
 

 1 

RevEAL: Reliability vs Energy Optimization for 

Autonomous Vehicles Using Large Language 

Models 

Mahdieh Aliazam1, Ali Javadi2, Amir Mahdi Hosseini Monazzah*3, Ahmad Akbari Azirani4 

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran 

1mahdieh_aliazam77@comp.iust.ac.ir, 2javadi_ali@comp.iust.ac.ir, 3monazzah@iust.ac.ir, 
4akbari@iust.ac.ir 

* Corresponding Author: Amir Mahdi Hosseini Monazzah (monazzah@iust.ac.ir, Tel: +98-21-73225347) 

 

 
Abstract 

 

As autonomous vehicles continue to gain traction, the need for highly accurate and energy-efficient systems to 

enhance safety and performance becomes increasingly critical. Effectively managing the tradeoff between energy 

consumption and reliability in these systems requires the ability to predict various operational conditions. With 

the rapid advancements in Large Language Models and models like ChatGPT, new opportunities for improving 

predictions in autonomous vehicle operations have emerged. This paper proposes RevEAL, which utilizes Large 

Language Models as map reader co-drivers to predict essential parameters for optimizing the energy-reliability 

balance during AV operations. Experimental results demonstrate that RevEAL achieved up to 67% driving accuracy 

and a 53.4% reduction in total energy consumption, depending on the operating scenario. Additionally, RevEAL 

reduced power consumption by 33% compared to selected baseline configurations, highlighting its strength in 

maintaining a practical balance between navigation performance and energy efficiency. These findings underscore 

the potential of RevEAL to contribute to the development of more adaptive and resource-aware autonomous 

driving systems. 

 

Index Terms 
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1 Introduction 

Autonomous Vehicles (AVs), as one of the leading innovations in the transportation industry, are set to 

revolutionize the future of roads and everyday life. These vehicles, leveraging advanced technologies, are evolving 

into fully autonomous systems capable of performing all driving tasks without human intervention [1]. The 

technologies employed in these vehicles integrate multiple sensors such as cameras, LiDAR, radar, and global 

navigation systems with advanced deep learning algorithms, enabling them to perceive the environment, make 

decisions, and control the vehicle. AVs utilize intelligent software that processes sensor data to perform tasks such 

as obstacle detection, lane-keeping, and responding to emergency situations. This level of technology not only 
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enhances features like emergency braking and adaptive cruise control but also marks a significant step toward 

reducing human errors in driving [2]. 

Despite these advances, energy consumption remains a critical challenge for AVs [3]. These vehicles rely 

on an array of high-precision sensors, powerful processors, and complex mechanical components, all of which 

consume significant energy. Devices such as high-resolution cameras, LiDAR systems, and advanced processors 

are among the primary sources of energy consumption in these vehicles [4]. Optimizing energy consumption 

in AVs is of great importance. Reducing energy usage not only extends the range of electric vehicles but also 

minimizes the need for recharging and improves operational efficiency [5]. At the same time, the accuracy and 

reliability of these systems must not be compromised. High algorithmic precision can enhance road safety and 

prevent accidents. Additionally, adaptability to diverse road conditions and lower operational costs are crucial 

steps toward the sustainable development of this technology [6]. 

One innovative approach to reducing energy consumption in AVs is the use of Large Language Models (LLMs) 

as intelligent collaborators for predicting and adjusting critical parameters. These models can optimize autonomous 

vehicle performance by balancing accuracy, reliability, and energy consumption. LLMs, such as ChatGPT®, utilize 

advanced deep learning techniques, particularly transformer architectures, and possess the capability to analyze and 

generate human-like text based on vast amounts of data. Through natural language processing, these models can 

handle complex tasks such as interpreting environmental data and predicting route challenges [7]. In the domain 

of AVs, LLMs can serve as advanced assistants for improving navigation and reducing energy consumption. By 

accurately predicting environmental conditions and providing appropriate decisions, they can create more efficient 

movement patterns. For instance, they can optimize acceleration and minimize unnecessary braking, resulting in 

smoother driving and significant energy savings [8]. 

In this paper, we introduce RevEAL as an innovative approach that utilizes LLMs to optimize energy con- 

sumption and navigation accuracy. RevEAL predicts critical environmental parameters and intelligently manages 

mechanical actuators and computational resources to strike a balance between energy efficiency and reliability. 

This method employs ChatGPT® as a collaborative navigator, and its performance was tested in real-world 

scenarios using an autonomous robot car equipped with a Raspberry Pi board and DC motors. 

The key features of RevEAL include: 

 Using LLMs to predict environmental parameters and make intelligent decisions. 

 Incorporating internal obstacle detection algorithms for identifying and navigating both static and 

dynamic obstacles. 

 Introducing a control policy for optimizing motor speed and computational precision. 

Experimental results demonstrate that RevEAL improved navigation accuracy by 33% compared to key baseline 

scenarios, while achieving a 53.4% reduction in total energy consumption. Additionally, RevEAL demonstrated 

a 33% reduction in power consumption, highlighting its ability to maintain an exceptional balance between 

precision and energy optimization. These findings underscore the potential of RevEAL to advance the field of 

AVs by enabling efficient and reliable performance across varying operational environments. 

The structure of this paper is as follows: Section 2 reviews related work on AVs and LLM. Section 3 discusses 

related studies. Section 4 explains the proposed RevEAL approach, and Section 5 presents simulation results. 
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Finally, Section 6 concludes the paper. 

2 Background 

This chapter focuses on the technology of AVs and examines the crucial impact of energy consumption in 

these vehicles. It will provide an introduction to LLMs and their applications in AVs. The goal is to offer a 

thorough overview of the technological advancements and challenges related to AVs, as well as the role of LLMs 

in improving their performance and accuracy. 

 

2.1 Autonomous Vehicle Technology 

The technology behind AVs consists of several essential components, including sensors, algorithms, and control 

systems. Sensors are responsible for monitoring the environment, detecting obstacles, and facilitating navigation. 

These include cameras, LiDAR, radar, and ultrasonic sensors, which allow the vehicle to accurately assess its 

surroundings and provide the necessary data for real-time, precise decision-making [9]. 

Algorithms are another critical element of AVs technology. These algorithms process the data collected from 

sensors and make decisions to guide the vehicle. They encompass artificial neural networks, machine learning 

techniques, and decision-making algorithms that analyze environmental data, select optimal paths, and respond 

appropriately to various situations. Advanced algorithms can manage complex behaviors such as lane changes, 

stopping at red lights, and collision avoidance with high accuracy [10]. 

Control systems, which are also vital, implement the commands provided by the algorithms. These systems 

include both electronic and mechanical controllers that interact directly with the vehicle’s physical components, 

such as the steering, brakes, and throttle. Control systems must execute commands with high precision and speed 

to ensure the vehicle moves safely and efficiently. Their role is crucial in maintaining the stability and accuracy 

of AVs operations [11]. 

Integrating software and hardware in AVs is also of great significance. This integration involves the full 

coordination between sensors, algorithms, and control systems, enabling the vehicle to operate seamlessly and 

cohesively. Advanced software must process a variety of data rapidly and relay critical information to the control 

systems in real-time. Moreover, the hardware must exhibit high precision and stability to ensure the accurate 

execution of software commands [12]. 

In conclusion, the success of AVs technology relies on the coordinated and effective interaction between all 

of these components. Each part must function perfectly to ensure the vehicle operates safely and efficiently. 

Therefore, continuous advancement in sensors, algorithms, and control systems, along with the integration of 

software and hardware, is essential for the progress and widespread adoption of AVs [9]. 

 

2.2 Energy Consumption in AVs 

As shown in Fig. 1, the sensors in AVs, such as cameras, LiDAR, and radar, generate vast amounts of raw data 

that the vehicle’s computing unit must process. The data rate produced by these sensors varies based on their 

technical specifications, including factors such as generation, bit rate, and recording features [1]. For instance, 

the data rate of a LiDAR sensor may differ from that of a camera, as each sensor captures different types of data 

from the surrounding environment that require distinct processing. 
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These variations directly influence the energy consumption of AVs. Energy consumption in AVs can generally 

be divided into three main categories. The first category is energy consumption from the vehicle’s sensors, 

computing devices, and mechanical components, which accounts for the largest portion of energy usage. The 

second category involves energy consumption from infrastructure sensors and vehicular network communications, 

which are crucial for coordination and data exchange between vehicles and infrastructure [13]. The third category 

relates to energy consumption in the backend, including Edge servers and local and central servers that store and 

process historical data. The level of autonomy in AVs plays a significant role in determining energy consumption, 

as higher levels of autonomy necessitate more sensors, computing units, and controllers [6]. 

Vehicle autonomy is categorized into six levels, each with specific sensor and operational requirements. At 

Level 0, there is no automation, and all driving tasks are performed solely by the driver. Level 1 involves driver 

assistance, where some driving tasks are supported by vehicle sensors, but the driver remains in full control. In 

Level 2, partial automation is achieved, with certain tasks like adaptive cruise control and emergency braking 

handled by the vehicle’s computing unit, although the driver must stay engaged and ready to take control. 

Level 3 introduces conditional automation, where the vehicle can autonomously perform some tasks, but the 

driver must be prepared to intervene when required. At Level 4, high automation is achieved, allowing the vehicle 

to handle all driving tasks under specific conditions, though the driver may still take control if needed. Finally, 

Level 5 represents full automation, where the vehicle can autonomously complete all driving tasks under all 

conditions, although the driver retains the option to control the vehicle if desired [1]. 

The high energy consumption in AVs arises from the use of compute-intensive algorithms and processing 

units, such as graphics processors, which are necessary for perception and visual applications. A highly effective 

strategy to reduce energy consumption in AVs is route planning and optimization [14], [15]. This technique 

utilizes advanced algorithms to determine the most efficient route, minimizing both travel time and distance, 

thereby significantly reducing energy usage. Furthermore, adopting adaptive and predictive models to optimize 

energy consumption is essential. These models analyze historical data and forecast future energy needs to enhance 

vehicle energy efficiency [16]. For example, employing LLM to predict road conditions and adjust vehicle speed 

and accuracy can be an effective approach to optimizing energy consumption [7]. 

 

2.3 Large Language Models 

LLMs are deep learning models designed to process and generate natural language. These models leverage vast 

neural networks and massive datasets from a wide range of sources to understand and generate human language 

[17]. Notable examples of LLMs, such as GPT-3 and GPT-4 from OpenAI, have been trained with billions of 

parameters and are capable of performing various tasks like translation, text generation, and question answering. 

These models primarily rely on advanced machine learning techniques like deep learning and Transformers to 

detect intricate patterns and relationships in words and sentences [7]. 

These models typically receive input text and analyze it through deep neural networks to extract meaning, 

detect patterns, and generate appropriate outputs. The results can be delivered in the form of human-readable 

text (e.g., responses or summaries) or as numerical embeddings that capture semantic information for further 

processing. 
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Such output forms help the model recognize and process complex relationships between concepts, improving 

both efficiency and accuracy [18]. 

In the context of AVs, LLMs play a critical role in map reading and navigation. By processing textual and 

visual data, they can handle complex geographic information, analyze traffic and environmental conditions, and 

help determine optimal driving routes, ultimately reducing travel time and enhancing efficiency [7]. 

In addition, LLMs significantly improve the accuracy of autonomous systems. By learning from historical 

data, these models can analyze diverse inputs and make highly accurate decisions. They can intelligently identify 

road obstacles, speed limits, and sudden route changes, enabling the AVs to plan appropriate responses. This 

capability ensures safer operation, reduces the likelihood of accidents, and provides a better experience for 

passengers. Overall, LLMs play an essential role in enhancing both the accuracy and efficiency of navigation and 

autonomous driving systems [8]. 

3 Related Work 

This section highlights several studies relevant to our work, which focus on enhancing routing accuracy and 

optimizing energy consumption in AVs. 

In [5], the authors explore an energy optimization controller for mobile robots, utilizing event-based cameras 

for real-time vision operations. The controller regulates both the CPU’s voltage/frequency and the motor voltage 

simultaneously to minimize energy use. The core concept of this paper is that controlling the robot’s speed and 

CPU voltage/frequency separately does not necessarily yield the most efficient energy use. Instead, optimal energy 

efficiency is achieved through coordinated management of computational and mechanical controls. To facilitate 

this, a fast hill-climbing optimization algorithm is introduced, which determines the best configuration for the 

CPU and motor during runtime, adapting to new environments. Experimental results show that this approach 

achieves average energy savings of 50.5%, 41%, and 30% in low, medium, and high complexity environments, 

respectively, compared to baseline methods. These results were observed in a robot equipped with brushless DC 

motors, a Jetson TX2 computational unit, and a DAVIS-346 event-based camera.  

In [17], researchers investigate the potential of using LLM like ChatGPT as driving assistant for vehicles. The 

study aims to bridge the gap between human intentions, machine comprehension, and execution by using LLMs 

as a "Co-Pilot" to assist with specific driving tasks. The framework is enhanced using a technique known as black- 

box tuning. In experiments, the Co-Pilot successfully performed tasks such as path control and route planning 

through natural language processing. While not without limitations, the study demonstrates the high potential 

of this framework for broader applications in AVs, particularly in improving human-machine collaboration in 

driving scenarios. 

Wan et al. in [19] present a framework named BERRY, which enhances energy efficiency and bit error resilience 

in reinforcement learning models for autonomous systems. While reducing the operating voltage saves energy, 

it also increases the likelihood of bit errors, which can compromise system performance and safety. BERRY 

combines offline and onboard robust learning, enabling systems to operate reliably at lower voltages, thus 

achieving notable energy savings. The experimental findings indicate that BERRY can reduce energy consumption 

by up to 15.62% and increase mission success rates by up to 18.51%. 

In [13], the authors propose the EcoFusion method, which aims to reduce energy consumption in AVs while 
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maintaining object detection performance. EcoFusion dynamically adjusts sensor fusion and the fusion location 

based on environmental conditions, thereby optimizing both energy use and detection accuracy. The core idea 

is that different driving conditions, such as city driving or rainy weather, require different sensor configurations. 

By identifying these conditions, the system can adapt sensor fusion to achieve optimal energy consumption. The 

method demonstrates a 9.5% improvement in object detection performance compared to traditional sensor fusion 

approaches. Furthermore, EcoFusion reduces energy consumption by around 60% and latency by 58% when 

compared to the Nvidia Drive PX2 platform. 

 

4 RevEAL in Details 

Energy consumption and reliability are critical factors in the performance of AVs. Each component, including 

sensors, computational units, and mechanical systems, independently impacts the energy usage of these vehicles. 

However, independent control of speed (managed by the mechanical unit) and CPU processing (handled by the 

computational unit) does not necessarily lead to an optimal solution. In other words, merely reducing speed 

or processing accuracy cannot guarantee reduced energy consumption. Achieving maximum efficiency requires 

coordinated and simultaneous control between computational and mechanical systems [5]. 

Therefore, it is essential to design a system capable of dynamically adjusting speed and processing accuracy 

based on environmental conditions and road changes. Such a system can significantly reduce energy consumption 

while maintaining navigation accuracy and establish an optimal balance between energy efficiency and reliability, 

where reliability in this study is defined as navigation accuracy and obstacle detection in the environment. To 

achieve this goal, we introduce RevEAL. This system utilizes LLM chat bot as co-driver map readers to analyze 

the operational route, identify obstacles and appropriate strategies for handling them, and finally adjust critical 

vehicle parameters such as speed and image processing accuracy to achieve an optimal balance between accuracy 

and energy consumption. 

Fig. 2 illustrates the architecture of RevEAL, which consists of two main components: the computational unit 

and the mechanical unit. In the computational unit, data such as environmental conditions, road images, existing 

obstacles, current speed, and image processing accuracy are sent to the Prompt Generator. This component 

generates a prompt based on the received data and sends it to the LLM Chatbot. The chatbot analyzes the travel 

environment, including road curvature, straightness, and obstacles, and generates an appropriate response, which 

is then forwarded to the Management Unit. Based on the road, the chatbot makes decisions such as increasing 

or decreasing the speed or accuracy. The Management Unit decodes the chatbot’s response and extracts the 

necessary information. 

The extracted data, which includes vehicle speed, and the desired frames per second (FPS) for image processing, 

is sent to the respective control units. For straight paths, the chatbot suggests specific values for speed and 

FPS, while different values are recommended for curved paths. FPS-related data is forwarded to the Image 

Processing Unit, while speed-related data is sent to the Speed Control Unit. The processed information in the 

Image Processing Unit is applied to the Direction Control Unit to adjust steering and vehicle navigation. 

The Speed Control Unit calculates the defined speed and transmits the necessary commands to the mechanical 

unit’s motor. The motor activates either the right or left motor (or both) depending on the direction and degree 
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of curvature. 

Another essential component of the RevEAL architecture is the Energy Measurement Module, which monitors 

the energy consumption of the Computational Unit and the Mechanical Unit (motors). The measured data of each 

unit’s power consumption is sent to the Energy Measurement Unit, where power consumption is calculated. The 

results are also sent and stored on a cloud server using the MQTT protocol. 

This stored information can later be used to improve algorithms and further optimize energy consumption, 

as well as enable deeper analysis of the collected data to understand energy consumption patterns and improve 

overall system performance. The calculated energy is also passed to the Feedback Management Unit for making 

decisions that adjust the system’s speed and accuracy. 

In RevEAL, the process of energy measurement begins with calculating the input voltage using the digital 

output of an Analog-to-Digital Converter (ADC), as shown in Eq. (1) [20]: 
 

InputVoltage = 
Dout × Vmax

 
Dmax 

(1) 

Here, Dout represents the digital output from the ADC, Vmax is the maximum measurable analog voltage, and 

Dmax is the maximum digital value the ADC can output. 

Next, the current is calculated by dividing the obtained input voltage by the value of the shunt resistor 2 as 

shown in Eq. (2): 
 

Current = 
 InputVoltage  

Shunt Resistance Value 
(2) 

Finally, the power consumed by a device (either mechanical or computational) is calculated using the following 

Eq. (3): 

 

Power = Current × Device Voltage (3) 

These calculations enable precise energy tracking for both mechanical and computational components, forming 

the basis for adaptive control and optimization within the system. 
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5 System Setup and Results 

To evaluate the performance of the RevEAL method, we designed and implemented an AVs robot in a real- 

world environment. Fig. 3 shows the implemented robot. This implementation consists of two main parts. The 

first part is the processing unit, which uses a Raspberry Pi 4B board to handle computational tasks, prompt 

generation, and server communication. Additionally, a Raspberry Pi camera is used for video capture and image 

processing. The second part is the mechanical unit, responsible for controlling the speed and movement of the 

robot. The motors are controlled using an L298N motor driver, while the wheels are powered by DC motors. 

To implement the computational unit’s code, Python programming language was used. Line detection algorithms 

and the OpenCV [21] library were utilized to identify road lines and adjust the navigation direction. Motor control 

commands were sent using the RPi.GPIO library, which manages the Raspberry Pi’s output pins. The wheel 

rotation speed was controlled through Pulse Width Modulation (PWM). 

Road line information was obtained via image processing and used to adjust the robot’s movement direction 

by sending control commands to the motors. Additionally, obstacles on the road were initially detected using the 

OpenCV library. However, advanced obstacle detection was handled by a chatbot. 

Fig. 4 shows the test environment and the AV evaluation. The test track was designed in an infinity shape, 

including straight and curved sections and four crosses. For performance evaluation, the AV was tested on this 

track, with various obstacles such as stationary objects (e.g., trees) and moving ones (e.g., vehicles or pedestrians) 

placed along the road. 

A module was designed using a shunt resistor to measure the energy consumption of computational and 

mechanical units within the energy management system. This module is positioned between the power source and 

the computational and mechanical units to measure the voltage consumed by each section, ultimately calculating 

the power consumption of each unit. 

As shown in Fig. 5, we illustrate how a LLM performs step-by-step logical reasoning and decision-making in an 

environment with obstacles. For LLM Chatbot, we use chatGPT by OpenAI to get image information and pictures 

from vehicles and process that. The autonomous vehicle captures an image of the road and environment using an 

onboard camera. then, Basic visual analysis (e.g., road curvature, object presence) is performed locally, and the 

extracted context is encoded into a structured natural language prompt. This prompt is sent to the LLM, asking 

it to decide whether to increase or reduce vehicle speed and whether high or low image processing precision 

(FPS) is needed, based on the visual context. In the provided image, the road is identified as curved, requiring 

the AV to make appropriate adjustments. For safe navigation, the vehicle should reduce speed to maintain control 

while negotiating the curve. Adjusting speed ensures the vehicle remains stable and avoids deviation from the 

road. The image processing quality is high, as the road’s path and curvature are clearly detected, allowing the 

vehicle to make accurate decisions regarding its trajectory. This decision-making is based on analyzing the road’s 

direction and ensuring smooth movement while minimizing risks. Additionally, an internal obstacle detection 

algorithm ensures that whenever an obstacle is detected, the vehicle steers around it and passes safely 

alongside. 

To evaluate the effectiveness of the proposed method, it was compared against the Self-Contained Logic 

approach, where all processing and decision-making are performed on a Raspberry Pi, as well as four different 



 

 9 

baseline scenarios: 1) high speed with high FPS (speed: 1.26 km/h, FPS: 30), 2) low speed with high FPS (speed: 

0.98 km/h, FPS: 30), 3) high speed with low FPS (speed: 1.26 km/h, FPS: 5), and 4) low speed with low FPS 

(speed: 0.98 km/h, FPS: 5). The experiments were conducted under similar conditions for all scenarios, including 

the proposed method, with the same distance considered for testing. To assess reliability and navigation accuracy, 

the ability to stay on the designated path, and obstacle avoidance were evaluated. 

As illustrated in Fig. 6, the proposed RevEAL method achieved superior results compared to other scenarios. 

In terms of Non-Collision Probability, the RevEAL approach experienced no collisions, outperforming all other 

scenarios, particularly the Low FPS conditions at High and Mid Speeds, which recorded a 0% Non-collision rate.  

For Driving Accuracy, as shown in Fig. 7, the RevEAL method achieved a driving accuracy of 0.67, which is 

substantially higher than High FPS at High Speed (0.25) and Low FPS at High Speed (0.14). It also outperforms 

both High FPS and Low FPS scenarios at Mid Speed (each at 0.40), and shows a better balance than the Low FPS 

configuration at Low Speed (0.50). Although its accuracy is lower than the best-performing scenario—High FPS 

at Low Speed (1.00)—the RevEAL method offers a strong compromise between accuracy and energy efficiency 

across all speed conditions. 

This result demonstrates that while RevEAL may not always achieve the highest raw accuracy, it provides 

a consistently reliable and adaptive performance that is well-suited for dynamic environments, especially when 

considered alongside its substantial energy savings and collision-free operation. 

As illustrated in Fig. 8, the RevEAL method demonstrates significant improvements in both power consumption 

and energy efficiency compared to other scenarios. In terms of Power Consumption, the RevEAL approach 

achieves a balanced trade-off between Computational Power (5.73 W) and Mechanical Power (5.07 W). Compared 

to the High FPS scenarios across different speeds, the computational power remains lower than the 4.18 W 

observed for High FPS and closer to the Low FPS values (3.07 W). 

For Energy Consumption, as shown in Fig.9, the RevEAL method achieves 350 J, which is significantly lower 

than all other scenarios. Specifically, compared to the worst-case scenario (Low FPS at Mid Speed with 751 J), the 

proposed method reduces energy consumption by 53.4%. Compared to High FPS at High Speed (535 J), RevEAL 

achieves a 34.6% energy improvement. Overall, the RevEAL method reduces total energy consumption by up to 

53.4%, while maintaining an efficient balance between computational and mechanical power. This highlights the 

method’s superiority in achieving energy optimization without compromising performance. 

 

6 Conclusion 

The proposed RevEAL method presented in this paper demonstrates substantial improvements in both AVs 

navigation and energy efficiency. Through comprehensive testing and comparison with baseline methods, RevEAL 

has shown superior performance in both navigation accuracy and energy optimization. The integration of advanced 

algorithms for map reading, route optimization, and energy-efficient models has resulted in a robust system that 

enhances AVs operations. 

One of the key advantages of RevEAL lies in its ability to dynamically manage energy consumption across 

computational and mechanical subsystems, while still ensuring competitive navigation accuracy. The experimental 

results reveal that although RevEAL does not always outperform every baseline in isolation, it achieves 67% 
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accuracy in dynamic conditions, surpassing several static high/low FPS configurations in more rigid settings. 

Furthermore, RevEAL achieved remarkable energy savings, reducing total energy consumption by up to 53.4%. 

The method demonstrated a 53.4% reduction in energy consumption compared to the worst-case Low FPS at 

Mid Speed scenario and a 34.6% improvement in energy efficiency compared to High FPS at High Speed. 

Additionally, the system showed an efficient balance in power consumption with a 33% reduction compared to 

baseline methods. These results emphasize the effectiveness of the approach in optimizing energy usage without 

compromising performance or accuracy. 

In conclusion, RevEAL represents a promising advancement in AVs technology. By effectively managing 

the trade-off between energy consumption and navigation accuracy, this method opens new possibilities for 

more efficient and reliable autonomous systems. Future work may focus on refining optimization techniques 

and expanding the application of the approach across various platforms and environments, leading to further 

improvements in AVs capabilities. 
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Fig. 3: RevEAL AVs Implemention 

 

 

 

 

Fig. 4: Experiments and Test of AVs 
 
 

 

 



 

 15 

 
 

Fig. 5: Example of step-by-step reasoning and decision making in a complex environment 
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Fig. 6: Probability of Non-Collision: RevEAL Compared to Other Scenarios 

 

 

 

 

 

 

 
 

Fig. 7: Driving Accuracy of RevEAL compared to other Scenarios 
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Fig. 8: Power Consumption of Mechanical and Computational units 
 

 

Fig 9. Total energy consumption of RevEAL compared to other scenarios. 
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