

An Aging-Aware Early Cache Eviction Strategy to Enhance Static

Random-Access Memory Cells’ Lifetime

Mohammad Maghsoudlooa*

a Department of Computer Engineering, Faculty of Engineering, Golestan University

Abstract

This paper presents a comprehensive analysis of the impact of early

cache eviction on the aging of cache cells. It highlights that, in addition

to the previously identified factors contributing to static noise margin

(SNM) degradation in cache cells, the state of cached data plays a

critical role in this process. The analysis reveals that the uneven

distribution of clean and dirty data blocks across the lines of a cache

set can also be a significant factor in SNM degradation. To address

this issue, this study proposes an early cache eviction strategy aimed

at balancing the distribution of dirty and clean data blocks over cache

lines, thereby mitigating SNM degradation. To achieve this, the

decision tree of the Pseudo-LRU replacement policy is redesigned to

incorporate cache line states and address conflict miss types.

Experimental results demonstrate that the enhanced cache improves

the hold and read SNM by approximately 10% and 12%, respectively,

while incurring negligible cache hit reduction and minimal area and

energy overheads.

©2024 Sharif University of Technology. All rights reserved.

1. Introduction

As CMOS technology continues to scale, reliability concerns have become increasingly critical in

the design of integrated circuits [1]. Among these, transistor aging has emerged as a significant

reliability challenge in nanoscale CMOS technology, often leading to permanent hardware faults

[2]. Bias Temperature Instability (BTI) is the primary aging mechanism, causing an increase in the

absolute value of transistor threshold voltage and a reduction in charge carrier mobility [3]. These

* Corresponding author. Tel: +98 911 371 7182, E-mail address: mo.maghsoudloo@gu.ac.ir, Postal address: Golestan University, Shahid

Beheshti St., Gorgan, Iran, postal code: 49138-15759

KEYWORDS

cache memory;

bias temperature

instability;

static noise margin;

soft errors;

static random-access

memory;

aging.

mailto:mo.maghsoudloo@gu.ac.ir

BTI-induced effects can significantly increase propagation delays in combinational circuits [4] and

degrade the Static Noise Margin (SNM) of sequential elements such as Static Random-Access

Memory (SRAM) [5]. Furthermore, the operating conditions of circuits—including temperature,

voltage bias, and current density—can exacerbate BTI-induced SNM degradation, leading to

premature vulnerabilities [4, 6].

SNM is a critical metric for evaluating the stability and reliability of SRAM cells,

representing the maximum voltage noise that a memory cell can tolerate without a state flip [7, 8,

9]. Reliability concerns in SRAM must be prioritized, as these cells occupy a significant portion

of the chip area and are central to on-chip cache memories, which make up over 60% of a modern

microprocessor’s transistors [6]. This makes SRAM highly susceptible to hard and soft errors,

especially as SNM degradation compromises their stability [10]. Notably, BTI-induced SNM

degradation is most severe when a constant value is stored in an SRAM cell for extended periods

[11, 12, 13, 14]. A typical SRAM cell comprises six MOSFETs configured as two cross-coupled

inverters and two access transistors. When storing a continuous “0” or “1,” one PMOS and one

NMOS transistor are particularly vulnerable to BTI-induced threshold voltage variation [2].

Efforts to address BTI-induced SNM degradation can be categorized into two main areas:

aging sensing and aging mitigation. Aging sensing methods often involve embedding sensors in

SRAM memory arrays to monitor the system's runtime behavior and detect signs of degradation

[15-18]. However, these methods face challenges due to reduced sensor accuracy caused by

process variation and environmental changes [19-21], as well as the complexity of implementing

circuit-level modifications in SRAM cells [22]. Aging mitigation techniques focus on preventing

SRAM cells from storing fixed values for extended periods, aiming to balance the Signal

Probability (SP) factor of cache cells to 50% [8, 9, 19, 20, 22].

This paper provides a detailed analysis of the SP factor's probability distribution for cache

line bits. To this end, the Multi-facet GEMS (gem5) [23] simulation environment, was utilized.

Additionally, the study evaluated the Stanford Parallel Applications for Shared Memory

(SPLASH-3) benchmark suite [24]. BTI-induced aging was analyzed using the HSPICE reliability

tool [25], while cache energy consumption was estimated using the CACTI 6.5 simulator [26]. An

RTL model of the cache control logic was implemented for area analysis, with hardware synthesis

performed using the Synopsys Design Compiler [27]. Experimental results revealed that the

observed SP factor distribution deviates significantly from the normal distribution, with an average

deviation of 88.3%. This paper identifies that, alongside locality principles and Narrow-Width

Values (NWVs), the unbalanced distribution of clean and dirty data blocks across the lines of a

cache set also contributes to this deviation.

Based on these findings, this paper proposes a BTI-aware cache eviction strategy designed

to balance the placement of data blocks associated with different states across cache lines. The

proposed method modifies the cache control logic to balance the cumulative intervals between

consecutive writes on various cache lines in a set. The strategy leverages two key factors—the

state of cache lines (clean or dirty) and the type of address conflict miss. The enhanced cache

achieves improvements of approximately 10% and 12% in Hold-SNM and Read-SNM,

respectively, for the 4-way, 8-way and 16-way caches, with minimal performance penalties: about

1% reduction in cache hit ratio, about 3% increase in write-backs, about 4% dynamic energy

consumption overhead, and area overheads of about 1% and 2% for cell and net counts,

respectively.

The ideas, implementations, and results presented in this paper build upon and extend the

foundational analyses from our initial work published in [28]. The enhancements and

improvements outlined below are aimed at extending the scope and depth of the original study.

While the initial work in [28] was designed specifically for 4-way set-associative caches, the

extended version introduces a generalizable early cache eviction strategy that can be effectively

applied to caches with varying degrees of associativity (e.g., 8-way and 16-way caches). It also

includes deeper SP factor analysis, scalability tests for 8-way and 16-way caches, and detailed

pseudocode for the new eviction strategy, ensuring adaptability to workload types.

The remainder of this paper is structured as follows: Sections 2 and 3 discuss the

background and experimental setup. Sections 4 and 5 describe the motivation and structure of the

proposed BTI-aware eviction strategy. Finally, Sections 6 and 7 summarize the results and present

conclusions.

2. Background

Numerous studies have addressed the challenges posed by BTI-induced errors in SRAM cells,

which can be broadly divided into two categories: aging sensing and aging mitigation strategies

[29]. Aging sensing approaches aim to detect critical signs of BTI-induced degradation in SRAM

cells to prevent catastrophic system failures [30, 31]. These techniques often employ sensors that

monitor the runtime behavior of memory systems at various levels of abstraction. At the circuit

level, they leverage electrical parameters such as subthreshold leakage current, threshold voltage,

drain current, transconductance, signal rise and fall rates, margin delays, reference voltages, and

bit-line currents as indicators of aging [14, 15]. Additionally, architectural-level techniques, such

as Error Detecting/Correcting Codes (EDC/ECC), are used to identify soft and hard errors in

SRAM cells by validating stored data integrity [31]. However, despite their effectiveness, aging

sensing techniques face notable limitations, including substantial area and power overheads and

the complexity of integrating circuit-level modifications into SRAM designs [16]. In contrast to

sensing, aging mitigation strategies focus on proactively addressing conditions that accelerate BTI-

induced degradation in SRAM cells [16]. The primary goal of these methods is to prevent SRAM

cells from storing fixed values ("0" or "1") for extended durations, as this exacerbates BTI stress

[16, 19]. Structural enhancements, such as enabling drowsy mode for idle cache regions, power-

gating specific cells, or even processor overclocking, and SP factor balancing techniques, such as

bit flipping, dynamic cache indexing, and NWV-aware cache management, have been proposed to

extend cache relaxation times and reduce stress on SRAM cells [16, 19, 20, 22, 33, 34, 35]. Another

architectural-level technique exists that specifically targets a 4-way set-associative cache

architecture [28]. The proposed enhancement to the replacement policy, including modifications

to the cache management structure and the integration of coherency-state-aware victim selection,

is structurally bound to the binary-tree format of 4-way caches, and the techniques were not

generalized for 8-way or 16-way cache organizations [28]. Generally, unlike aging sensing

methods, mitigation techniques often present a more practical solution by significantly reducing

the area and power overheads associated with sensing methods [16].

3. Experimental setup

For evaluating both the existing and newly introduced design decisions, an extended version of

Multi-facet GEMS (gem5) [23] was utilized. The specifications of the baseline system are

summarized in Table 1. In this study, the entire set of applications and kernels from the Stanford

Parallel Applications for Shared Memory (SPLASH-3) benchmark suite was analyzed within the

simulation environment. The SPLASH-3 suite is widely regarded as a comprehensive collection

of parallel programs designed for cache-coherent shared address space architectures and has been

extensively used in modern research [24]. Each program was simulated for 900 million

instructions, with the initial 100 million instructions fast-forwarded to ensure the evaluation

focused on steady-state execution.

4. Motivation

In an ideal scenario for preventing SNM degradation, the value of a bit stored in an SRAM cell

should be an independent random variable with equal probabilities of being “0” or “1.” In this

case, the probability distribution of the SP factor for all bits stored in the cache over time would

follow a normal distribution with a mean of 50%. A detailed analysis was conducted to investigate

the probability distribution of the SP factor for the simulated cache bits. Fig. 1 illustrates the

distribution of the SP factor for 524,288 bits (64 KB) of the cache, categorized into clean and dirty

data. As shown in Fig. 1, the Baseline does not exhibit a perfect normal distribution with a mean

of 0.5. More than 68% of the SP factors are below 0.5, reflecting a higher likelihood for the cache

bits to hold constant “0” values during their lifetime. This deviation is attributed to two key

reasons: locality principles and NWVs [16]. This behavior is exacerbated in dirty cache lines,

where sequences of write operations lead to a greater frequency of bit changes compared to clean

data. Consequently, dirty cache lines exhibit an SP factor distribution closer to the normal

distribution, with an average error of 28.9%, compared to 91.2% for clean cache lines. This

observation underlines the potential for fairer distribution of dirty data blocks across cache lines.

5. BTI-aware early cache eviction strategy

Today, most primary caches employ a Pseudo-Least Recently Used (PLRU) algorithms to avoid

the disadvantages of a complex hardware design of base Least Recently Used (LRU) [36, 37]. In

order to determine how close the decisions made by the PLRU to LRU, we extended the

experiments to assess the chances of each cache block in a set to be selected as the replacement

candidate by the PLRU and LRU considering their access history. Fig. 2 shows the distribution of

block selection as the replacement victim in an 8-way cache. The blocks are ranked based on their

access history, and the block holding the first/last rank is the least/most recently accessed one. The

experimental results reveal that the PLRU algorithm selects blocks of 8-way cache from the first,

second, third, and fourth ranks with an average frequency of 21.5%, 19.4%, 15.1%, and 13.0%,

respectively. The selection of blocks with ranks two, three, and four deviates from the least recently

accessed block (rank one) by approximately 2.1%, 6.4%, and 8.5%, respectively, highlighting the

non-uniformity of the PLRU replacement policy. Based on the experimental results, the block

holding the second rank has almost the same chance as the least-recently-used block to be

victimized by the PLRU. Generally, the results show that the data block replaced by the PLRU is

not the least-recently-used one.

In order to investigate how much different replacement decisions can affect the cache hit

ratio, an experiment was conducted so that different blocks were forcibly selected as the

replacement candidate concerning their access histories. Fig. 3 shows the hit ratio of the simulated

cache after executing a specified number of instructions in the case of victimizing different blocks

holding different ranks in a cache set for an 8-way cache. The results are the average cache hit

ratio for all the workloads. As demonstrated by Fig. 3, for the 8-way cache set, replacing the blocks

ranked second, third and fourth results in approximately less than 10% reduction in the cache hit

ratio. In a set-associative cache, the data blocks ranked first and second are located in the same

branch of the replacement tree structure, either left or right. As a result, selecting any leaf from the

left or right branch yields similar outcomes, depending on the configuration of the tree.

Taking advantage of relative freedom to victimize the least recently used cache items, the

structure of the decision tree has been modified to balance the distribution of dirty cache blocks

over different ways of a cache set. In other words, the main concentration of the enhanced eviction

strategy is on the fact that giving the cache lines approximately the same chances of storing

dirty/clean data could reduce the time cache lines store fixed values. The pseudo-code for the

enhanced tree-based PLRU replacement policy for a n-way associative cache is shown in Fig. 4.

Table 2 describe symbols and functions used by Algorithm 1. The cache set is structured as a

binary tree, with log₂(n) internal decision bits (B) guiding traversal to find the least recently used

portion of the set. Each decision bit indicates whether the traversal should continue into the left or

right half of the current candidate pool. This descent continues recursively using LeftHalf() and

RightHalf() helper functions. This process continues until only two candidates remain, referred to

as C1_candidates, which are then evaluated for replacement. The final decision considers the

dirty/clean status of the two candidates to balance cache performance and reliability. Clean lines

are prioritized for eviction during write misses to minimize unnecessary write-backs, while dirty

lines are preferred during read misses to preserve clean data for future modifications. This scalable

algorithm maintains the core principles of PLRU replacement while introducing enhanced logic to

prevent SNM degradation caused by an imbalance in clean and dirty cache blocks.

An essential feature of the enhanced PLRU algorithm is its adaptability to dynamic

workloads. By leveraging the ConflictType parameter, the algorithm differentiates between read

and write misses, enabling it to apply enhanced replacement strategies. This context-awareness

ensures that the replacement decisions align with the current access patterns of the workload. In

write-intensive scenarios, the prioritization of clean blocks for eviction helps mitigate the overhead

of excessive write-back operations. On the other hand, during read-heavy workloads, retaining

clean blocks improves future cache efficiency by reducing the need for reloads from main memory.

Moreover, the hierarchical decision-making process of the binary tree inherently supports

parallelism. Each level of the tree operates independently, allowing decision bits for different

branches to be evaluated concurrently. This feature can be particularly advantageous in hardware

implementations, where parallel processing of decision bits can significantly reduce the latency of

replacement decisions. Furthermore, the compact representation of decision bits in the B array

minimizes memory overhead, making the algorithm lightweight. The logic depth of tree-based

eviction strategies grows with the associativity. In hardware terms, for a general n-way cache

(where n is a power of 2), the proposed mechanism generalizes this procedure. It uses log₂(n)

decision bits to traverse a binary tree of n lines, halving the candidate pool at each level until only

two remain (the final two candidates). The algorithm then applies the same final-step check on

those two lines’ dirty bits and the ConflictType. A tree-based PLRU policy requires storing ~n–1

bits per set to represent the binary decision tree. Our strategy uses the same bits, which is O(n)

growth in storage. It leverages the existing PLRU tree bits and dirty flags, plus the runtime

ConflictType signal (read vs. write miss) which is an input, not stored in the cache. The PLRU tree

logic itself scales with n roughly in proportion to the number of internal nodes (also O(n) gates in

total), but this is a very small structure in absolute terms (e.g. a 16-way set uses 15 1-bit nodes).

The dirty-bit comparator is a simple XNOR/AND gate checking two 1-bit values, and the logic to

choose victim based on ConflictType is a tiny multiplexer. Therefore, the incremental area

overhead of the proposed strategy over PLRU is negligible (on the order of a few gates,

independent of n). In summary, area scales ~O(n) (dominated by the need to store more bits as

ways increase), and enhancements do not change that asymptotic growth. Both PLRU and

enhanced strategy have a time complexity on the order of O(log n) for choosing a victim. The

critical path in hardware will pass through roughly log₂(n) bit-checks. Our strategy adds at most

one additional comparison and a final 2-way select based on either a PLRU bit or the ConflictType.

These additions are constant-time operations and thus do not change the overall O(log n) scaling.

Fig. 5 illustrates the transition probabilities between different states of a cache block (clean

and dirty) during workload execution. These probabilities are derived by monitoring state changes

in the cache coherence directory and analyzing the transitions among various coherency states

associated with cache lines. The results reveal that, on average, a cache block loaded into a cache

line due to an address conflict read miss remains clean until eviction in over 72% of cases.

Similarly, for an address conflict write miss, a cache line is updated with a data block fetched from

lower-level memory and remains dirty until a write-back occurs, with this behavior observed in

more than 80% of cases on average.

To address the above findings, the proposed mechanism aims to balance the distribution of

clean and dirty data blocks across the lines of a cache set. This is achieved by selecting the victim

cache line based on the dirty bits of the blocks ranked first and second in the set, as well as the

type of address conflict miss prompting the replacement. The process involves two scenarios:

 Scenario 1: For an address conflict write miss, a cache line containing a clean data block is

chosen for eviction to make room for a new data block with a high likelihood of being modified.

 Scenario 2: For an address conflict read miss, a cache line containing a dirty data block is

selected for eviction to accommodate a new data block with a lower probability of modification.

The action proposed for the second case aims to increase the likelihood of storing incoming

data blocks with high modification potential in cache lines that currently contain clean data.

Experimental results further reveal that the majority of changes to dirty cache blocks occur within

the first 50% of their lifetime in the cache. Fig. 6 illustrates the average percentages of writes

performed on modified cache blocks during different intervals of their lifetime. On average,

approximately 67% and 75% of updates to dirty cache blocks are made within the first half of their

lifetime for Kernels and Applications workloads, respectively. Additionally, dirty blocks tend to

move from the third or fourth ranks to the first or second ranks in the replacement hierarchy after

82.3% of their lifetime. Beyond this point, the number of write accesses to these modified data

blocks decreases, on average, to less than 3%. This indicates that most dirty data blocks ranked

first and second remain unchanged until replacement. Therefore, the early eviction of such dirty

blocks could help mitigate SNM degradation.

To investigate the impact of increasing associativity on design parameters, we also repeated

the experiments for caches with 8-way and 16-way configurations. Fig. 7 compares the cache hit

ratio reduction in the case of victimizing blocks holding second to fourth ranks in a cache with

different levels of associativity. In this experiment, the second/third/fourth-ranked blocks were

forcibly selected as the replacement candidate concerning their access histories. The results,

presented in Fig. 7, are the average cache hit ratio reduction compared to the case in which the

first-ranked block is evicted. Regarding Fig. 7, the cache hit ratio is less affected by the eviction

of the second/third/fourth-ranked blocks as the level of the cache associativity increases. Using a

4-way cache, victimizing the blocks holding the second, third, and fourth ranks (instead of the

least-recently-used one) leads to about 1%, 23%, and 31% reduction in the cache hit ratio,

respectively. These values are, on average, about 0.2%, 15%, and 14% for an 8-way cache, and

0.2%, 9%, and 6% for a 16-way cache. By increasing the level of cache associativity, more choices

will be revealed as the alternative for the least-recently-used data block to be replaced with the aim

of SNM degradation prevention. The conditions intended in the structure of the proposed decision

tree can be similarly extended to manage the chance of storing the data blocks with the higher

potential of modification among cache lines of a set with higher levels of associativity. In this case,

the lower-ranked cache lines can also be considered along with the first and second-ranked ones,

while adjusting the distribution of clean/dirty data blocks among cache lines is taken into account.

6. Result analysis and discussion

6.1. Aging mitigation

Metal Oxide Semiconductor Reliability Analysis (MOSRA) [25] has been used for BTI-induced

aging analysis of the 32nm SRAM cells before and after applying modification to the controller

circuits of the simulated cache. The amount of threshold voltage variation (∆Vth) of the SRAM cell

transistors can be estimated at different temperatures using the built-in aging model of the

MOSRA. As a first step, the probability distribution of the SP factor for cache bits is investigated

after using the enhanced replacement policy, and the average percentage error between the

observed and normal distributions is compared with the results of the baseline cache. Fig. 8 (a)

shows the distributions of the SP factor of cache bits in the case of using Baseline and Enhanced

architectures. The Fair distribution curve has been included in the graph to give a clear comparison

in terms of the average percentage error between the obtained results and the completely fair

distribution. Regarding Fig. 8 (a), the average percentage error between the results of Enhanced

cache and normal distributions is about 71%, implying about 20% improvement compared to the

average percentage error between the Baseline and Normal distributions. Moreover, the average

percentage error between the results of the Enhanced cache and Fair distribution is about 16%

which indicates the effectiveness of the proposed replacement policy in reaching a nearly fair

distribution of the data blocks with a high potential for modification among cache lines.

As a second step, the amount of BTI-induced threshold voltage shift (∆VT) is studied

according to the built-in aging model of MOSRA. Fig. 8 (b) illustrates the average amount of ∆VT

for the whole SRAM cell transistors of a cache line with 32-nm technology for 200 months. The

results have been obtained based on the duty cycles of the SRAM cell transistors extracted from

gem5 after running all workloads on the simulated architectures, including the cache design

decisions. Regarding Fig. 8 (b), VT shifts of SRAM cell transistors of the Baseline and Enhanced

cache can be increased over time up to 101.33 mV and 87.12 mV, leading to about 14.0% threshold

voltage degradation reduction by the proposed architecture. Moreover, the average percentage

error between the results of the Enhanced and Fair caches is about 1% compared to the about 17%

percentage error between the results of the Baseline and Fair caches.

The stability of SRAM cells depends on the SNM, and asymmetric ∆VT of SRAM cell

transistors can degrade the SNM of the cell by unbalancing the VTC. SNM of an SRAM cell can

be measured in terms of two sub-stability metrics: Hold- and Read-SNM (H-SNM and R-SNM).

The H-SNM and R-SNM degradation of the SRAM cells used in the Baseline and Enhanced cache

is compared in Fig. 9. The H-SNM and R-SNM of the fresh SRAM cells in 32-nm technology are

about 108.7 mV and 102.2 mV. The H-SNM and R-SNM are reduced to about 77.7 mV and 74.7

mV after 180 months of cache operation, leading to 29% and 27% SNM degradation, respectively.

However, the SNM of the SRAM cells degrades more moderately under the management of the

Enhanced cache. In this case, the H-SNM and R-SNM are degraded by about 20% and 19% after

180 months, translating into about 10% and 12% improvement in H-SNM and R-SNM

degradation.

For the experiments conducted on the 8-way cache, the results indicate a more significant

improvement in the reduction of H-SNM and R-SNM in the Enhanced cache compared to the

Baseline cache. As Fig. 10 shows, In the Baseline cache, the degradation of R-SNM and H-SNM

after 180 months of operation is approximately 26.9% and 28.5%, respectively. However, in the

Enhanced cache, these values reduce to approximately 19.2% and 19.6%, respectively. As

observed, the baseline exhibits a pronounced ΔVT shift in specific SRAM cells due to imbalanced

switching activity, particularly where dirty lines persist for extended periods. In contrast, the

proposed early cache eviction strategy (ECE), by managing dirty and clean block distribution

adaptively based on access type, leads to a more uniform toggle probability across all cache bits.

This translates into reduced ΔVT drift and improved aging balance.

To comprehensively evaluate the aging mitigation effectiveness of the ECE, we analyze its

impact on ΔVT and SNM degradation under various Process–Voltage–Temperature (PVT)

conditions over an extended operational period. The results summarized in Table 3 are derived

from BTI-aware simulations using MOSRA [25] over 180 months, reflecting realistic lifetime

behavior of SRAM-based caches. Under nominal conditions (25°C, 1.0V), which reflect typical

operating environments, the baseline cache shows significant degradation: ΔVT reaches 101.3 mV,

while SNM degrades by 29% (hold) and 27% (read). In contrast, the ECE limits ΔVT to 87.1 mV

and reduces SNM degradation to 20% and 19%, respectively. These improvements stem from

ECE’s signal-balancing policy, which adaptively evicts clean or dirty lines based on miss type.

Under stress-prone conditions (85°C, 0.9V), where aging effects are amplified due to increased

BTI sensitivity and slower charge recovery, degradation is naturally more severe. The baseline

configuration shows a ΔVT of 115.5 mV and SNM degradation levels of 33% (hold) and 31%

(read). Despite this challenging environment, ECE continues to provide substantial mitigation,

lowering ΔVT to 98.7 mV and improving SNM margins by 10% points in both hold and read modes.

This confirms that ECE’s architectural-level balancing remains effective even under accelerated

degradation scenarios. Conversely, in conservative corners (–10°C, 1.2V), aging slows due to

reduced BTI stress and better carrier mobility. As expected, the baseline system performs better

here, with ΔVT at 84.9 mV, and SNM degradations of –24% (hold) and –22% (read). Still, ECE

further enhances stability, achieving ΔVT of 69.3 mV, and lowering SNM degradation to –16% and

–15%, respectively.

6.2. Performance overhead

Two metrics are considered to compare the effects of design decisions on the cache performance:

cache hit/miss ratio and the number of write-backs. Fig. 11 demonstrates the effects of the

Enhanced cache on the aforementioned metrics. Regarding Fig. 11, the ECE increases the cache

miss ratio in comparison with the Baseline cache on average by about 1.25%, 0.81%, and 0.67%

in the case of using 4-way, 8-way, and 16-way set-associative caches. The experimental results

demonstrate that the early eviction of the selected data blocks does not drastically degrade the hit

ratio since the proposed technique invalidates most replacement candidates after being idle.

Increased associativity decreases the number of conflict misses and subsequently can generally

improve the cache miss rate. Thus, the hit rate degradation, observed due to the proposed early

eviction, is moderated by increasing the degree of associativity. Moreover, the proposed technique

increases the number of write-backs compared to the Baseline cache on average by about 3.66%,

3.17%, and 2.34% in 4-way, 8-way, and 16-way caches. By increasing the level of cache

associativity, the distance between the practical results of selecting two consecutive data blocks in

replacement ranking is reduced. Therefore, evicting the second-ranked replacement candidate, as

an alternative for the least-recently-used data block, imposes less performance overhead while

cache associativity increases from 4-way to 16-way.

6.3. Energy and area overhead

The activity factor of the SRAM cells, which is mainly concentrated to prevent SNM degradation

by the aging-aware cache management techniques, can directly affect the dynamic energy

consumption of the cache. The CACTI 6.5 simulator [26] is used to estimate the dynamic energy

consumption of Baseline and Enhanced caches using the 32nm technology node. The dynamic

energy consumption increases as a result of the increased bit-switching activities of the Enhanced

cache’s cells. Balancing the probability distribution of the SP factor of cache lines’ bits by the

proposed selective early eviction of unused clean/dirty data blocks leads to the increased cache

miss rate and the activity factor. The Enhanced 4-way, 8-way and 16way caches increase the

dynamic cache energy consumption compared to the Baseline cache on average by about 4.07%,

4.39% and 4.74%, respectively.

Moreover, the additional circuity in the cache controller, inserted to implement the

enhanced replacement policy, raises the need for area consumption analysis. Due to the limitations

of the CACTI tool for area modelling of the cache-controlling circuits, designated to enforce the

replacement policy and coherence protocol, we take advantage of RTL-level modelling and

synthesis for the area evaluation. To this intent, an RTL model of the cache control logic is

implemented. Further, the Synopsys Design Compiler [27] is used to perform hardware synthesis.

We used the Nangate 45nm standard-cell library which is based on the open FreePDK45 PDK

[38]. Fig. 12 shows the results of the aforementioned hardware synthesis of the HDL models of

the cache design decisions. The effects of the Enhanced cache on the area of the different parts of

the data cache and its control logic, including Replacement Policy Enforcement (RPE) circuits,

Coherence Protocol Enforcement (CPE) circuits, and other cache control logic are reported. The

4-way, 8-way and 16-way caches are completely modelled with respect to the configuration

mentioned in Table 1. Summarizing the results of area analysis, the numbers of cells and nets of

the total control logic of the Enhanced cache grow by about 4.78% and 6.51% in the 4-way cache

implementation, by approximately 4.81% and 6.52%, for the 8-way cache implementation, and by

5.42% and 7.56%, for the 16-way cache implementation. Concerning total cache circuits (memory

banks and total control logic), using the Enhanced cache leads to about 1.08% and 1.56% area

overhead in terms of the numbers of cells and nets, respectively, for the 4-way cache

implementation. The 8-way cache implementation results in about 1.1% and 1.58% area overhead

in these terms, and the 16-way cache leads to about 1.2% and 1.7% area overhead in the same

terms.

6.4. Comparison with the state-of-the-art

In this section, we present a comprehensive comparison between the proposed method (ECE) and

four representative aging mitigation techniques that, like ECE, aim to reduce SRAM aging by

regulating signal probability, include: Intra-word Bit Swapping (IBS) [34], Cell Flipping with

Distributed Refresh (CFDR) [35], Double Capacity Cache (DCC) [19], and Cache Size

Management (CSM) [22].

Fig. 13 presents the signal probability values for each individual bit position (0 to 63) across

a 64-bit cache line. In the base configuration, the signal probabilities show significant imbalance,

with extreme values ranging from as low as 1% to as high as 65%. IBS improves signal balance

for some bits through bit permutation, it fails to normalize the extremes of the word-line and

introduces switching overhead. CFDR performs better in global balancing but is constrained by

refresh timing and workload sensitivity. DCC does not explicitly target signal balancing and, as a

result, leaves many bits with biased activity patterns, particularly when narrow-width data is not

dominant. CSM, while indirectly reducing stress via power gating, lacks per-bit resolution and

exhibits uneven effectiveness. In contrast, ECE maintains bit-level signal probabilities tightly

within the 48–52% range across all bit positions.

Fig. 14 illustrates the normalized dynamic energy consumption of cache memory cells

across various benchmark applications, considering different cache associativities. In the 4-way

configuration, the average normalized energy for ECE is 0.041, outperforming IBS (0.232), CFDR

(0.085), DCC (0.172), and CSM (0.102). As associativity increases, energy consumption slightly

rises for all methods, however, ECE maintains its advantage, with averages of 0.044 and 0.047 for

8-way and 16-way caches, respectively. This efficiency stems from ECE’s fine-grained control

over signal probability and switching activity, which directly reduces unnecessary transitions in

SRAM cells. In contrast, IBS and DCC, while effective in aging mitigation, lead to increased

switching overhead and energy waste. CFDR perform moderately well, but its global refresh and

power gating strategies lack the precision targeting of ECE. Also, CSM performs well in some

scenarios but lacks workload consistency. These findings confirm that ECE offers a favorable

reliability–energy trade-off, as it achieves substantial aging mitigation with only a marginal

increase in dynamic energy, making it a compelling solution even for moderately energy-

constrained systems.

The impact of each method on cache miss ratio is detailed in Fig. 15, which shows

normalized miss rates across standard workloads. ECE maintains miss ratios nearly identical to

the baseline cache, indicating that its aging mitigation logic does not interfere with standard access

or replacement behavior. IBS and CFDR introduce minor increases in miss rates, likely due to

their additional access redirection logic. DCC exhibits larger deviations, especially in higher-

associativity caches, likely due to the complexity of packing and tag matching. Fig. 16 compares

the normalized write-back rate to L2 cache. ECE shows a moderate increase in write-back activity

compared to other methods, as it proactively evicts blocks that contribute disproportionately to

aging.

Fig. 17 illustrates the area overhead associated with both the control logic and the overall

cache system, relative to a baseline design. Techniques such as IBS and DCC require additional

circuitry for bit manipulation, multi-mode handling, or access redirection, leading to noticeably

larger control and overall area footprints. CFDR is particularly hardware-intensive due to its

distributed refresh logic and the need to track and coordinate refresh phases across cache blocks.

While CSM also maintains a low area overhead similar to ECE, it does so at the expense of precise

control over aging and is less effective in maintaining performance consistency. In contrast, ECE

achieves its goals through a streamlined control structure that integrates seamlessly with existing

cache architecture, avoiding invasive modifications to data paths or memory structures.

7. Conclusion

This paper introduces an enhanced cache eviction strategy designed to extend the cache's lifespan

under aging stress. The proposed enhancement specifically targets mitigating hard errors caused

by Static Noise Margin (SNM) degradation. Experimental results indicate that the uneven

distribution of data blocks with varying states across the lines of a cache set intensifies the SNM

degradation in SRAM cells. To address this, the paper presents a BTI-aware cache replacement

policy that ensures a balanced placement of data blocks with different states across cache lines.

This is achieved by revisiting the decision tree of the pseudo-LRU algorithm, incorporating

considerations for the dirty bits of cache lines and the type of address conflict miss. The enhanced

cache demonstrates improvements in both hold and read static noise margin degradation by

approximately 10% and 12%, respectively, while incurring less than a 1.0% reduction in cache hit

ratio.

References

[1] Agarwal, A., Paul, B., Mahmoodi, H., Datta, A., and Roy, K. "A process-tolerant cache

architecture for improved yield in nanoscale technologies", IEEE Trans. Very Large Scale

Integr. Syst., 13(1), pp. 27–38 (2005). doi: 10.1109/TVLSI.2004.840407

[2] Bansal, A., Rao, R., Kim, J., Zafar, S., Stathis, J., and Chuang, C. "Impacts of nbti and pbti

on sram static/dynamic noise margins and cell failure probability", Microelectron. Reliab.,

49(6), pp. 642–649 (2009). doi: 10.1016/j.microrel.2009.03.016

[3] Bagatin, M., Gerardin, S., Paccagnella, A., and Faccio, F. "Impact of nbti aging on the single-

https://dl.acm.org/doi/10.1109/TVLSI.2004.840407
https://doi.org/10.1016/j.microrel.2009.03.016

event upset of sram cells", IEEE Trans. Nucl. Sci., 57(6), pp. 3245–3250 (2010). doi:

10.1109/TNS.2010.2084100

[4] Jafari, A., Raji, M., and Ghavami, B. "BTI-Aware Timing Reliability Improvement of Pulsed

Flip-Flops in Nano-Scale CMOS Technology", IEEE Trans. Device Mater. Reliab., 21(3),

pp. 379–388 (2021). doi: 10.1109/TDMR.2021.3102521

[5] Firouzi, F., Kiamehr, S., and Tahoori, M. "Statistical analysis of BTI in the presence of

process-induced voltage and temperature variations", 18th Asia South Pacific Des. Autom.

Conf., pp. 594–600 (2013). doi: 10.1109/ASPDAC.2013.6509663

[6] Lanzieri, L., Kietzmann, P., Fey, G., Schlarb, H., and Schmidt, T. "Ageing Analysis of

Embedded SRAM on a Large-Scale Testbed Using Machine Learning", arXiv preprint

arXiv:2307.06693 (2023). [Online]. doi: 10.48550/arXiv.2307.06693

[7] Listl, A., Mueller-Gritschneder, D., and Schlichtmann, U. "Application-aware aging analysis

and mitigation for SRAM design-for-reliability", Microelectron. Reliab., 134, p. 114548

(2022). doi: 10.1016/j.microrel.2022.114548

[8] Dounavi, H.-M., Sfikas, Y., and Tsiatouhas, Y. "Aging prediction and tolerance for the

SRAM memory cell and sense amplifier", J. Electron. Test., 37(4), pp. 1–14 (2021). doi:

10.1007/s10836-021-05932-6

[9] Dounavi, H.-M. and Tsiatouhas, Y. "An aging monitoring scheme for SRAM decoders",

Microprocess. Microsyst., 94, p. 104623 (2022). doi: 10.1016/j.vlsi.2022.09.009

[10] Ding, J. and Asenov, A. "The analysis of static random access memory stability under the

influence of statistical variability and bias temperature instability-induced ageing",

Semicond. Sci. Technol., 36(2), p. 025008 (2020). doi: 10.1088/1361-6641/abcbd6

[11] Gul, W., Shams, M., and Al-Khalili, D. "SRAM cell design challenges in modern deep sub-

micron technologies: An overview", Micromachines, 13(8), p. 1332 (2022). doi:

10.3390/mi13081332

[12] Lin, Y., Li, M., and Gupta, S. "Predictive testing for aging in SRAMs and mitigation", Proc.

IEEE Int. Test Conf., pp. 293–302 (2024). doi: 10.1109/ITC51657.2024.00050

[13] Hovanes, J. "Aging-induced long-term data remanence in SRAM cells", M.S. thesis, Auburn

Univ., Auburn, AL, USA (2023). [Online]. Available:

https://etd.auburn.edu/handle/10415/8673

[14] Wang, M., Hou, Z., Wang, C., Yan, Z., Li, S., Du, A., Cai, W., Li, J., Zhang, H., Cao, K.,

Shi, K., Wang, B., Zhao, Y., Xiang, Q., Wang Z., and Zhao, W., "NAND-like SOT-MRAM-

https://doi.org/10.1109/TNS.2010.2084100
https://doi.org/10.1109/TDMR.2021.3102521
https://doi.org/10.1109/ASPDAC.2013.6509663
https://doi.org/10.48550/arXiv.2307.06693
https://doi.org/10.1016/j.microrel.2022.114548
https://doi.org/10.1007/s10836-021-05932-6
https://doi.org/10.1016/j.vlsi.2022.09.009
https://doi.org/10.1088/1361-6641/abcbd6
https://doi.org/10.3390/mi13081332
https://doi.org/10.1109/ITC51657.2024.00050
https://etd.auburn.edu/handle/10415/8673

based approximate storage for error-tolerant applications", arXiv preprint arXiv:2404.05528

(2024). [Online]. Available: 10.48550/arXiv.2404.05528

[15] Inci, A., Isgenc, M., and Marculescu, D. "DeepNVM++: Cross-layer modeling and

optimization framework of non-volatile memories for deep learning", arXiv preprint

arXiv:2012.04559 (2020). [Online]. doi: 10.48550/arXiv.2012.04559

[16] Hu, J., Wang, S., and Ziavras, S. "In-Register Duplication: Exploiting Narrow-Width Value

for Improving Register File Reliability", Int. Conf. Dependable Syst. Netw., pp. 281–290

(2006). doi: 10.1109/DSN.2006.43

[17] Hovanes, J., Zhong, Y., and Guin, U. "Beware of Discarding Used SRAMs: Information is

Stored Permanently", arXiv preprint arXiv:2208.02883 (2022). [Online]. doi:

10.48550/arXiv.2208.02883

[18] Shaik, J., Guo, X., Singhal, S., "Impact of Aging and Process Variability on SRAM-Based

In-Memory Computing Architectures", IEEE Tran. on Cir. and Syst., 71, p. 2696-2708

(2024). doi: 10.1109/TCSI.2024.3381935

[19] Imani, M., Patil, S., and Rosing, T. "DCC: Double capacity Cache architecture for narrow-

width values", Int. Great Lakes Symp. VLSI, pp. 113–116 (2016). doi:

10.1145/2902961.2902990

[20] Flautner, K., Kim, N., Martin, S., Blaauw, D., and Mudge, T. "Drowsy caches: simple

techniques for reducing leakage power", Proc. 29th Annu. Int. Symp. Comput. Archit., pp.

148–157 (2002). doi: 10.1109/ISCA.2002.1003572

[21] Lanzieri, L., Martino, G., Fey, G., Schlarb, H., Schmidt, T., and Wählisch, M.,. “A Review

of Techniques for Ageing Detection and Monitoring on Embedded Systems,” ACM Comput.

Surv. 57(1), pp. 1-34 (2025). doi: 10.1145/3695247

[22] Rohbani, N., Ebrahimi, M., Miremadi, S., and Tahoori, M. "Bias Temperature Instability

Mitigation via Adaptive Cache Size Management", IEEE Trans. Very Large Scale Integr.

Syst., 25(3), pp. 1012–1022 (2017). doi: 10.1109/TVLSI.2016.2606579

[23] Binkert, N., Beckmann, B., Black, G., Reinhardt, S., Saidi, A., Basu, A., Hestness, J., Hower,

D., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M., and Wood,

D. "The gem5 simulator", ACM SIGARCH Comput. Archit. News, 39(2), pp. 1–7 (2011).

doi: 10.1145/2024716.2024718

[24] Sakalis, C., Leonardsson, C., Kaxiras, S., and Ros, A. "Splash-3: A properly synchronized

benchmark suite for contemporary research", IEEE Int. Symp. Performance Anal. Syst.

https://doi.org/10.48550/arXiv.2404.05528
https://doi.org/10.48550/arXiv.2012.04559
https://doi.org/10.1109/DSN.2006.43
https://doi.org/10.48550/arXiv.2208.02883
https://ieeexplore.ieee.org/author/37086841267
https://ieeexplore.ieee.org/author/37085790133
https://ieeexplore.ieee.org/author/37085494842
https://doi.org/10.1109/TCSI.2024.3381935
https://doi.org/10.1145/2902961.2902990
https://doi.org/10.1109/ISCA.2002.1003572
https://doi.org/10.1145/3695247
https://doi.org/10.1109/TVLSI.2016.2606579
https://doi.org/10.1145/2024716.2024718

Softw., pp. 101–111 (2016). doi: 10.1109/ISPASS.2016.7482078

[25] Tudor, B., Wang, J., Sun, C., Chen, Z., Liao, Z., Tan, R., Liu, W., and Lee, F. "MOSRA: An

efficient and versatile MOS aging modeling and reliability analysis solution for 45nm and

below", IEEE Int. Conf. Solid-State Integr. Circuit Technol., pp. 1645–1647 (2010). doi:

10.1109/ICSICT.2010.5667399

[26] Muralimanohar, N., Balasubramonian, R., and Jouppi, N., "Optimizing NUCA

Organizations and Wiring Alternatives for Large Caches with CACTI 6.0," IEEE/ACM Int.

Sym. on Microarchitecture, Chicago, IL, USA, pp. 3-14, (2007), doi:

10.1109/MICRO.2007.33

[27] SYNOPSYS. "Design Compiler", [Online]. Available: https://www.synopsys.com

[28] Maghsoudloo, M. "On the Prevention of Coherence-Induced Static Noise Margin

Degradation of SRAM Cells", 5th CPSSI Int. Symp. Cyber-Phys. Syst., Tehran, Iran, pp. 1–

8 (2024). doi: 10.1109/CPSAT64082.2024.10745400

[29] Saun, S. and Kumar, H. "Design and performance analysis of 6T SRAM cell on different

CMOS technologies with stability characterization", IOP Conf. Ser. Mater. Sci. Eng., 561

(2019). doi: 10.1088/1757-899X/561/1/012093

[30] Karimi, M., Rohbani, N., and Miremadi, S. "A Low Area Overhead NBTI/PBTI Sensor for

SRAM Memories", IEEE Trans. Very Large Scale Integr. Syst., 25(11), pp. 3138–3151

(2017). doi: 10.1109/TVLSI.2017.2734839

[31] Liu, B. and Chen, C.-H. "Testing, diagnosis and repair methods for NBTI-induced SRAM

faults", IEEE Int. Conf. IC Design & Technol., pp. 1–4 (2014). doi:

10.1109/ICICDT.2014.6838608

[32] Maghsoudloo, M. and Zarandi, H. R. "Design space exploration of non-uniform cache access

for soft-error vulnerability mitigation", Microelectron. Reliab., 55(11), pp. 2439–2452

(2015). doi: 10.1016/j.microrel.2015.07.049

[33] Gebregiorgis, A., Ebrahimi, M., Kiamehr, S., Oboril, F., Hamdioui, S., and Tahoori, M.

"Aging mitigation in memory arrays using self-controlled bit-flipping technique", 20th Asia

South Pacific Des. Autom. Conf., pp. 231–236 (2015). doi:

10.1109/ASPDAC.2015.7059010

[34] Sadeghi, M. and Nikmehr, H. "Aging-mitigation of cache memories by intra-word bit

swapping", Microprocess. Microsyst., 72 (2020). doi: 10.1016/j.micpro.2019.102941

[35] Duan, S., Halak, B., and Zwolinski, M. "Cell Flipping with Distributed Refresh for Cache

https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1109/ICSICT.2010.5667399
https://doi.org/10.1109/MICRO.2007.33
https://www.synopsys.com/
https://doi.org/10.1109/CPSAT64082.2024.10745400
https://doi.org/10.1088/1757-899X/561/1/012093
https://doi.org/10.1109/TVLSI.2017.2734839
https://doi.org/10.1109/ICICDT.2014.6838608
https://doi.org/10.1016/j.microrel.2015.07.049
https://doi.org/10.1109/ASPDAC.2015.7059010
https://doi.org/10.1016/j.micpro.2019.102941

Ageing Minimization", IEEE Asian Test Symp., pp. 98–103 (2018). doi:

10.1109/ATS.2018.00029

[36] Hennessy, J. and Patterson, D. "Computer Architecture: a quantitative approach, sixth

edition", Morgan Kaufmann Publishers Inc., San Francisco, USA (2017). [Online].

Available: https://dl.acm.org/doi/book/10.5555/3207796

[37] Abel, A. and Reineke, J. "Reverse engineering of cache replacement policies in Intel

microprocessors and their evaluation", IEEE Int. Symp. Performance Anal. Syst. Softw.

(ISPASS), pp. 141–142 (2014). doi: 10.1109/ISPASS.2014.6844475

[38] Stine, J., Ozev, S., Brown, A., and Butts, K. "FreePDK3D45: An Open-Source Predictive

Technology Model for 3D IC Research", Department of Electrical and Computer

Engineering, North Carolina State University, [Online]. Available:

https://eda.ncsu.edu/freepdk/freepdk3d45/ (accessed June 3, 2024).

Mohammad Maghsoudloo received his M.Sc., and Ph.D. degrees, all in the department of

computer engineering at Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran,

in 2012, and 2016, respectively. He is currently an assistant professor in the computer engineering

and information technology department at Golestan University since 2017. His research interests

include dependability evaluation, fault-tolerant computing, dependable computer architecture,

high-performance computing, cloud computing/storage architectures, and the Internet of things.

He established the “Cloud of Things (CoT)” research center at Golestan University in 2018. He is

a member of the IEEE Computer Society and the Computer Society of Iran (CSI).

https://doi.org/10.1109/ATS.2018.00029
https://dl.acm.org/doi/book/10.5555/3207796
https://doi.org/10.1109/ISPASS.2014.6844475

List of captions:

Table 1. Simulation environment.

Fig. 1. Probability distribution of SP factor for the bits of cache lines (clean and dirty) in a 64

KB cache (“Baseline” refers to the practical SP factor distribution under the standard

configuration specified in Table 1).

Fig. 2. Distribution of blocks with different ranks selected as the replacement victim in an 8-

way cache.

Fig. 3. Cache hit ratio after eviction of blocks with different ranks in an 8-way cache.

Fig. 4. Pseudo-code for the enhanced early cache eviction strategy (n-way cache).

Table 2. Description of Symbols and Functions Used in Algorithms 1 and 2.

Fig. 5. Probabilities of state retention and change for dirty bits during workload execution.

The 'Retention' series represents cases where the dirty bit value remains unchanged,

while the 'Change' series captures transitions where the dirty bit value shifts between

clean and dirty states.

Fig. 6. The average percentages of the number of writes performed on the modified cache

blocks in the different time intervals of their lifetime.

Fig. 7. Analysis of cache hit ratio degradation when evicting blocks ranked second to fourth

in caches with varying associativity levels.

Fig. 8. (a) The distributions of the SP factor of cache bits in the case of using Baseline and

Enhanced architectures compared to the results of the cache follows the completely

fair distribution. (b) The average amount of ∆VT for the SRAM cell transistors of a

cache line with 32-nm technology for 200 months (“Baseline” refers to the cache with

base configuration specified in Table 1; “Fair” refers to the cache with completely fair

distribution of clean and dirty data items).

Fig. 9. Comparison of the H-SNM (a) and R-SNM (b) degradation of the SRAM cells used

in the Baseline and Enhanced 4-way cache.

Fig. 10. Comparison of the H-SNM (a) and R-SNM (b) degradation of the SRAM cells used

in the Baseline and Enhanced 8-way cache.

Fig. 11. Effects of the Enhanced cache on the cache performance metrics (results are

normalized to the results of the Baseline cache).

Fig. 12. Effects of the enhanced cache on the area consumption metrics.

Table 3. Long-Term SNM and Threshold Voltage Degradation Across PVT Corners.

Fig. 13. The signal probability values for each individual bit position (0 to 63) across a 64-bit

cache line, evaluated under six different configurations: Base, IBS, CFDR, DCC,

CSM, and ECE.

Fig. 14. The normalized dynamic energy consumption of cache memory cells across various

benchmark applications, considering different cache associativities: 4-way, 8-way,

and 16-way.

Fig. 15. The normalized miss rates across standard workloads for 4-way, 8-way, and 16-way

associative caches.

Fig. 16. The normalized write-back rate to L2 cache across standard workloads for 4-way, 8-

way, and 16-way associative caches.

Fig. 17. The area overhead associated with both the control logic and the overall cache system,

relative to a baseline design.

List of figures and tables:

Table 1.
Feature Details Feature Details

Frequency 5 GHz Branch Penalty 17 Cycles

Branch Predictor 16K entry, Bimodal and Gshare RAS 32 entries

Fetch/Issue/Commit 4/4/4 BTB 2K entries, 4-way

IL1/DL1 Cache 64KB, 4-way, Line size: 64B L2 Cache 1MB, 4-way, Line size: 32B

Coherency Protocol MESI Replacement Policy Tree-based P-LRU

Write Policy Write-back, Inclusive Pipeline Depth 14 stages

Execution Units 2 Integer ALUs, 1 FPU, TDP: 95W Prefetching
Prefetcher for L2, Memory

Bandwidth: 25 GB/s

Fig. 1.

Fig. 2.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

er
 o

f
O

b
se

rv
at

io
n

s

SP Factor

Baseline (Dirty) Baseline (Clean) Baseline Normal Distribution

27

33

24

27

19

15

16

19

17

22

19

19

21

26

26

19

27

14

18

19

19

18

12

16

16

19

12

15

16

11

18

20

16

19

17

14

13

13

15

9

9

11

10

16

15

16

15

16

14

12

12

13

10

8

14

8

16

13

13

12

12

14

13

13

12

8

5

12

10

13

11

13

12

9

14

11

11

11

8

4

3

6

4

6

5

4

10

7

11

11

7

1

1

2

2

1

3

5

5

2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FFT
LU

Cholesky
Radix
FMM

Radiosity
Barnes
Ocean

Raytrace
Volrend

Water-nsquared
Water-spatial

Average

K
er

n
el

s
A

p
p

lic
at

io
n

s

B
en

ch
m

ar
ks

Eviction Probability (%) by 8-way Cache Block Ranking

Rank #1 Rank #2 Rank #3 Rank #4 Rank #5 Rank #6 Rank #7 Rank #8

Fig. 3.

Fig. 4.

Algorithm 1 Enhanced Early Cache Eviction Strategy for a n-way Cache

1: procedure ENHANCED-PLRU-NWAY(C, B, D, ConflictType)

2: C ← {Line1, Line2, ..., Linen} //Cache lines (n-way cache)

3: B ← {B0, B1, ..., Blog2(n)-1} //Decision bits for the n-way tree

4: D ← {Dirty[Line1], Dirty[Line2], ..., Dirty[Linen]} //Dirty bits

5: repeat

6: current_level ← 0

7: candidates ← C

8: while |candidates| > 2 do

9: branch_bit ← B[current_level]

10: candidates ← LeftHalf(candidates) if branch_bit == 0 else RightHalf(candidates)

11: current_level ← current_level + 1

12: end while

13:

14: C1_candidates ← candidates //Final 2 candidates

15:

16: if Dirty[C1_candidates[0]] == Dirty[C1_candidates[1]] then

17: victim ← C1_candidates[0] if B[current_level] == 0 else C1_candidates[1]

18: else

19: if ConflictType == "WriteMiss" then

20: victim ← line ∈ C1_candidates where Dirty[line] == 0

21: else if ConflictType == "ReadMiss" then

22: victim ← line ∈ C1_candidates where Dirty[line] == 1

23: end if

24: end if

25:

26: Replace(victim, NewData) //Replace victim line with new data

27: UpdateTreeBits(victim, B) //Update tree bits to reflect replacement

28:

29: until CacheAccess == Complete

30: return CacheStatus

31: end procedure

Helper functions

32: function LeftHalf(candidates)
33: return candidates[0 : |candidates| / 2]

34: end function

35: function RightHalf(candidates)
36: return candidates[|candidates| / 2 : |candidates|]

37: end function

0

10

20

30

40

50

60

70

80

90

100

0 100M 200M 300M 400M 500M 600M 700M 800M 900M

C
ac

h
e

H
it

 R
at

io
 (

%
)

Number of Executed Instructions

Rank #1 Rank #2 Rank #3 Rank #4

Rank #5 Rank #6 Rank #7 Rank #8

Table 2.
Symbol / Function Description

C A list of cache lines in the current set

B An array of PLRU decision bits representing internal nodes of the PLRU binary tree.

D A list of dirty status bits corresponding to each cache line.

ConflictType A runtime parameter identifying the type of cache miss.

C1_candidates The final two cache lines selected from the tree traversal and subject to eviction evaluation.

Victim The chosen cache line to be evicted and replaced.

Replace(victim, NewData) A procedure that evicts the victim line and inserts the new data block.

UpdateTreeBits(victim, B) Updates the PLRU decision bits to reflect the most recent use of the victim line.

current_level An index or depth indicator used to iterate over PLRU decision bits during tree traversal.

LeftHalf(candidates) A helper function that returns the left half of a given candidate list.

RightHalf(candidates) A helper function that returns the right half of a candidate list.

Fig. 5.

Fig. 6.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

 C
le

an

D
ir

ty

FFT LU Cholesky Radix FMM Radiosity Barnes Ocean Raytrace Volrend Water-
nsquared

Water-
spatial

P
ro

b
ab

ili
ty

 o
f

St
at

e
Tr

an
si

ti
o

n
 (

C
le

an
 ↔

 D
ir

ty
)

Benchmarks

Retention Change

Fig. 7.

Fig. 8 (a).

0

5

10

15

20

25

0-10 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

R
at

io
 o

f
A

ve
ra

ge
 W

ri
te

 O
p

er
at

io
n

s
p

er
 T

im
e

In
te

rv
al

s
to

 T
o

ta
l W

ri
te

 O
p

er
at

io
n

s
in

 C
ac

h
e

Time Intervals (% of Lifetime in Cache)

FFT LU Cholesky Radix FMM Radiosity Barnes Ocean Raytrace Volrend Water-nsquared Water-spatial

-10

-5

0

5

10

15

20

25

30

35

40

45

4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way

Second Third Fourth

C
ac

h
e

H
it

 R
at

io
 R

ed
u

ct
io

n
 (

%
)

FFT LU Cholesky Radix FMM Radiosity Barnes Ocean Raytrace Volrend Water-nsquared Water-spatial

0

20000

40000

60000

80000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

er
 o

f
O

b
se

rv
at

io
n

s

SP Factor

Baseline Enhanced Fair

Fig. 8 (b).

Fig. 9 (a).

Fig. 9 (b).

Fig. 10 (a).

0
10
20
30
40
50
60
70
80
90

100
110

0 20 40 60 80 100 120 140 160 180 200

∆
V

T
(m

V
)

Time (months)

Baseline Enhanced Fair

1
1

.3
1

5
.2

1
7

.8
2

0
.3

2
2

.3
2

3
.6

2
4

.2
2

4
.9

2
5

.2
2

5
.7

2
6

.0
2

6
.3

2
6

.4
2

6
.5

2
6

.6
2

6
.8

2
6

.9
2

6
.9

2
6

.9
2

6
.9

8
.3

1
1

.1
1

3
.0

1
4

.8
1

6
.3

1
7

.2
1

7
.7

1
8

.2
1

8
.4

1
8

.8
1

9
.0

1
9

.2
1

9
.3

1
9

.3
1

9
.4

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6

0 20 40 60 80 100 120 140 160 180 200

R
-S

N
M

 D
eg

ra
d

at
io

n
 (

%
)

Time (months)

Baseline Enhanced

1
4

.0
1

7
.6

2
0

.1
2

2
.3

2
4

.2
2

5
.4

2
6

.0
2

6
.7

2
7

.0
2

7
.4

2
7

.7
2

7
.9

2
8

.0
2

8
.1

2
8

.2
2

8
.4

2
8

.5
2

8
.5

2
8

.5
2

8
.5

1
0

.0
1

2
.5

1
4

.2
1

5
.9

1
7

.2
1

8
.0

1
8

.5
1

8
.9

1
9

.1
1

9
.5

1
9

.6
1

9
.8

1
9

.9
1

9
.9

2
0

.0
2

0
.2

2
0

.2
2

0
.2

2
0

.2
2

0
.2

0 20 40 60 80 100 120 140 160 180 200

H
-S

N
M

 D
eg

ra
d

at
io

n
 (

%
)

Time (months)

Baseline Enhanced

Fig. 10 (b).

Fig. 11.

Fig. 12.

1
1

.3
1

5
.2

1
7

.8
2

0
.3

2
2

.3
2

3
.6

2
4

.2
2

4
.9

2
5

.2
2

5
.7

2
6

.0
2

6
.3

2
6

.4
2

6
.5

2
6

.6
2

6
.8

2
6

.9
2

6
.9

2
6

.9
2

6
.9

8
.1

1
0

.8
1

2
.7

1
4

.5
1

6
.0

1
6

.8
1

7
.3

1
7

.8
1

8
.0

1
8

.4
1

8
.6

1
8

.8
1

8
.9

1
8

.9
1

9
.0

1
9

.2
1

9
.2

1
9

.2
1

9
.2

1
9

.2
0 20 40 60 80 100 120 140 160 180 200

R
-S

N
M

 D
eg

ra
d

at
io

n
 (

%
)

Time (months)

Baseline Enhanced

1
4

.0
1

7
.6

2
0

.1
2

2
.3

2
4

.2
2

5
.4

2
6

.0
2

6
.7

2
7

.0
2

7
.4

2
7

.7
2

7
.9

2
8

.0
2

8
.1

2
8

.2
2

8
.4

2
8

.5
2

8
.5

2
8

.5
2

8
.5

9
.7

1
2

.1
1

3
.8

1
5

.4
1

6
.7

1
7

.5
1

7
.9

1
8

.4
1

8
.6

1
8

.9
1

9
.1

1
9

.2
1

9
.3

1
9

.4
1

9
.4

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6

0 20 40 60 80 100 120 140 160 180 200

H
-S

N
M

 D
eg

ra
d

at
io

n
 (

%
)

Time (months)

Baseline Enhanced

-0.0400

-0.0200

0.0000

0.0200

0.0400

0.0600

-0.0050

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300
N

o
rm

al
iz

ed
 N

u
m

b
er

 o
f

W
ri

te
-B

ac
ks

N
o

rm
al

iz
ed

 C
ac

h
e

M
is

s
R

at
io

Benchmarks

4-way (NCMR) 8-way (NCMR) 16-way (NCMR)
4-way (NNWB) 8-way (NNWB) 16-way (NNWB)

Table 3.

Operating Condition ΔVt (Base) ΔVt (ECE)
SNM Hold

(Base)

SNM Hold

(ECE)

SNM Read

(Base)

SNM Read

(ECE)

25°C, 1.0V (Nominal) 101.3 mV 87.1 mV -29% -20% -27% -19%

85°C, 0.9V (Stress corner) 115.5 mV 98.7 mV -33% -23% -31% -22%

-10°C, 1.2V (Conservative) 84.9 mV 69.3 mV -24% -16% -22% -15%

Fig. 13.

Fig. 14.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Normalized # of Cells (4-way)
Normalized # of Nets (4-way)
Normalized # of Cells (8-way)
Normalized # of Nets (8-way)

Normalized # of Cells (16-way)
Normalized # of Nets (16-way)

Normalized Area (%)

RPE Circuits Other Control Logic CPE Circuits

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Si
gn

al
 P

ro
b

ab
ili

ty
 (

%
)

Bit Position

Base IBS CFDR DCC CSM ECE*

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

ECE* IBS CFDR DCC CSM ECE* IBS CFDR DCC CSM ECE* IBS CFDR DCC CSM

4-way 8-way 16-way

N
o

rm
al

iz
ed

 D
yn

am
ic

 E
n

er
gy

C

o
n

su
m

p
ti

o
n

FFT LU Cholesky Barnes Ocean Raytrace Radix FMM Radiosity Volrend Water-nsquared Water-spatial

Fig. 15.

Fig. 16.

Fig. 17.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way

ECE* IBS CFDR DCC CSM

N
o

rm
al

iz
ed

 C
ac

h
e

M
is

s
R

at
io

FFT LU Cholesky Barnes Ocean Raytrace Radix FMM Radiosity Volrend Water-nsquared Water-spatial

0.00

0.05

0.10

0.15

0.20

4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way

ECE* IBS CFDR DCC CSM

N
o

rm
al

iz
ed

 N
u

m
b

er
 o

f
W

ri
te

-
b

ac
ks

FFT LU Cholesky Barnes Ocean Raytrace Radix FMM Radiosity Volrend Water-nsquared Water-spatial

0%

20%

40%

60%

80%

100%

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

C
el

ls

N
et

s

4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way 4-way 8-way 16-way

ECE* IBS CFDR DCC CSM

A
re

a
O

ve
rh

ea
d

 (
%

)

Total Control Logic Total Cache and Control Logic

