDAC.2013.6509663
[6] Lanzieri, L., Kietzmann, P., Fey, G., Schlarb, H., and Schmidt, T. "A E naly5|s of

Embedded SRAM on a Large-Scale Testbed Using Machme&

arXiv preprint
arXiv:2307.06693 (2023). [Online]. doi: 10.48550/arXiv.2307.06

[7] Listl, A., Mueller-Gritschneder, D., and Schlichtmann, U. J'A tion-aware aging analysis
and mitigation for SRAM design-for-reliability", Mic&won. Reliab., 134, p. 114548
(2022). doi: 10.1016/j.microrel.2022.114548

[8] Dounavi, H.-M., Sfikas, Y., and Tsiatouhas¢ Y.@bmg prediction and tolerance for the
SRAM memory cell and sense amplifi r",@l tron. Test., 37(4), pp. 1-14 (2021). doi:
10.1007/s10836-021-05932-6

[9] Dounavi, H.-M. and Tsiatouhas, Y4 "An aging monitoring scheme for SRAM decoders",
Microprocess. Microsyst., w 23 (2022). doi: 10.1016/j.vlsi.2022.09.009

"The

[10] Ding, J. and Asenov, Ay lysis of static random access memory stability under the
influence of statistic/:’éﬁability and bias temperature instability-induced ageing",
Semicond. SCI ., 36(2), p. 025008 (2020). doi: 10.1088/1361-6641/abchd6

[11] Gul, W., ShaQ and Al-Khalili, D. "SRAM cell design challenges in modern deep sub-
micron t ies: An overview", Micromachines, 13(8), p. 1332 (2022). doi:

10.33;@ 13081332
in,% Li, M., and Gupta, S. "Predictive testing for aging in SRAMs and mitigation", Proc.

[12
?EE(E Int. Test Conf., pp. 293-302 (2024). doi: 10.1109/ITC51657.2024.00050
[13] Hovanes, J. "Aging-induced long-term data remanence in SRAM cells”, M.S. thesis, Auburn
Univ., Auburn, AL, USA (2023). [Online]. Available:
https://etd.auburn.edu/handle/10415/8673
[14] Wang, M., Hou, Z., Wang, C., Yan, Z., Li, S., Du, A, Cai, W., Li, J., Zhang, H., Cao, K.,
Shi, K., Wang, B., Zhao, Y., Xiang, Q., Wang Z., and Zhao, W., "NAND-like SOT-MRAM-

https://doi.org/10.1109/TNS.2010.2084100
https://doi.org/10.1109/TDMR.2021.3102521
https://doi.org/10.1109/ASPDAC.2013.6509663
https://doi.org/10.48550/arXiv.2307.06693
https://doi.org/10.1016/j.microrel.2022.114548
https://doi.org/10.1007/s10836-021-05932-6
https://doi.org/10.1016/j.vlsi.2022.09.009
https://doi.org/10.1088/1361-6641/abcbd6
https://doi.org/10.3390/mi13081332
https://doi.org/10.1109/ITC51657.2024.00050
https://etd.auburn.edu/handle/10415/8673

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

based approximate storage for error-tolerant applications”, arXiv preprint arXiv:2404.05528
(2024). [Online]. Available: 10.48550/arXiv.2404.05528

Inci, A., Isgenc, M., and Marculescu, D. "DeepNVM++: Cross-layer modeling and
optimization framework of non-volatile memories for deep learning”, arXiv preprint
arXiv:2012.04559 (2020). [Online]. doi: 10.48550/arXiv.2012.04559

Hu, J., Wang, S., and Ziavras, S. "In-Register Duplication: Exploiting Narrow-Width Value
for Improving Register File Reliability”, Int. Conf. Dependable Syst. Netw., pp @9
(2006). doi: 10.1109/DSN.2006.43

Hovanes, J., Zhong, Y., and Guin, U. "Beware of Discarding Used SRAN@eratlon is
Stored Permanently”, arXiv preprint arXiv:2208.02883 & Online]. doi:

10.48550/arXiv.2208.02883

Shaik, J., Guo, X., Singhal, S., "Impact of Aging and Prqce iability on SRAM-Based

In-Memory Computing Architectures”, IEEE Tran. or@and Syst., 71, p. 2696-2708

(2024). doi: 10.1109/TCS1.2024.3381935

Imani, M., Patil, S., and Rosing, T. "DCC: De pacity Cache architecture for narrow-
&VLSI 113-116 (2016). doi:

width values”, Int. Great Lakes
10.1145/2902961.2902990
Flautner, K., Kim, N., Martin, S.,;IBIaauw, D., and Mudge, T. "Drowsy caches: simple

techniques for reducing leakagespower", Proc. 29th Annu. Int. Symp. Comput. Archit., pp.
148-157 (2002). doi: 1 MA.ZOOZ.NOBWZ

Lanzieri, L., Martino éy, G., Schlarb, H., Schmidt, T., and Wabhlisch, M.,. “A Review
of Techniques fo g Detection and Monitoring on Embedded Systems,” ACM Comput.

Surv. 57(1), ;Q? (2025). doi: 10.1145/3695247
Rohbani I@Eb imi, M., Miremadi, S., and Tahoori, M. "Bias Temperature Instability

Mitb@via Adaptive Cache Size Management”, IEEE Trans. Very Large Scale Integr.
stw25(3), pp. 1012-1022 (2017). doi: 10.1109/TVLSI.2016.2606579

[23] éinkert, N., Beckmann, B., Black, G., Reinhardt, S., Saidi, A., Basu, A., Hestness, J., Hower,

[24]

D., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M., and Wood,
D. "The gem5 simulator”, ACM SIGARCH Comput. Archit. News, 39(2), pp. 1-7 (2011).
doi: 10.1145/2024716.2024718

Sakalis, C., Leonardsson, C., Kaxiras, S., and Ros, A. "Splash-3: A properly synchronized

benchmark suite for contemporary research”, IEEE Int. Symp. Performance Anal. Syst.

https://doi.org/10.48550/arXiv.2404.05528
https://doi.org/10.48550/arXiv.2012.04559
https://doi.org/10.1109/DSN.2006.43
https://doi.org/10.48550/arXiv.2208.02883
https://ieeexplore.ieee.org/author/37086841267
https://ieeexplore.ieee.org/author/37085790133
https://ieeexplore.ieee.org/author/37085494842
https://doi.org/10.1109/TCSI.2024.3381935
https://doi.org/10.1145/2902961.2902990
https://doi.org/10.1109/ISCA.2002.1003572
https://doi.org/10.1145/3695247
https://doi.org/10.1109/TVLSI.2016.2606579
https://doi.org/10.1145/2024716.2024718

Softw., pp. 101-111 (2016). doi: 10.1109/ISPASS.2016.7482078

[25] Tudor, B., Wang, J., Sun, C., Chen, Z., Liao, Z., Tan, R., Liu, W., and Lee, F. "MOSRA: An
efficient and versatile MOS aging modeling and reliability analysis solution for 45nm and
below", IEEE Int. Conf. Solid-State Integr. Circuit Technol., pp. 1645-1647 (2010). doi:
10.1109/I1CSICT.2010.5667399

[26] Muralimanohar, N., Balasubramonian, R., and Jouppi, N., "Optimizing %U\CA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0," IEEE/ACM Int.
Sym. on Microarchitecture, Chicago, IL, USA, pp. 3-14, ZZOé?),j doi:
10.1109/MICR0Q.2007.33

[27] SYNOPSYS. "Design Compiler”, [Online]. Available: https://www.s

[28] Maghsoudloo, M. "On the Prevention of Coherence-Induce
Degradation of SRAM Cells", 5th CPSSI Int. Symp. Cyber- Pﬁbﬁyst Tehran, Iran, pp. 1-
8 (2024). doi: 10.1109/CPSAT64082.2024.10745400

[29] Saun, S. and Kumar, H. "Design and performance apalysis of 6T SRAM cell on different

CMOS technologies with stability characterlzi& "JIOP Conf. Ser. Mater. Sci. Eng., 561
(2019). doi: 10.1088/1757-899X/561/1/012¢F3

[30] Karimi, M., Rohbani, N., and MirematigS¥'A Low Area Overhead NBTI/PBTI Sensor for
SRAM Memories", IEEE Trans. ;ery arge Scale Integr. Syst., 25(11), pp. 3138-3151

(2017). doi: 10 1109/TVLS,% ‘4839
[31] Liu, B. and Chen, C.-Ha 'Testing, diagnosis and repair methods for NBTI-induced SRAM
faults", IEEE Int. H@’f. IC Design & Technol.,, pp. 1-4 (2014). doi:
10.1109/ ICICD 838608
[32] Maghsoudlochd Zarandi, H. R. "Design space exploration of non-uniform cache access
erability mitigation”, Microelectron. Reliab., 55(11), pp. 2439-2452
(20 10.1016/j.microrel.2015.07.049
[33 @orgls, A., Ebrahimi, M., Kiamehr, S., Oboril, F., Hamdioui, S., and Tahoori, M.
%ng mitigation in memory arrays using self-controlled bit-flipping technique”, 20th Asia
South Pacific Des. Autom. Conf., pp. 231-236 (2015). doi:
10.1109/ASPDAC.2015.7059010
[34] Sadeghi, M. and Nikmehr, H. "Aging-mitigation of cache memories by intra-word bit
swapping", Microprocess. Microsyst., 72 (2020). doi: 10.1016/].micpro.2019.102941
[35] Duan, S., Halak, B., and Zwolinski, M. "Cell Flipping with Distributed Refresh for Cache

for soft-e

https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1109/ICSICT.2010.5667399
https://doi.org/10.1109/MICRO.2007.33
https://www.synopsys.com/
https://doi.org/10.1109/CPSAT64082.2024.10745400
https://doi.org/10.1088/1757-899X/561/1/012093
https://doi.org/10.1109/TVLSI.2017.2734839
https://doi.org/10.1109/ICICDT.2014.6838608
https://doi.org/10.1016/j.microrel.2015.07.049
https://doi.org/10.1109/ASPDAC.2015.7059010
https://doi.org/10.1016/j.micpro.2019.102941

Ageing Minimization”, IEEE Asian Test Symp., pp. 98-103 (2018). doi:
10.1109/ATS.2018.00029

[36] Hennessy, J. and Patterson, D. "Computer Architecture: a quantitative approach, sixth
edition”, Morgan Kaufmann Publishers Inc., San Francisco, USA (2017). [Online].
Available: https://dl.acm.org/doi/book/10.5555/3207796

[37] Abel, A. and Reineke, J. "Reverse engineering of cache replacement policies in_Intel

microprocessors and their evaluation”, IEEE Int. Symp. Performance Anal. Sy, W.
 J
(ISPASS), pp. 141-142 (2014). doi: 10.1109/ISPASS.2014.6844475 \.
[38] Stine, J., Ozev, S., Brown, A., and Butts, K. "FreePDK3D45: An Open-S@ Predictive

Technology Model for 3D IC Research”, Department of% and Computer
Ine].

Engineering, North Carolina State University, Available:

https://eda.ncsu.edu/freepdk/freepdk3d45/ (accessed Jung,3, Z%)
Mohammad Maghsoudloo received his M.Sc., and PmD.Ngdegrees, all in the department of
computer engineering at Amirkabir University of Tegl y (Tehran Polytechnic), Tehran, Iran,
in 2012, and 2016, respectively. He is currentl ar@i a

and information technology department at n University since 2017. His research interests

nt professor in the computer engineering

include dependability evaluation, fault-tplerant computing, dependable computer architecture,
high-performance computing, cl %A

He established the “Cloud of Fhings¥CoT)” research center at Golestan University in 2018. He is
a member of the IEEE Co%&

X
Q@Q
c

Yy

ting/storage architectures, and the Internet of things.

ociety and the Computer Society of Iran (CSI).

https://doi.org/10.1109/ATS.2018.00029
https://dl.acm.org/doi/book/10.5555/3207796
https://doi.org/10.1109/ISPASS.2014.6844475

List of captions:

Table 1.

Fig. 1.

Fig. 2.

Fig. 3.
Fig. 4.
Table 2.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Simulation environment.

Probability distribution of SP factor for the bits of cache lines (clean and dirty) in a 64
KB cache (“Baseline” refers to the practical SP factor distribution under the standard

configuration specified in Table 1).

Distribution of blocks with different ranks selected as the replacement vit&i@ﬁ an 8-
way cache.

Cache hit ratio after eviction of blocks with different ranks in @y cache.
Pseudo-code for the enhanced early cache eviction strategy ay cache).
Description of Symbols and Functions Used in Alg’o'&t 1and 2.

Probabilities of state retention and change for its during workload execution.
The 'Retention’ series represents cases yvh dirty bit value remains unchanged,
while the 'Change’ series captures tra m where the dirty bit value shifts between
clean and dirty states. @

The average percentages of %e n;mber of writes performed on the modified cache

blocks in the different time intervals of their lifetime.

Analysis of cache it ratio degradation when evicting blocks ranked second to fourth

in caches wit g associativity levels.

X
@ Th%jisgributions of the SP factor of cache bits in the case of using Baseline and

Enhanced architectures compared to the results of the cache follows the completely
X 47

fair distribution. (b) The average amount of AVt for the SRAM cell transistors of a

-
Oache line with 32-nm technology for 200 months (“Baseline” refers to the cache with

Yy

Fig. 9.

Fig. 10.

base configuration specified in Table 1; “Fair” refers to the cache with completely fair

distribution of clean and dirty data items).

Comparison of the H-SNM (a) and R-SNM (b) degradation of the SRAM cells used
in the Baseline and Enhanced 4-way cache.

Comparison of the H-SNM (a) and R-SNM (b) degradation of the SRAM cells used

in the Baseline and Enhanced 8-way cache.

Fig. 11.

Fig. 12.
Table 3.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Effects of the Enhanced cache on the cache performance metrics (results are

normalized to the results of the Baseline cache).
Effects of the enhanced cache on the area consumption metrics.
Long-Term SNM and Threshold Voltage Degradation Across PVT Corners.

The signal probability values for each individual bit position (0 to 63) across a 64-bit
cache line, evaluated under six different configurations: Base, IBS, CF[@@C,

CSM, and ECE. N

The normalized dynamic energy consumption of cache memory ‘;ﬁoss various
benchmark applications, considering different cache asso m& 4-way, 8-way,
and 16-way. &«

The normalized miss rates across standard worklo&@-way, 8-way, and 16-way
associative caches.

The normalized write-back rate to L2 @cl@%standard workloads for 4-way, 8-
way, and 16-way associative caches. \

The area overhead associated w%h the control logic and the overall cache system,

relative to a baseline design.:

K

QQ

Yy

List of figures and tables:

Table 1.
Feature Details Feature Details
Frequency 5 GHz Branch Penalty 17 Cycles
Branch Predictor 16K entry, Bimodal and Gshare RAS 32 entries

Fetch/Issue/Commit

4/4/4

BTB

2K entries, 4-way

IL1/DL1 Cache

64KB, 4-way, Line size: 64B

L2 Cache

1MB, 4-way, Line siz/edz

Coherency Protocol

MESI

Replacement Policy

Tree-based P-Ln‘-&&u

Write Policy Write-back, Inclusive Pipeline Depth 14 stages
Execution Units 2 Integer ALUs, 1 FPU, TDP: 95W | Prefetching i . i

Fig

L

Normal Distribution

I Baseline (Dirty) =21 Baseline (Clean)

100000

Number of Observations

Fig.

Benchmarks

90000
80000
70000 3
60000 ”
50000 s~
40000 o
30000 -
20000 b
10000 A
0

0.4

0.5
SP Factor

0.6

3

HMRank #1 MRank #2 ERank #3 MRank #4 B Rank #5 BRank #6 MRank #7 DORank #8

Average 21 19 15 13 12 [T T 7 1]
Water-spatial 9 6 1T I T —
«» Water-nsquared 19 16 13 12 13 T I 1T]
.5 Volrend 4 4 4 1z —7—171
_S Raytrace 8 6) I 10 m
2 Ocean 19 19 19 15 12 I S—
< Barnes 6 9 6 6 13 —— v |
Radiosity 1 18 20 i 1 [T 7 7]
FMM 19 14 18 16 16 I I S— .
" Radix A A o B B A
TCJ Cholesky
E AN 33 9% - J5 0 oG mw |
FFT Iy | . v e I e

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Eviction Probability (%) by 8-way Cache Block Ranking

Fig. 3.
—@— Rank #1 —@— Rank #2 —@— Rank #3

100 —@— Rank #5 —&— Rank #6 Rank #7

90
80
70
60
50
40

—@— Rank #4

Rank #8

Cache Hit Ratio (%)

30
20
10

0 100M 200M 300M 400M 500M 600M

Number of Executed Instructions

Fig. 4. &\(b‘

700M

V4

800M

900M

Algorithm 1 Enhanced Early Cache Eviction Strategy for a n-way Cache ’\’

1: procedure ENHANCED-PLRU-NWAY/(C, B, D, ConflictType)
C < {Linel, Line2, ..., Linen} //Cache lines (n-way cache)
B < {BO, B1, ..., Blog2(n)-1} //Decision bits for the n-way tree

D < {Dirty[Linel], Dirty[Line2], ..., Dirty[Linen]} //Dirty bit ‘ \’
repeat c

3
4
5:
6: current_level < 0
7.
8
9

N

candidates — C
while |candidates| > 2 do

: branch_bit < B[current_level]
10: candidates < LeftHalf(candidates) if byanchshit == O\else RightHalf(candidates)
11: current_level < current_level + 1 %
12: end while

13:

14: C1_candidates < candidates //Fin didates

15:

16: if Dirty[C1_candidates[0 C1_candidates[1]] then

17: victim < C1_candidat current_level] == 0 else C1_candidates[1]
18: else

19: if ConflictType = Miss" then

20: victim < lj didates where Dirty[line] == 0

21: else if Copfli =="ReadMiss" then

22: victin@we € C1_candidates where Dirty[line] == 1

23: end

24: end iz)

25:

26: (victim, NewData) //Replace victim line with new data

27: pdateTreeBits(victim, B) //Update tree bits to reflect replacement
28:

29: until CacheAccess == Complete
30: return CacheStatus
31: end procedure

Helper functions

32: function LeftHalf(candidates)

33: return candidates[O : [candidates| / 2]

34: end function

35: function RightHalf(candidates)

36: return candidates[|candidates| / 2 : |candidates|]
37: end function

Table 2.

Symbol / Function

Description

A list of cache lines in the current set

C
B An array of PLRU decision bits representing internal nodes of the PLRU binary tree.
D A list of dirty status bits corresponding to each cache line.

ConflictType A runtime parameter identifying the type of cache miss.

Cl_candidates

The final two cache lines selected from the tree traversal and subject to eviction evaluati

Victim

The chosen cache line to be evicted and replaced. °

Replace (victim, NewData)

A procedure that evicts the victim line and inserts the new data block.

Updates the PLRU decision bits to reflect the most recent use of the victingline:

UpdateTreeBits (victim, B)
current level An index or depth indicator used to iterate over PLRU decision bits d@ traversal.
LeftHalf (candidates) A helper function that returns the left half of a given candidate li
RightHalf (candidates) A helper function that returns the right half of a candidate list.
Fig. 5. k\'
W Retention O Change
%‘ 100%
S 90%
T so%
o
g 70%
2 60%
j
§ 50%
2 40%
°
L 30%
3
s 20%
(%]
%S 10%
Z 0%
3 s & § &£ 5§ & 5§ & 5 & s & 5 &5 & 5 & 5 & 5 & 5 ¢z
ié" g 53¢ 58 &85 &5 &5 &5 g s &8s &5 &5 ¢85 ¢85
o
FFT LU Cholesky = Radix FMM Radiosity Barnes | Ocean Raytrace Volrend Water- Water-
nsquared spatia

N
©

Benchmarks

EFFT ELU mCholesky BRadix EFMM MRadiosity BBarnes EOcean MERaytrace EVolrend O Water-nsquared [Water-spatial

25

v QO

E£

-8

8.5 20

u,cn

55 _
0 I
o @ 15

o

§o

I

g =

=2 0

53

cQ

(]

S e

Ta 5

o2

5 £

£E PP | mm

0-10 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Time Intervals (% of Lifetime in Cache)

Fig. 7. ALY

EFFT ELU MCholesky EMRadix EFMM MRadiosity BMBarnes B Ocean MERaytrace @EVolrend O Water-nsquared O Water-spatial

i st 3 'WH Iiﬂﬂ hHm L

40
35
4-way 8-wa 6-way 4-way 8-way 16-way 4-way 8-way 16-way

30
25
20
15
10

w

Cache Hit Ratio Reduction (%)

o

-10 Second Third Fourth

X

[_1Baseline C_—JEnhanced

‘) 100000
<) 80000 =

Fig. 8 (a).

Fair

60000

40000

Number of Observations

20000 H

0
0 0102030405060.70809 1
SP Factor

Fig. 8 (b).

Fig. 9 (a).

Fig. 9 (b).

Fig. 10 (a).

—=a— Baseline —o—Enhanced —&— Fair

100 - DJD/D,,D—DD B
90 g e T e

0 20 40 60 80 100120 140 160 180 200

Time (months)

—{— Baseline —&— Enhanced

R-SNM Degradation (%)

0 20 40 60 80 100 120 140 160 180 200

Time (months)

—{— Baseline —@— Enhanced

H-SNM Degradation (%)

0 20 40 60 80 100 120 140 160 180 200
Time (months)

T

—{— Baseline

»°®
&>
>

(%) uonepes3ag INNS-Y

20 40 60 80 100 120 140 160 180 200

0

Time (months)

Fig. 10 (b).

—{— Baseline

syoeg-91IAN JO JaquINN pazijewloN

== 16-way (NCMR)
—&— 16-way (NNWB)

o
=}
(g\]
o
[}
i
o
(Yo}
—
g =@
o
- S 2
o u oz
N £ 22
- g %5
8 ¢ 2 2
— = o0 ©0
[J]
8 E
=
o
(Yo}
o
<
o
o
(%) uonepes3aqg INNS-H @ =
~x @
S 3
o 2
22
> >
@© @©
3
< <
—
—l
2
LL

0.0600

0.0300

0.0400
0.0200
0.0000
-0.0200
-0.0400

N
o
&

&

o
n
o
e
o

0.0200
0.0150
0.0100
0.0050
0.0000
-0.0050

ol1ey SSIAl YdeD) pazijewoN

Benchmarks

Fig. 12.

Normalized # of Nets (16-way)
Normalized # of Cells (16-way)
Normalized # of Nets (8-way)
Normalized # of Cells (8-way)
Normalized # of Nets (4-way)
Normalized # of Cells (4-way)

B RPE

Circuits

@ Other Control Logic

@ CPE Circuits

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Normalized Area (%)
Table 3. . b
. " SNM Hold | SNM Hold | SNM Read Read
Operating Condition AV, (Base) AV, (ECE) (Base) (ECE) (Base))
25°C, 1.0V (Nominal) 101.3 mV 87.1mVv -29% -20% -27% 9%
85°C, 0.9V (Stress corner) 1155 mV 98.7 mV -33% -23% -31% W -22%
-10°C, 1.2V (Conservative) 84.9 mV 69.3 mV -24% -16% -22% | -15%
1 [J
Flg. 13 A %
70 [Base —IBS CFDR ——DCC —— CSM —— ECE*
60 A
- a ,E:s:éﬁ::\
< N
= 50 \5 N
3 40
2 ;
o
& 30
£ 20
.90
(%]
10 H
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29BBIPO3BioB5 37 39 41 43 45 47 49 51 53 55 57 59 61 63
B O
Fig. 14. A\a
EFFT mLU mCholesky mBarnes M Ocean MRaytrace MRadix ®mFMM M Radiosity M Volrend B Water-nsquared B Water-spatial
0.350
&
5 0.300
S
o < 0.250
25
@ 5 0.200
5E
£ 2 0.150
8 8
= 0.100
£ 0.050 |
[e] .
2 Al I|I||| I|II II||||| III
o [Ut ull il

ECE* IBS CFDR CSM | ECE* IBS CFDR CSM | ECE* IBS CFDR

Fig.

Normalized Cache Miss Ratio

Fig

Normalized Number of Write-

15.

HFFT ®WLU mCholesky m Barnes M Ocean M Raytrace M Radix MFMM M Radiosity M Volrend B Water-nsquared B Water-spatial

0.12
0.10
0.08
0.06
0.04 ‘
0.02
0.00 ||.|||| .|.|II| 1| I....|.||| [. |....|.||| Y - ||.|||| .|.|II| 1| ||.||| ||||| |
4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way| 4-way 8-way 16-way
ECE* IBS CFDR DCC CSM
o (b
. 16. \
B FFT mLU mCholesky = Barnes M Ocean M Raytrace MRadix MFMM M Radiosity M Volrend B Water-nsquared B Water-spatial
0.20
0.15
2
® 0.10
Qo
| ‘ | H“ I
0.00 ||| I||||||I Ill AT 1, 0 00 0t .t ot e oo AR T it |
4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way

ECE* IBS CFDR DCC CcSMm

X

Fig. 17. @

Area Overhead (%)

0,

100% M Total Control Logic M Total Cache and Control Logic

80%

60%

40%

20%

O%I_l-l_l-l_l-l|IlllIIIIIIIIIIIII_-I_-I_-
2 2
8282382828282 828238z2823828z2382z238z438:z2
4-way 8-way 16-way 4-way | 8-way 16-way| 4-way 8-way | 16-way 4-way | 8-way 16-way| 4-way 8-way 16-way

ECE* IBS CFDR DCC CSM

