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Abstract 

This paper presents a comprehensive analysis of the impact of early 

cache eviction on the aging of cache cells. It highlights that, in addition 

to the previously identified factors contributing to static noise margin 

(SNM) degradation in cache cells, the state of cached data plays a 

critical role in this process. The analysis reveals that the uneven 

distribution of clean and dirty data blocks across the lines of a cache 

set can also be a significant factor in SNM degradation. To address 

this issue, this study proposes an early cache eviction strategy aimed 

at balancing the distribution of dirty and clean data blocks over cache 

lines, thereby mitigating SNM degradation. To achieve this, the 

decision tree of the Pseudo-LRU replacement policy is redesigned to 

incorporate cache line states and address conflict miss types. 

Experimental results demonstrate that the enhanced cache improves 

the hold and read SNM by approximately 10% and 12%, respectively, 

while incurring negligible cache hit reduction and minimal area and 

energy overheads. 
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1. Introduction 

As CMOS technology continues to scale, reliability concerns have become increasingly critical in 

the design of integrated circuits [1]. Among these, transistor aging has emerged as a significant 

reliability challenge in nanoscale CMOS technology, often leading to permanent hardware faults 

[2]. Bias Temperature Instability (BTI) is the primary aging mechanism, causing an increase in the 

absolute value of transistor threshold voltage and a reduction in charge carrier mobility [3]. These 
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BTI-induced effects can significantly increase propagation delays in combinational circuits [4] and 

degrade the Static Noise Margin (SNM) of sequential elements such as Static Random-Access 

Memory (SRAM) [5]. Furthermore, the operating conditions of circuits—including temperature, 

voltage bias, and current density—can exacerbate BTI-induced SNM degradation, leading to 

premature vulnerabilities [4, 6]. 

SNM is a critical metric for evaluating the stability and reliability of SRAM cells, 

representing the maximum voltage noise that a memory cell can tolerate without a state flip [7, 8, 

9]. Reliability concerns in SRAM must be prioritized, as these cells occupy a significant portion 

of the chip area and are central to on-chip cache memories, which make up over 60% of a modern 

microprocessor’s transistors [6]. This makes SRAM highly susceptible to hard and soft errors, 

especially as SNM degradation compromises their stability [10]. Notably, BTI-induced SNM 

degradation is most severe when a constant value is stored in an SRAM cell for extended periods 

[11, 12, 13, 14]. A typical SRAM cell comprises six MOSFETs configured as two cross-coupled 

inverters and two access transistors. When storing a continuous “0” or “1,” one PMOS and one 

NMOS transistor are particularly vulnerable to BTI-induced threshold voltage variation [2].  

Efforts to address BTI-induced SNM degradation can be categorized into two main areas: 

aging sensing and aging mitigation. Aging sensing methods often involve embedding sensors in 

SRAM memory arrays to monitor the system's runtime behavior and detect signs of degradation 

[15-18]. However, these methods face challenges due to reduced sensor accuracy caused by 

process variation and environmental changes [19-21], as well as the complexity of implementing 

circuit-level modifications in SRAM cells [22]. Aging mitigation techniques focus on preventing 

SRAM cells from storing fixed values for extended periods, aiming to balance the Signal 

Probability (SP) factor of cache cells to 50% [8, 9, 19, 20, 22]. 

This paper provides a detailed analysis of the SP factor's probability distribution for cache 

line bits. To this end, the Multi-facet GEMS (gem5) [23] simulation environment, was utilized. 

Additionally, the study evaluated the Stanford Parallel Applications for Shared Memory 

(SPLASH-3) benchmark suite [24]. BTI-induced aging was analyzed using the HSPICE reliability 

tool [25], while cache energy consumption was estimated using the CACTI 6.5 simulator [26]. An 

RTL model of the cache control logic was implemented for area analysis, with hardware synthesis 

performed using the Synopsys Design Compiler [27]. Experimental results revealed that the 

observed SP factor distribution deviates significantly from the normal distribution, with an average 

deviation of 88.3%. This paper identifies that, alongside locality principles and Narrow-Width 



 

 

Values (NWVs), the unbalanced distribution of clean and dirty data blocks across the lines of a 

cache set also contributes to this deviation. 

Based on these findings, this paper proposes a BTI-aware cache eviction strategy designed 

to balance the placement of data blocks associated with different states across cache lines. The 

proposed method modifies the cache control logic to balance the cumulative intervals between 

consecutive writes on various cache lines in a set. The strategy leverages two key factors—the 

state of cache lines (clean or dirty) and the type of address conflict miss. The enhanced cache 

achieves improvements of approximately 10% and 12% in Hold-SNM and Read-SNM, 

respectively, for the 4-way, 8-way and 16-way caches, with minimal performance penalties: about 

1% reduction in cache hit ratio, about 3% increase in write-backs, about 4% dynamic energy 

consumption overhead, and area overheads of about 1% and 2% for cell and net counts, 

respectively. 

The ideas, implementations, and results presented in this paper build upon and extend the 

foundational analyses from our initial work published in [28]. The enhancements and 

improvements outlined below are aimed at extending the scope and depth of the original study. 

While the initial work in [28] was designed specifically for 4-way set-associative caches, the 

extended version introduces a generalizable early cache eviction strategy that can be effectively 

applied to caches with varying degrees of associativity (e.g., 8-way and 16-way caches). It also 

includes deeper SP factor analysis, scalability tests for 8-way and 16-way caches, and detailed 

pseudocode for the new eviction strategy, ensuring adaptability to workload types. 

The remainder of this paper is structured as follows: Sections 2 and 3 discuss the 

background and experimental setup. Sections 4 and 5 describe the motivation and structure of the 

proposed BTI-aware eviction strategy. Finally, Sections 6 and 7 summarize the results and present 

conclusions. 

 

2. Background 

Numerous studies have addressed the challenges posed by BTI-induced errors in SRAM cells, 

which can be broadly divided into two categories: aging sensing and aging mitigation strategies 

[29]. Aging sensing approaches aim to detect critical signs of BTI-induced degradation in SRAM 

cells to prevent catastrophic system failures [30, 31]. These techniques often employ sensors that 

monitor the runtime behavior of memory systems at various levels of abstraction. At the circuit 

level, they leverage electrical parameters such as subthreshold leakage current, threshold voltage, 

drain current, transconductance, signal rise and fall rates, margin delays, reference voltages, and 



 

 

bit-line currents as indicators of aging [14, 15]. Additionally, architectural-level techniques, such 

as Error Detecting/Correcting Codes (EDC/ECC), are used to identify soft and hard errors in 

SRAM cells by validating stored data integrity [31]. However, despite their effectiveness, aging 

sensing techniques face notable limitations, including substantial area and power overheads and 

the complexity of integrating circuit-level modifications into SRAM designs [16]. In contrast to 

sensing, aging mitigation strategies focus on proactively addressing conditions that accelerate BTI-

induced degradation in SRAM cells [16]. The primary goal of these methods is to prevent SRAM 

cells from storing fixed values ("0" or "1") for extended durations, as this exacerbates BTI stress 

[16, 19]. Structural enhancements, such as enabling drowsy mode for idle cache regions, power-

gating specific cells, or even processor overclocking, and SP factor balancing techniques, such as 

bit flipping, dynamic cache indexing, and NWV-aware cache management, have been proposed to 

extend cache relaxation times and reduce stress on SRAM cells [16, 19, 20, 22, 33, 34, 35]. Another 

architectural-level technique exists that specifically targets a 4-way set-associative cache 

architecture [28]. The proposed enhancement to the replacement policy, including modifications 

to the cache management structure and the integration of coherency-state-aware victim selection, 

is structurally bound to the binary-tree format of 4-way caches, and the techniques were not 

generalized for 8-way or 16-way cache organizations [28]. Generally, unlike aging sensing 

methods, mitigation techniques often present a more practical solution by significantly reducing 

the area and power overheads associated with sensing methods [16]. 

 

3. Experimental setup 

For evaluating both the existing and newly introduced design decisions, an extended version of 

Multi-facet GEMS (gem5) [23] was utilized. The specifications of the baseline system are 

summarized in Table 1. In this study, the entire set of applications and kernels from the Stanford 

Parallel Applications for Shared Memory (SPLASH-3) benchmark suite was analyzed within the 

simulation environment. The SPLASH-3 suite is widely regarded as a comprehensive collection 

of parallel programs designed for cache-coherent shared address space architectures and has been 

extensively used in modern research [24]. Each program was simulated for 900 million 

instructions, with the initial 100 million instructions fast-forwarded to ensure the evaluation 

focused on steady-state execution. 
 

4. Motivation 

In an ideal scenario for preventing SNM degradation, the value of a bit stored in an SRAM cell 



 

 

should be an independent random variable with equal probabilities of being “0” or “1.” In this 

case, the probability distribution of the SP factor for all bits stored in the cache over time would 

follow a normal distribution with a mean of 50%. A detailed analysis was conducted to investigate 

the probability distribution of the SP factor for the simulated cache bits. Fig. 1 illustrates the 

distribution of the SP factor for 524,288 bits (64 KB) of the cache, categorized into clean and dirty 

data. As shown in Fig. 1, the Baseline does not exhibit a perfect normal distribution with a mean 

of 0.5. More than 68% of the SP factors are below 0.5, reflecting a higher likelihood for the cache 

bits to hold constant “0” values during their lifetime. This deviation is attributed to two key 

reasons: locality principles and NWVs [16]. This behavior is exacerbated in dirty cache lines, 

where sequences of write operations lead to a greater frequency of bit changes compared to clean 

data. Consequently, dirty cache lines exhibit an SP factor distribution closer to the normal 

distribution, with an average error of 28.9%, compared to 91.2% for clean cache lines. This 

observation underlines the potential for fairer distribution of dirty data blocks across cache lines. 

 

5. BTI-aware early cache eviction strategy 

Today, most primary caches employ a Pseudo-Least Recently Used (PLRU) algorithms to avoid 

the disadvantages of a complex hardware design of base Least Recently Used (LRU) [36, 37]. In 

order to determine how close the decisions made by the PLRU to LRU, we extended the 

experiments to assess the chances of each cache block in a set to be selected as the replacement 

candidate by the PLRU and LRU considering their access history. Fig. 2 shows the distribution of 

block selection as the replacement victim in an 8-way cache. The blocks are ranked based on their 

access history, and the block holding the first/last rank is the least/most recently accessed one. The 

experimental results reveal that the PLRU algorithm selects blocks of 8-way cache from the first, 

second, third, and fourth ranks with an average frequency of 21.5%, 19.4%, 15.1%, and 13.0%, 

respectively. The selection of blocks with ranks two, three, and four deviates from the least recently 

accessed block (rank one) by approximately 2.1%, 6.4%, and 8.5%, respectively, highlighting the 

non-uniformity of the PLRU replacement policy. Based on the experimental results, the block 

holding the second rank has almost the same chance as the least-recently-used block to be 

victimized by the PLRU. Generally, the results show that the data block replaced by the PLRU is 

not the least-recently-used one.  

In order to investigate how much different replacement decisions can affect the cache hit 

ratio, an experiment was conducted so that different blocks were forcibly selected as the 

replacement candidate concerning their access histories. Fig. 3 shows the hit ratio of the simulated 



 

 

cache after executing a specified number of instructions in the case of victimizing different blocks 

holding different ranks in a cache set for an 8-way cache. The results are the average cache hit 

ratio for all the workloads. As demonstrated by Fig. 3, for the 8-way cache set, replacing the blocks 

ranked second, third and fourth results in approximately less than 10% reduction in the cache hit 

ratio. In a set-associative cache, the data blocks ranked first and second are located in the same 

branch of the replacement tree structure, either left or right. As a result, selecting any leaf from the 

left or right branch yields similar outcomes, depending on the configuration of the tree. 

Taking advantage of relative freedom to victimize the least recently used cache items, the 

structure of the decision tree has been modified to balance the distribution of dirty cache blocks 

over different ways of a cache set. In other words, the main concentration of the enhanced eviction 

strategy is on the fact that giving the cache lines approximately the same chances of storing 

dirty/clean data could reduce the time cache lines store fixed values. The pseudo-code for the 

enhanced tree-based PLRU replacement policy for a n-way associative cache is shown in Fig. 4. 

Table 2 describe symbols and functions used by Algorithm 1. The cache set is structured as a 

binary tree, with log₂(n) internal decision bits (B) guiding traversal to find the least recently used 

portion of the set. Each decision bit indicates whether the traversal should continue into the left or 

right half of the current candidate pool. This descent continues recursively using LeftHalf() and 

RightHalf() helper functions. This process continues until only two candidates remain, referred to 

as C1_candidates, which are then evaluated for replacement. The final decision considers the 

dirty/clean status of the two candidates to balance cache performance and reliability. Clean lines 

are prioritized for eviction during write misses to minimize unnecessary write-backs, while dirty 

lines are preferred during read misses to preserve clean data for future modifications. This scalable 

algorithm maintains the core principles of PLRU replacement while introducing enhanced logic to 

prevent SNM degradation caused by an imbalance in clean and dirty cache blocks. 

An essential feature of the enhanced PLRU algorithm is its adaptability to dynamic 

workloads. By leveraging the ConflictType parameter, the algorithm differentiates between read 

and write misses, enabling it to apply enhanced replacement strategies. This context-awareness 

ensures that the replacement decisions align with the current access patterns of the workload. In 

write-intensive scenarios, the prioritization of clean blocks for eviction helps mitigate the overhead 

of excessive write-back operations. On the other hand, during read-heavy workloads, retaining 

clean blocks improves future cache efficiency by reducing the need for reloads from main memory. 

Moreover, the hierarchical decision-making process of the binary tree inherently supports 



 

 

parallelism. Each level of the tree operates independently, allowing decision bits for different 

branches to be evaluated concurrently. This feature can be particularly advantageous in hardware 

implementations, where parallel processing of decision bits can significantly reduce the latency of 

replacement decisions. Furthermore, the compact representation of decision bits in the B array 

minimizes memory overhead, making the algorithm lightweight. The logic depth of tree-based 

eviction strategies grows with the associativity. In hardware terms, for a general n-way cache 

(where n is a power of 2), the proposed mechanism generalizes this procedure. It uses log₂(n) 

decision bits to traverse a binary tree of n lines, halving the candidate pool at each level until only 

two remain (the final two candidates). The algorithm then applies the same final-step check on 

those two lines’ dirty bits and the ConflictType. A tree-based PLRU policy requires storing ~n–1 

bits per set to represent the binary decision tree. Our strategy uses the same bits, which is O(n) 

growth in storage. It leverages the existing PLRU tree bits and dirty flags, plus the runtime 

ConflictType signal (read vs. write miss) which is an input, not stored in the cache. The PLRU tree 

logic itself scales with n roughly in proportion to the number of internal nodes (also O(n) gates in 

total), but this is a very small structure in absolute terms (e.g. a 16-way set uses 15 1-bit nodes). 

The dirty-bit comparator is a simple XNOR/AND gate checking two 1-bit values, and the logic to 

choose victim based on ConflictType is a tiny multiplexer. Therefore, the incremental area 

overhead of the proposed strategy over PLRU is negligible (on the order of a few gates, 

independent of n). In summary, area scales ~O(n) (dominated by the need to store more bits as 

ways increase), and enhancements do not change that asymptotic growth. Both PLRU and 

enhanced strategy have a time complexity on the order of O(log n) for choosing a victim. The 

critical path in hardware will pass through roughly log₂(n) bit-checks. Our strategy adds at most 

one additional comparison and a final 2-way select based on either a PLRU bit or the ConflictType. 

These additions are constant-time operations and thus do not change the overall O(log n) scaling. 

Fig. 5 illustrates the transition probabilities between different states of a cache block (clean 

and dirty) during workload execution. These probabilities are derived by monitoring state changes 

in the cache coherence directory and analyzing the transitions among various coherency states 

associated with cache lines. The results reveal that, on average, a cache block loaded into a cache 

line due to an address conflict read miss remains clean until eviction in over 72% of cases. 

Similarly, for an address conflict write miss, a cache line is updated with a data block fetched from 

lower-level memory and remains dirty until a write-back occurs, with this behavior observed in 

more than 80% of cases on average. 



 

 

To address the above findings, the proposed mechanism aims to balance the distribution of 

clean and dirty data blocks across the lines of a cache set. This is achieved by selecting the victim 

cache line based on the dirty bits of the blocks ranked first and second in the set, as well as the 

type of address conflict miss prompting the replacement. The process involves two scenarios: 

 Scenario 1: For an address conflict write miss, a cache line containing a clean data block is 

chosen for eviction to make room for a new data block with a high likelihood of being modified. 

 Scenario 2: For an address conflict read miss, a cache line containing a dirty data block is 

selected for eviction to accommodate a new data block with a lower probability of modification. 

The action proposed for the second case aims to increase the likelihood of storing incoming 

data blocks with high modification potential in cache lines that currently contain clean data. 

Experimental results further reveal that the majority of changes to dirty cache blocks occur within 

the first 50% of their lifetime in the cache. Fig. 6 illustrates the average percentages of writes 

performed on modified cache blocks during different intervals of their lifetime. On average, 

approximately 67% and 75% of updates to dirty cache blocks are made within the first half of their 

lifetime for Kernels and Applications workloads, respectively. Additionally, dirty blocks tend to 

move from the third or fourth ranks to the first or second ranks in the replacement hierarchy after 

82.3% of their lifetime. Beyond this point, the number of write accesses to these modified data 

blocks decreases, on average, to less than 3%. This indicates that most dirty data blocks ranked 

first and second remain unchanged until replacement. Therefore, the early eviction of such dirty 

blocks could help mitigate SNM degradation. 

To investigate the impact of increasing associativity on design parameters, we also repeated 

the experiments for caches with 8-way and 16-way configurations. Fig. 7 compares the cache hit 

ratio reduction in the case of victimizing blocks holding second to fourth ranks in a cache with 

different levels of associativity. In this experiment, the second/third/fourth-ranked blocks were 

forcibly selected as the replacement candidate concerning their access histories. The results, 

presented in Fig. 7, are the average cache hit ratio reduction compared to the case in which the 

first-ranked block is evicted. Regarding Fig. 7, the cache hit ratio is less affected by the eviction 

of the second/third/fourth-ranked blocks as the level of the cache associativity increases. Using a 

4-way cache, victimizing the blocks holding the second, third, and fourth ranks (instead of the 

least-recently-used one) leads to about 1%, 23%, and 31% reduction in the cache hit ratio, 

respectively. These values are, on average, about 0.2%, 15%, and 14% for an 8-way cache, and 

0.2%, 9%, and 6% for a 16-way cache. By increasing the level of cache associativity, more choices 



 

 

will be revealed as the alternative for the least-recently-used data block to be replaced with the aim 

of SNM degradation prevention. The conditions intended in the structure of the proposed decision 

tree can be similarly extended to manage the chance of storing the data blocks with the higher 

potential of modification among cache lines of a set with higher levels of associativity. In this case, 

the lower-ranked cache lines can also be considered along with the first and second-ranked ones, 

while adjusting the distribution of clean/dirty data blocks among cache lines is taken into account. 
 

6. Result analysis and discussion 

6.1. Aging mitigation  

Metal Oxide Semiconductor Reliability Analysis (MOSRA) [25] has been used for BTI-induced 

aging analysis of the 32nm SRAM cells before and after applying modification to the controller 

circuits of the simulated cache. The amount of threshold voltage variation (∆Vth) of the SRAM cell 

transistors can be estimated at different temperatures using the built-in aging model of the 

MOSRA. As a first step, the probability distribution of the SP factor for cache bits is investigated 

after using the enhanced replacement policy, and the average percentage error between the 

observed and normal distributions is compared with the results of the baseline cache. Fig. 8 (a) 

shows the distributions of the SP factor of cache bits in the case of using Baseline and Enhanced 

architectures. The Fair distribution curve has been included in the graph to give a clear comparison 

in terms of the average percentage error between the obtained results and the completely fair 

distribution. Regarding Fig. 8 (a), the average percentage error between the results of Enhanced 

cache and normal distributions is about 71%, implying about 20% improvement compared to the 

average percentage error between the Baseline and Normal distributions. Moreover, the average 

percentage error between the results of the Enhanced cache and Fair distribution is about 16% 

which indicates the effectiveness of the proposed replacement policy in reaching a nearly fair 

distribution of the data blocks with a high potential for modification among cache lines. 

As a second step, the amount of BTI-induced threshold voltage shift (∆VT) is studied 

according to the built-in aging model of MOSRA. Fig. 8 (b) illustrates the average amount of ∆VT 

for the whole SRAM cell transistors of a cache line with 32-nm technology for 200 months. The 

results have been obtained based on the duty cycles of the SRAM cell transistors extracted from 

gem5 after running all workloads on the simulated architectures, including the cache design 

decisions. Regarding Fig. 8 (b), VT shifts of SRAM cell transistors of the Baseline and Enhanced 

cache can be increased over time up to 101.33 mV and 87.12 mV, leading to about 14.0% threshold 

voltage degradation reduction by the proposed architecture. Moreover, the average percentage 



 

 

error between the results of the Enhanced and Fair caches is about 1% compared to the about 17% 

percentage error between the results of the Baseline and Fair caches. 

The stability of SRAM cells depends on the SNM, and asymmetric ∆VT of SRAM cell 

transistors can degrade the SNM of the cell by unbalancing the VTC. SNM of an SRAM cell can 

be measured in terms of two sub-stability metrics: Hold- and Read-SNM (H-SNM and R-SNM). 

The H-SNM and R-SNM degradation of the SRAM cells used in the Baseline and Enhanced cache 

is compared in Fig. 9. The H-SNM and R-SNM of the fresh SRAM cells in 32-nm technology are 

about 108.7 mV and 102.2 mV. The H-SNM and R-SNM are reduced to about 77.7 mV and 74.7 

mV after 180 months of cache operation, leading to 29% and 27% SNM degradation, respectively. 

However, the SNM of the SRAM cells degrades more moderately under the management of the 

Enhanced cache. In this case, the H-SNM and R-SNM are degraded by about 20% and 19% after 

180 months, translating into about 10% and 12% improvement in H-SNM and R-SNM 

degradation. 

For the experiments conducted on the 8-way cache, the results indicate a more significant 

improvement in the reduction of H-SNM and R-SNM in the Enhanced cache compared to the 

Baseline cache. As Fig. 10 shows, In the Baseline cache, the degradation of R-SNM and H-SNM 

after 180 months of operation is approximately 26.9% and 28.5%, respectively. However, in the 

Enhanced cache, these values reduce to approximately 19.2% and 19.6%, respectively. As 

observed, the baseline exhibits a pronounced ΔVT shift in specific SRAM cells due to imbalanced 

switching activity, particularly where dirty lines persist for extended periods. In contrast, the 

proposed early cache eviction strategy (ECE), by managing dirty and clean block distribution 

adaptively based on access type, leads to a more uniform toggle probability across all cache bits. 

This translates into reduced ΔVT drift and improved aging balance. 

To comprehensively evaluate the aging mitigation effectiveness of the ECE, we analyze its 

impact on ΔVT and SNM degradation under various Process–Voltage–Temperature (PVT) 

conditions over an extended operational period. The results summarized in Table 3 are derived 

from BTI-aware simulations using MOSRA [25] over 180 months, reflecting realistic lifetime 

behavior of SRAM-based caches. Under nominal conditions (25°C, 1.0V), which reflect typical 

operating environments, the baseline cache shows significant degradation: ΔVT reaches 101.3 mV, 

while SNM degrades by 29% (hold) and 27% (read). In contrast, the ECE limits ΔVT to 87.1 mV 

and reduces SNM degradation to 20% and 19%, respectively. These improvements stem from 

ECE’s signal-balancing policy, which adaptively evicts clean or dirty lines based on miss type. 



 

 

Under stress-prone conditions (85°C, 0.9V), where aging effects are amplified due to increased 

BTI sensitivity and slower charge recovery, degradation is naturally more severe. The baseline 

configuration shows a ΔVT of 115.5 mV and SNM degradation levels of 33% (hold) and 31% 

(read). Despite this challenging environment, ECE continues to provide substantial mitigation, 

lowering ΔVT to 98.7 mV and improving SNM margins by 10% points in both hold and read modes. 

This confirms that ECE’s architectural-level balancing remains effective even under accelerated 

degradation scenarios. Conversely, in conservative corners (–10°C, 1.2V), aging slows due to 

reduced BTI stress and better carrier mobility. As expected, the baseline system performs better 

here, with ΔVT at 84.9 mV, and SNM degradations of –24% (hold) and –22% (read). Still, ECE 

further enhances stability, achieving ΔVT of 69.3 mV, and lowering SNM degradation to –16% and 

–15%, respectively. 

6.2. Performance overhead 

Two metrics are considered to compare the effects of design decisions on the cache performance: 

cache hit/miss ratio and the number of write-backs. Fig. 11 demonstrates the effects of the 

Enhanced cache on the aforementioned metrics. Regarding Fig. 11, the ECE increases the cache 

miss ratio in comparison with the Baseline cache on average by about 1.25%, 0.81%, and 0.67% 

in the case of using 4-way, 8-way, and 16-way set-associative caches. The experimental results 

demonstrate that the early eviction of the selected data blocks does not drastically degrade the hit 

ratio since the proposed technique invalidates most replacement candidates after being idle. 

Increased associativity decreases the number of conflict misses and subsequently can generally 

improve the cache miss rate. Thus, the hit rate degradation, observed due to the proposed early 

eviction, is moderated by increasing the degree of associativity. Moreover, the proposed technique 

increases the number of write-backs compared to the Baseline cache on average by about 3.66%, 

3.17%, and 2.34% in 4-way, 8-way, and 16-way caches. By increasing the level of cache 

associativity, the distance between the practical results of selecting two consecutive data blocks in 

replacement ranking is reduced. Therefore, evicting the second-ranked replacement candidate, as 

an alternative for the least-recently-used data block, imposes less performance overhead while 

cache associativity increases from 4-way to 16-way. 

6.3. Energy and area overhead 

The activity factor of the SRAM cells, which is mainly concentrated to prevent SNM degradation 

by the aging-aware cache management techniques, can directly affect the dynamic energy 

consumption of the cache. The CACTI 6.5 simulator [26] is used to estimate the dynamic energy 



 

 

consumption of Baseline and Enhanced caches using the 32nm technology node. The dynamic 

energy consumption increases as a result of the increased bit-switching activities of the Enhanced 

cache’s cells. Balancing the probability distribution of the SP factor of cache lines’ bits by the 

proposed selective early eviction of unused clean/dirty data blocks leads to the increased cache 

miss rate and the activity factor. The Enhanced 4-way, 8-way and 16way caches increase the 

dynamic cache energy consumption compared to the Baseline cache on average by about 4.07%, 

4.39% and 4.74%, respectively. 

Moreover, the additional circuity in the cache controller, inserted to implement the 

enhanced replacement policy, raises the need for area consumption analysis. Due to the limitations 

of the CACTI tool for area modelling of the cache-controlling circuits, designated to enforce the 

replacement policy and coherence protocol, we take advantage of RTL-level modelling and 

synthesis for the area evaluation. To this intent, an RTL model of the cache control logic is 

implemented. Further, the Synopsys Design Compiler [27] is used to perform hardware synthesis. 

We used the Nangate 45nm standard-cell library which is based on the open FreePDK45 PDK 

[38]. Fig. 12 shows the results of the aforementioned hardware synthesis of the HDL models of 

the cache design decisions. The effects of the Enhanced cache on the area of the different parts of 

the data cache and its control logic, including Replacement Policy Enforcement (RPE) circuits, 

Coherence Protocol Enforcement (CPE) circuits, and other cache control logic are reported. The 

4-way, 8-way and 16-way caches are completely modelled with respect to the configuration 

mentioned in Table 1. Summarizing the results of area analysis, the numbers of cells and nets of 

the total control logic of the Enhanced cache grow by about 4.78% and 6.51% in the 4-way cache 

implementation, by approximately 4.81% and 6.52%, for the 8-way cache implementation, and by 

5.42% and 7.56%, for the 16-way cache implementation. Concerning total cache circuits (memory 

banks and total control logic), using the Enhanced cache leads to about 1.08% and 1.56% area 

overhead in terms of the numbers of cells and nets, respectively, for the 4-way cache 

implementation. The 8-way cache implementation results in about 1.1% and 1.58% area overhead 

in these terms, and the 16-way cache leads to about 1.2% and 1.7% area overhead in the same 

terms.  

6.4. Comparison with the state-of-the-art 

In this section, we present a comprehensive comparison between the proposed method (ECE) and 

four representative aging mitigation techniques that, like ECE, aim to reduce SRAM aging by 

regulating signal probability, include: Intra-word Bit Swapping (IBS) [34], Cell Flipping with 



 

 

Distributed Refresh (CFDR) [35], Double Capacity Cache (DCC) [19], and Cache Size 

Management (CSM) [22].  

Fig. 13 presents the signal probability values for each individual bit position (0 to 63) across 

a 64-bit cache line. In the base configuration, the signal probabilities show significant imbalance, 

with extreme values ranging from as low as 1% to as high as 65%. IBS improves signal balance 

for some bits through bit permutation, it fails to normalize the extremes of the word-line and 

introduces switching overhead. CFDR performs better in global balancing but is constrained by 

refresh timing and workload sensitivity. DCC does not explicitly target signal balancing and, as a 

result, leaves many bits with biased activity patterns, particularly when narrow-width data is not 

dominant. CSM, while indirectly reducing stress via power gating, lacks per-bit resolution and 

exhibits uneven effectiveness. In contrast, ECE maintains bit-level signal probabilities tightly 

within the 48–52% range across all bit positions. 

Fig. 14 illustrates the normalized dynamic energy consumption of cache memory cells 

across various benchmark applications, considering different cache associativities. In the 4-way 

configuration, the average normalized energy for ECE is 0.041, outperforming IBS (0.232), CFDR 

(0.085), DCC (0.172), and CSM (0.102). As associativity increases, energy consumption slightly 

rises for all methods, however, ECE maintains its advantage, with averages of 0.044 and 0.047 for 

8-way and 16-way caches, respectively. This efficiency stems from ECE’s fine-grained control 

over signal probability and switching activity, which directly reduces unnecessary transitions in 

SRAM cells. In contrast, IBS and DCC, while effective in aging mitigation, lead to increased 

switching overhead and energy waste. CFDR perform moderately well, but its global refresh and 

power gating strategies lack the precision targeting of ECE. Also, CSM performs well in some 

scenarios but lacks workload consistency. These findings confirm that ECE offers a favorable 

reliability–energy trade-off, as it achieves substantial aging mitigation with only a marginal 

increase in dynamic energy, making it a compelling solution even for moderately energy-

constrained systems. 

The impact of each method on cache miss ratio is detailed in Fig. 15, which shows 

normalized miss rates across standard workloads. ECE maintains miss ratios nearly identical to 

the baseline cache, indicating that its aging mitigation logic does not interfere with standard access 

or replacement behavior. IBS and CFDR introduce minor increases in miss rates, likely due to 

their additional access redirection logic. DCC exhibits larger deviations, especially in higher-

associativity caches, likely due to the complexity of packing and tag matching. Fig. 16 compares 



 

 

the normalized write-back rate to L2 cache. ECE shows a moderate increase in write-back activity 

compared to other methods, as it proactively evicts blocks that contribute disproportionately to 

aging. 

Fig. 17 illustrates the area overhead associated with both the control logic and the overall 

cache system, relative to a baseline design. Techniques such as IBS and DCC require additional 

circuitry for bit manipulation, multi-mode handling, or access redirection, leading to noticeably 

larger control and overall area footprints. CFDR is particularly hardware-intensive due to its 

distributed refresh logic and the need to track and coordinate refresh phases across cache blocks. 

While CSM also maintains a low area overhead similar to ECE, it does so at the expense of precise 

control over aging and is less effective in maintaining performance consistency. In contrast, ECE 

achieves its goals through a streamlined control structure that integrates seamlessly with existing 

cache architecture, avoiding invasive modifications to data paths or memory structures. 
 

7. Conclusion 

This paper introduces an enhanced cache eviction strategy designed to extend the cache's lifespan 

under aging stress. The proposed enhancement specifically targets mitigating hard errors caused 

by Static Noise Margin (SNM) degradation. Experimental results indicate that the uneven 

distribution of data blocks with varying states across the lines of a cache set intensifies the SNM 

degradation in SRAM cells. To address this, the paper presents a BTI-aware cache replacement 

policy that ensures a balanced placement of data blocks with different states across cache lines. 

This is achieved by revisiting the decision tree of the pseudo-LRU algorithm, incorporating 

considerations for the dirty bits of cache lines and the type of address conflict miss. The enhanced 

cache demonstrates improvements in both hold and read static noise margin degradation by 

approximately 10% and 12%, respectively, while incurring less than a 1.0% reduction in cache hit 

ratio. 
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Table 1. 
Feature Details Feature Details 

Frequency 5 GHz Branch Penalty 17 Cycles 

Branch Predictor 16K entry, Bimodal and Gshare RAS 32 entries 

Fetch/Issue/Commit 4/4/4 BTB 2K entries, 4-way 

IL1/DL1 Cache 64KB, 4-way, Line size: 64B L2 Cache 1MB, 4-way, Line size: 32B 

Coherency Protocol MESI Replacement Policy Tree-based P-LRU 

Write Policy Write-back, Inclusive Pipeline Depth 14 stages 

Execution Units 2 Integer ALUs, 1 FPU, TDP: 95W Prefetching 
Prefetcher for L2, Memory 

Bandwidth: 25 GB/s 
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Fig. 3. 

 
 

 

Fig. 4. 
 

Algorithm 1 Enhanced Early Cache Eviction Strategy for a n-way Cache 

1: procedure ENHANCED-PLRU-NWAY(C, B, D, ConflictType) 

2:     C ← {Line1, Line2, ..., Linen}  //Cache lines (n-way cache) 

3:     B ← {B0, B1, ..., Blog2(n)-1}   //Decision bits for the n-way tree 

4:     D ← {Dirty[Line1], Dirty[Line2], ..., Dirty[Linen]} //Dirty bits 

5:     repeat 

6:         current_level ← 0 

7:         candidates ← C 

8:         while |candidates| > 2 do 

9:             branch_bit ← B[current_level] 

10:           candidates ← LeftHalf(candidates) if branch_bit == 0 else RightHalf(candidates) 

11:           current_level ← current_level + 1 

12:        end while 

13:         

14:        C1_candidates ← candidates //Final 2 candidates 

15:         

16:        if Dirty[C1_candidates[0]] == Dirty[C1_candidates[1]] then 

17:            victim ← C1_candidates[0] if B[current_level] == 0 else C1_candidates[1] 

18:        else 

19:            if ConflictType == "WriteMiss" then 

20:                victim ← line ∈ C1_candidates where Dirty[line] == 0 

21:            else if ConflictType == "ReadMiss" then 

22:                victim ← line ∈ C1_candidates where Dirty[line] == 1 

23:            end if 

24:        end if 

25: 

26:        Replace(victim, NewData)  //Replace victim line with new data 

27:        UpdateTreeBits(victim, B) //Update tree bits to reflect replacement 

28: 

29:    until CacheAccess == Complete 

30:    return CacheStatus 

31: end procedure 

 

# Helper functions 

32: function LeftHalf(candidates) 
33:     return candidates[0 : |candidates| / 2] 

34: end function 

35: function RightHalf(candidates) 
36:     return candidates[|candidates| / 2 : |candidates|] 

37: end function 

 

0

10

20

30

40

50

60

70

80

90

100

0 100M 200M 300M 400M 500M 600M 700M 800M 900M

C
ac

h
e 

H
it

 R
at

io
 (

%
)

Number of Executed Instructions

Rank #1 Rank #2 Rank #3 Rank #4

Rank #5 Rank #6 Rank #7 Rank #8



 

 

 

 

 

Table 2. 
Symbol / Function Description 

C A list of cache lines in the current set 

B An array of PLRU decision bits representing internal nodes of the PLRU binary tree. 

D A list of dirty status bits corresponding to each cache line. 

ConflictType A runtime parameter identifying the type of cache miss. 

C1_candidates The final two cache lines selected from the tree traversal and subject to eviction evaluation. 

Victim The chosen cache line to be evicted and replaced. 

Replace(victim, NewData) A procedure that evicts the victim line and inserts the new data block. 

UpdateTreeBits(victim, B) Updates the PLRU decision bits to reflect the most recent use of the victim line. 

current_level An index or depth indicator used to iterate over PLRU decision bits during tree traversal. 

LeftHalf(candidates) A helper function that returns the left half of a given candidate list. 

RightHalf(candidates) A helper function that returns the right half of a candidate list. 
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Fig. 7.

 
 

 

 

 

Fig. 8 (a). 
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Fig. 8 (b). 

 
 

Fig. 9 (a). 

 
 
 

 

Fig. 9 (b). 

 

 

 

 

Fig. 10 (a). 
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Fig. 10 (b). 

 
 

 

 

Fig. 11. 

 
 

 

Fig. 12.  

1
1

.3
1

5
.2

1
7

.8
2

0
.3

2
2

.3
2

3
.6

2
4

.2
2

4
.9

2
5

.2
2

5
.7

2
6

.0
2

6
.3

2
6

.4
2

6
.5

2
6

.6
2

6
.8

2
6

.9
2

6
.9

2
6

.9
2

6
.9

8
.1

1
0

.8
1

2
.7

1
4

.5
1

6
.0

1
6

.8
1

7
.3

1
7

.8
1

8
.0

1
8

.4
1

8
.6

1
8

.8
1

8
.9

1
8

.9
1

9
.0

1
9

.2
1

9
.2

1
9

.2
1

9
.2

1
9

.2
0 20 40 60 80 100 120 140 160 180 200

R
-S

N
M

 D
eg

ra
d

at
io

n
 (

%
)

Time (months)

Baseline Enhanced

1
4

.0
1

7
.6

2
0

.1
2

2
.3

2
4

.2
2

5
.4

2
6

.0
2

6
.7

2
7

.0
2

7
.4

2
7

.7
2

7
.9

2
8

.0
2

8
.1

2
8

.2
2

8
.4

2
8

.5
2

8
.5

2
8

.5
2

8
.5

9
.7

1
2

.1
1

3
.8

1
5

.4
1

6
.7

1
7

.5
1

7
.9

1
8

.4
1

8
.6

1
8

.9
1

9
.1

1
9

.2
1

9
.3

1
9

.4
1

9
.4

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6

0 20 40 60 80 100 120 140 160 180 200

H
-S

N
M

 D
eg

ra
d

at
io

n
 (

%
)

Time (months)

Baseline Enhanced

-0.0400

-0.0200

0.0000

0.0200

0.0400

0.0600

-0.0050

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300
N

o
rm

al
iz

ed
 N

u
m

b
er

 o
f 

W
ri

te
-B

ac
ks

 

N
o

rm
al

iz
ed

 C
ac

h
e 

M
is

s 
R

at
io

Benchmarks

4-way (NCMR) 8-way (NCMR) 16-way (NCMR)
4-way (NNWB) 8-way (NNWB) 16-way (NNWB)



 

 

 
 

 

Table 3.  
 

Operating Condition ΔVt (Base) ΔVt (ECE) 
SNM Hold 

(Base) 

SNM Hold 

(ECE) 

SNM Read 

(Base) 

SNM Read 

(ECE) 

25°C, 1.0V (Nominal) 101.3 mV 87.1 mV -29% -20% -27% -19% 

85°C, 0.9V (Stress corner) 115.5 mV 98.7 mV -33% -23% -31% -22% 

-10°C, 1.2V (Conservative) 84.9 mV 69.3 mV -24% -16% -22% -15% 

 
 
 

 

Fig. 13. 

 
 

 

 

 

 

Fig. 14. 
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Fig. 15. 
 

 
 

 

 

 

 

 

Fig. 16. 
 

 

 

 

 

 

 

Fig. 17. 
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