

Boosting Scalability in Microservice Architectures with Consensus Mechanisms

Esmail Sadeghi Hafshejani1, Mahmood Deypir2*, Ali Broumandnia3

1,2,3 Department of Computer Engineering, ST.C., Islamic Azad University, Tehran, Iran.

Keywords:
Microservices
Distributed Transactions

Paxos

Saga Pattern

Fault Tolerance

Scalability

Consensus Mechanisms

Abstract. Microservice architectures are preferred for their scalability and

flexibility, however, managing distributed transactions in these systems poses

significant challenges, especially in terms of consistency and fault tolerance.To

address these issues, this study evaluates two distinct approaches: Paxos, a

consensus algorithm that ensures agreement among distributed nodes, and the

enhanced Saga pattern, a transaction coordination framework that manages local

transactions with compensating actions. We implemented both methods in a

microservice-based application deployed across distributed nodes and assessed their

performance under various load conditions and failure scenarios. The results show

that integrating Paxos significantly improves throughput and reduces latency,

offering strong consistency and robust fault tolerance. In contrast, the enhanced Saga

pattern, while effective in managing compensating transactions and maintaining

eventual consistency, demonstrated lower performance in high-load environments.
These findings highlight the trade-offs between consensus-based and coordination-

based transaction management in microservice architectures and provide practical

insights for system designers seeking scalable and reliable solutions.

1. Introduction

Microservice architecture [1] has emerged as a

dominant paradigm in modern software engineering,

enabling the development of modular, independently

deployable services tailored to specific business

capabilities[2-4]. This architectural style enhances

agility and responsiveness, allowing organizations to

adapt rapidly to evolving requirements and scale

components independently[5-6]. Unlike monolithic

systems where transactional integrity is maintained

within a single database Distributed Transactions often

span multiple services and data stores, increasing the

risk of inconsistency and coordination failures[7-10].

Ensuring reliable execution across such distributed

environments requires sophisticated coordination

mechanisms. Recent industrial inquiries have

highlighted practical challenges in adopting

microservices, including architectural migration,

service orchestration, and operational overhead [11-

12]. A recent systematic literature review further

categorizes these challenges into architectural,

operational, and organizational dimensions, offering

structured solution directions for successful

*Corresponding author E-mail address: Mdeypir@iau.ac.ir

microservice adoption [13] .To address these

concerns, stepwise migration strategies have been

proposed to balance performance with implementation

effort [14][15]. To mitigate coordination and

reliability issues, researchers have explored consensus

algorithms and distributed transaction patterns.

Among these, Paxos stands out as a fault-tolerant

protocol that ensures agreement among nodes even in

the presence of failures[16-19]. Paxos operates

through structured phases proposal, acceptance, and

commitment enabling systems to recover from node

failures without compromising integrity[20-21].

Despite the availability of various coordination

models such as 2PC and Saga, and consensus

protocols like Paxos and Raft, few studies have

systematically benchmarked their behavior under

realistic microservice conditions. Specifically, there is

limited comparative analysis of Paxos and enhanced

Saga patterns across diverse load levels and failure

scenarios in distributed architectures. This paper aims

to address this technical gap by conducting empirical

evaluations to highlight performance trade-offs and

guide system designers toward informed coordination

strategies. In parallel, the Saga pattern provides a

decentralized approach to managing long-running

transactions through compensating actions,

emphasizing availability and eventual consistency

[22]. Recent surveys on scalable consensus

mechanisms[16][20] and hybrid approaches such as

reputation-based Proof of Cooperation [7] and causal

consistency frameworks [10] further validate the

relevance of these models in distributed environments.

These innovations aim to reduce latency, improve

throughput, and enhance system resilience[23-27]. For

example, AI-assisted consensus frameworks[28],

fault-tolerant blockchain protocols[29-30], and

adaptive scheduling mechanisms[31] have

demonstrated promising results in distributed

microservice deployments. Moreover, studies on

performance benchmarking[27], architectural

conformance[32], and optimization of access control

views[30] provide practical insights into designing

scalable and robust microservice systems. The CAP

theorem and its modern interpretations also offer a

theoretical foundation for understanding trade-offs

between consistency, availability, and partition

tolerance[7][16][33]. This paper investigates the

integration of Paxos into microservice architectures

and compares its effectiveness with the enhanced Saga

pattern. Through a series of experiments and

evaluations, we analyze their performance under

varying load and failure scenarios. Our goal is to

identify the most efficient coordination mechanism for

managing distributed transactions in microservice

environments. The main contributions of this paper are

as follows:

 We examine Paxos consensus algorithms to

improve transactional coordination in

microservices and compare them with the

enhanced Saga pattern.

 We demonstrate that Paxos integration leads to

measurable improvements in throughput, latency,

and system resilience.

 We conduct empirical evaluations incorporating

Paxos, Saga, and 2PC protocols to assess their

comparative performance.

This paper investigates the integration of Paxos

into microservice architectures and compares its

effectiveness with the enhanced Saga pattern. Through

a series of experiments and evaluations, we analyze

their performance under varying load and failure

scenarios. Our goal is to identify the most efficient

coordination mechanism for managing distributed

transactions in microservice environments.

The main contributions of this paper are as

follows: (1) We propose the integration of Paxos

consensus algorithms into microservice architectures

to enhance transactional coordination and fault

tolerance. (2) We present a comparative performance

evaluation between Paxos, enhanced Saga, and 2PC

protocols under varying load and failure conditions.

(3) We demonstrate that Paxos-based coordination

significantly improves throughput, reduces latency,

and increases system resilience compared to

coordination-based alternatives. These contributions

provide empirical insights into the trade-offs between

consensus-driven and compensation-driven

transaction models, offering practical guidance for

system architects.

These findings are presented across the following

structure: Section 2 reviews related work. Section 3

describes our proposed Paxos-based optimization

algorithm. Section 4 details the evaluation

methodology and results. Section 5 discusses

implications and future directions. Section 6 concludes

with a summary of key findings.

2. Related works

The application of consensus algorithms in

improving the scalability[4] of microservice

architecture has been a topic of significant interest in

recent years. Various studies have explored different

consensus mechanisms and their impact on the

performance and scalability of distributed systems.

Recent surveys have provided comprehensive

comparisons of these protocols, Recent comparative

studies of microservice patterns reinforce these

findings and highlight trade-offs between

implementation strategies[34]. highlighting their

trade-offs in terms of scalability, fault tolerance, and

latency[35][7].

2. 1. Consensus Algorithms in Distributed
Systems

Consensus algorithms such as Paxos, Raft,

and Practical Byzantine Fault Tolerance (PBFT) have

been extensively studied for their ability to achieve

agreement among distributed nodes. These algorithms

are fundamental in ensuring data consistency and fault

tolerance in distributed systems. For instance, Raft is

known for its simplicity and understandability, making

it a popular choice for many distributed systems [36].

PBFT, on the other hand, is designed to tolerate

Byzantine faults, making it suitable for environments

where nodes may act maliciously [29]. These

protocols have been contrasted in recent evaluations

focusing on blockchain-based and hybrid distributed

systems [7]. Recent enhancements to PBFT aim to

balance fault tolerance with network scalability across

blockchain and microservice contexts[37].

2. 2. Scalability Challenges in Microservice
Architecture

Microservice architecture, characterized by

its modularity and independence of services, faces

unique scalability challenges. Each microservice must

coordinate with others to maintain data consistency

and system integrity. As the number of services

increases, managing inter-service communication,

transaction coordination, and data synchronization

becomes increasingly complex. This complexity is

reflected in recent evaluations contrasting scalability

of monoliths and microservices under high-load

conditions[38]. Traditional consensus algorithms,

while effective in ensuring consistency, often struggle

with scalability due to their high communication

overhead and latency [30][39][33]. Recent research

has introduced dependable consensus mechanisms

specifically designed for blockchain-assisted

microservice architectures, aiming to enhance both

security and scalability [40]. This has led to the

exploration of more scalable consensus mechanisms

tailored for microservice environments. Recent studies

have proposed hybrid approaches such as reputation-

based Proof of Cooperation[7] and causal consistency

simulators [10] to reduce latency and improve fault

tolerance. Additionally, cloud-native adaptations of

the Saga pattern have shown promise in optimizing

distributed transactions while maintaining eventual

consistency[22]. Hybrid consensus models designed

for IoT systems further demonstrate the adaptability of

Paxos-inspired architectures[41]. Dynamic event-

triggered fault-tolerant control frameworks have

recently been proposed to enhance scalability and

resilience in distributed systems operating under

constrained conditions [42]. Ontology-guided surveys

have further classified consensus algorithms based on

their suitability for resource-constrained

environments, offering structured insights into IoT-

integrated microservice deployments [43].

2.3. Recent Advances in Consensus Algorithms

Microservice architecture, characterized by

its modularity and independence of services, faces

unique scalability challenges. Each microservice must

coordinate with others to maintain data consistency

and system integrity. Traditional consensus

algorithms, while effective in ensuring consistency,

often struggle with scalability due to their high

communication overhead and latency [30][39][33].

This has led to the exploration of more scalable

consensus mechanisms tailored for microservice

environments. Another study proposed a hybrid

consensus algorithm that combines the strengths of

Proof of Work (PoW) and Proof of Stake (PoS) to

achieve better efficiency and security[28][29][44].

 Adaptive consensus protocols based on

neural networks have demonstrated fixed-time

convergence and fault tolerance in multi-agent

systems, offering promising directions for

microservice coordination[45]. Holistic verification

techniques have recently been applied to industrial-

grade consensus protocols, ensuring both safety and

liveness under Byzantine fault conditions [46].

2.4. Application in Microservice Architecture

The application of these advanced consensus

algorithms in microservice architecture has shown

promising results. By integrating scalable consensus

mechanisms, microservices can achieve higher

throughput and lower latency, thereby improving the

overall scalability of the system. For instance,

leveraging Raft in a microservice environment can

enhance coordination and data consistency without

significantly impacting performance [36].

In conclusion, the integration of advanced

consensus algorithms in microservice architecture

holds great potential for improving scalability and

performance. Model-driven metrics have also been

applied to assess architectural quality aspects such as

automation, scalability, and maintainability in

distributed MLOps systems, offering transferable

insights for microservice-based environments[47].

Ongoing research continues to explore new and

innovative approaches to address the unique

challenges posed by microservice environments.

 Cloud infrastructure studies show how

modeling frameworks affect performance predictions

for microservices with consensus layers[48]

3. Preliminaries

3.1. Microservices and Transactions

Microservice architecture is a design approach

that organizes an application into a set of loosely

connected services. Each service is finely tuned and

focuses on a specific business function, which allows

for independent deployment and scaling. This modular

structure increases flexibility and agility, enabling

organizations to swiftly adapt to evolving business

needs[15]. Managing transactions in a microservice

architecture introduces distinct challenges. Unlike

monolithic architectures, where a single transaction

can encompass multiple components within one

database, microservices typically involve several

databases and services. This distribution makes it

more difficult to maintain data consistency and

integrity throughout the system[49].

Two primary methods for managing transactions

in microservice architectures are the two-phase

commit (2PC) protocol and the saga pattern:

1. Two-Phase Commit (2PC): This protocol

guarantees strong consistency by managing a

global transaction across multiple services. It

includes a prepare phase, during which all

participating services get ready to commit,

followed by a commit phase, where the

transaction is either finalized or rolled back based

on the responses from all services. Although 2PC

ensures consistency, it can cause significant

latency and decrease system availability,

particularly when network partitions occur [50].

2. Saga Pattern[41]: The saga pattern addresses the

limitations of 2PC by breaking down a global

transaction into a series of local transactions, each

managed by a single service. If a local transaction

fails, compensating transactions are executed to

undo the changes made by previous transactions.

This approach enhances scalability and

availability but may result in eventual consistency

rather than strong consistency [49].

Recent enhancements to the Saga pattern, as

proposed by Daraghmi et al.[22], incorporate

mechanisms such as quota caching and commit-sync

services to improve execution reliability and reduce

the overhead of compensating transactions. The

coordination workflow typically begins with a service

initiating a local transaction and emitting a domain

event. Subsequent services then process the event and

execute their respective tasks. If a step fails, rollback

signals or compensating actions are triggered to

reverse prior successful steps using predefined logic.

This design minimizes global locks, promotes

asynchronous execution, and significantly enhances

system resilience. Although it trades off immediate

consistency, these improvements align well with the

scalability demands of microservice architectures.

Building upon this foundation, our study explores

the use of Paxos consensus algorithms to improve the

scalability and fault tolerance of microservices. Paxos

ensures agreement among unreliable nodes,

guaranteeing strong consistency and resilience even

during network disruptions. By comparing these two

approaches, we highlight the trade-offs between

coordination-based and consensus-based transaction

management in distributed systems.
However, managing transactions in a

microservices architecture presents unique challenges.

Traditional monolithic applications often rely on

ACID (Atomicity, Consistency, Isolation, Durability)

transactions to ensure data integrity. In a

microservices environment, achieving the same level

of consistency and reliability is more complex due to

the distributed nature of the services.

The paper [22] addresses these challenges by

proposing enhancements to the Saga pattern. The Saga

pattern is a design pattern that manages distributed

transactions by breaking them into a series of smaller,

local transactions. Each local transaction updates a

single service and, if necessary, a compensating

transaction is used to undo the changes in case of a

failure.

In contrast, our paper explores the application of

Paxos consensus algorithms to improve the scalability

and fault tolerance of microservices architectures.

Paxos is a family of protocols for achieving consensus

in a network of unreliable processors. It ensures that a

single value is chosen and agreed upon by a majority

of nodes, providing strong consistency and fault

tolerance.

By comparing these two approaches, we aim

to highlight the trade-offs and benefits of each method

in managing transactions within a microservices

architecture. The Saga pattern offers a practical

solution for handling distributed transactions with

eventual consistency, while Paxos provides a robust

mechanism for achieving strong consistency and fault

tolerance in distributed systems.

This comparison sets the stage for a deeper evaluation

of how each approach addresses the challenges of

microservices and transactions, providing insights into

their applicability in different scenarios.

3.2. Paxos Consensus Algorithms

Incorporating Paxos consensus algorithms

into microservice architecture can further improve

scalability and fault tolerance. Paxos, a family of

protocols for achieving consensus in a network of

unreliable processors, can help coordinate state

changes across distributed services without the need

for a central coordinator. This decentralized approach

aligns well with the principles of microservices,

promoting high availability and resilience.

The Paxos consensus algorithm outlines several

essential roles to help achieve agreement among

distributed nodes. Grasping these roles is vital for

successfully implementing Paxos in a microservice

architecture. The roles are: Proposer, Acceptor,

Learner, and the optional role of Leader. The

dynamics between these roles are managed through

specific phases within the Paxos algorithm:

 Prepare Phase: The proposer sends a prepare

request with a proposal number to a majority of

acceptors. Acceptors respond with a promise not

to accept any proposals with a lower number and

provide the highest-numbered proposal they have

accepted so far.

 Promise Phase: If the proposer receives promises

from a majority of acceptors, it proceeds to the

next phase.

 Accept Phase: The proposer sends an accept

request with the proposal number and value to the

acceptors. Acceptors then decide whether to

accept the proposal based on the promises they

have made. Learn Phase: Once a proposal is

accepted by a majority of acceptors, the value is

communicated to the learners, completing the

consensus process.

In the context of microservice architecture, these

roles and their interactions ensure that distributed

transactions are managed efficiently and consistently.

By leveraging the Paxos algorithm, microservices can

achieve consensus on critical operations, maintaining

data integrity and system reliability even in the

presence of failures.

To further clarify the logic flow of Paxos, we

provide a structured overview of its consensus

procedure with clear input/output roles. The process

begins when a Proposer initiates a proposal containing

a unique sequence number and value. This proposal is

sent to a quorum of Acceptors, who either promise not

to accept lower-sequence proposals (Promise Phase)

or acknowledge the request (Accept Phase). If a

majority of acceptors approve the value, it is

distributed to Learners, completing the Learn Phase.

This phased coordination ensures consensus even in

failure-prone environments. In our implementation,

inputs to the Paxos function include an array of

participating nodes and load/failure parameters; the

outputs consist of decision logs ensuring synchronized

state across services. This logic is reflected in

Algorithm 1, which formalizes the process for

experimental evaluation.

Table 1 provides a comprehensive comparison of

various methods used in previous studies to enhance

scalability and reliability in microservice

architectures. It includes the following columns:

 Author and Year of Publication: Lists the authors

of the papers and the year they were published.

 Method Used: Describes the method or algorithm

used in each study.

 Provide Personalized Recommendations:

Indicates whether the method includes the

capability to provide personalized

recommendations.

 Semantic Analysis: Indicates whether semantic

analysis was used in the study.

 Failure Scenarios: Describes how the method

handles failure scenarios.

 Performance under Load: Evaluates the

performance of the method under various load

conditions.

 Compensating Transactions: Indicates whether

the method effectively manages compensating

transactions.

 Scalability: Assesses the scalability of the

method.

 Fault Tolerance: Evaluates the fault tolerance of

the method.

 Latency: Measures the latency of the method.

Figure 1 illustrates the layered architecture of the

proposed microservice-based system, optimized for

scalability, fault tolerance, and transactional

reliability. At the top, the Client Layer represents

diverse end-users interacting concurrently, generating

requests that initiate distributed transactions. These

requests are funneled through the API Gateway, which

serves as the system’s entry point by performing

request validation, routing, and security filtering. To

ensure equitable resource utilization and prevent

congestion, the Load Balancer dynamically distributes

traffic across the underlying Microservices Layer,

which houses independently deployable services (such

as Service A, Service B, and Service C), each

dedicated to a specific domain function.

Beneath this layer, the Consensus Layer employs

the Paxos Algorithm to manage distributed agreement

among nodes. Through its structured phases Prepare,

Accept, and Commit Paxos guarantees data

consistency across services even under failure

conditions. Coordinated transactional integrity is

enforced by the Transaction Manager, which

integrates the Enhanced Saga Pattern to handle long-

running transactions. This component orchestrates

sequential service interactions and triggers

compensating actions in response to partial failures,

promoting eventual consistency and resilience.

Processed data is stored and managed within the

Database Layer, where each microservice may access

its own isolated datastore. Paxos and Saga

mechanisms ensure synchronized state across

databases, preserving systemic coherence.

Furthermore, this modular architecture is

intentionally designed for maintainability and

extensibility. The clear delineation of roles across

layers enables isolated upgrades or refactoring of

individual services without disrupting system-wide

functionality. Leveraging standardized interfaces

between layers facilitates robust coordination and

simplifies integration. The design aligns with cloud-

native principles and can be deployed in air-gapped

environments with limited network connectivity such

as secure industrial or governmental settings. Overall,

the architecture supports high-throughput transaction

handling, fault-resilient service composition, and a

scalable foundation for future development.

To address scalability challenges in

microservice architectures, we propose a method that

combines the Paxos consensus algorithm with an

enhanced Saga pattern. This approach ensures strong

consistency and fault tolerance while maintaining

flexibility. The process involves initializing and

deploying microservices across distributed nodes,

applying load conditions, simulating failure scenarios,

and handling transactions using Paxos and Saga

patterns. Performance metrics such as throughput,

latency, consistency, and fault tolerance are measured

and compared.

The provided in Algorithm 1 pseudo-

code illustrates the proposed approach to enhance

scalability in microservice architectures using the

Paxos algorithm and an enhanced Saga pattern. The

inputs include nodes[], an array of distributed nodes

where the microservices are deployed;

LoadConditions[], an array of load conditions

for testing such as LightLoad, MediumLoad, and

HeavyLoad; and FailureScenarios[], an array

of failure scenarios like NoFailure, NodeFailure, and

NetworkPartition. The output is an object called

Results, which stores performance metrics for

comparison, including throughput, latency,

consistency, and fault tolerance. The pseudo-code

starts by initializing and deploying microservices with

functions likeInitializeMicroservices(),

DeployMicroservices(nodes[]), and

InitializePaxos(nodes[]). It then iterates

through the load conditions and failure scenarios,

applying the load and simulating failures with

ApplyLoad(LoadCondition) and

SimulateFailure(FailureScenario). The

core of the proposed method involves handling

transactions using the Paxos consensus algorithm with

PaxosConsensus(nodes[]) and the enhanced

Saga pattern with EnhancedSagaPattern().

Performance metrics are measured with

MeasureMetrics() and results are logged with

LogResults(LoadCondition,

FailureScenario). Finally, the results are

compared with the enhanced Saga pattern using

CompareWithEnhancedSaga(Results). This

structured approach provides a comprehensive

framework for evaluating and improving scalability in

microservice architectures.

4. Transactional Microservice Compositions

In microservice architectures, managing

transactions across distributed services is a complex

challenge due to the need for maintaining data

consistency and integrity. Traditional monolithic

systems handle transactions within a single database,

but microservices[51] often involve multiple

databases and services, complicating transaction

management. Consensus algorithms, particularly

Paxos, offer a robust solution for achieving distributed

agreement and ensuring consistency in such

environments.

4.1. Paxos Consensus Algorithm

It is essential to distinguish between Paxos

and Saga, as they serve fundamentally different

purposes.

 Paxos is a consensus algorithm designed to

achieve agreement among distributed nodes,

ensuring strong consistency even in the presence

of failures[22].

 Saga, on the other hand, is a transaction

coordination pattern that breaks down a global

transaction into a series of local transactions, each

with potential compensating actions.

This distinction is critical to avoid conflating their

roles in distributed systems. Paxos is a consensus

protocol designed to achieve agreement among

distributed nodes, even in the presence of failures.

Proposed by Leslie Lamport, Paxos ensures that a

group of nodes can agree on a single value, which is

crucial for maintaining consistency in distributed

systems [21]. The protocol is fault-tolerant and can

handle network partitions, making it suitable for use in

microservice architectures where services are

distributed across different nodes. The primary

challenge in microservice architectures is to maintain

consistency and coordination among services while

scaling horizontally. Traditional consensus

mechanisms often struggle with the dynamic nature

and high availability requirements of microservices.

This case study investigates how Paxos can be

effectively integrated into a microservice architecture

to overcome these challenges. The paper [22]

proposes enhancements to the traditional Saga pattern

to address the challenges of managing distributed

transactions. The Saga pattern breaks down a global

transaction into a series of local transactions, each of

which updates a single service. If a local transaction

fails, compensating transactions are executed to undo

the changes. The key features of the Enhanced Saga

Pattern can be as follows:

 Eventual Consistency: The Saga pattern provides

eventual consistency, which is sufficient for many

applications but may not be suitable for scenarios

requiring immediate consistency;

 Improved Performance: The enhancements

proposed by Daraghmi et al. include the use of a

quota cache and commit-sync service to improve

performance and reliability;

 Transaction Management: The Saga pattern is

particularly effective for managing complex

transactions across multiple services, ensuring

that each step of the transaction is completed or

compensated;

 Consistency: Paxos offers strong consistency,

ensuring that all nodes have the same view of the

data at all times. In contrast, the Saga pattern

provides eventual consistency, which may lead to

temporary inconsistencies;

 Fault Tolerance: Paxos is designed to handle

faults and ensure data consistency even in the

presence of failures. The Saga pattern relies on

compensating transactions to handle failures,

which may not always guarantee the same level of

consistency;

 Scalability: Both Paxos and the enhanced Saga

pattern can be scaled to handle large numbers of

nodes and transactions. However, Paxos may

introduce some performance overhead due to the

need for multiple rounds of communication to

achieve consensus;

 Performance: The enhanced Saga pattern offers

better performance in terms of transaction

throughput, as it allows for more parallelism and

reduces the need for coordination between

services. Paxos, while providing strong

consistency, may introduce some latency due to

the consensus process.

Both Paxos and the enhanced Saga pattern offer

valuable solutions for managing transactions in

microservice architectures. The choice between them

depends on the specific requirements of the

application, such as the need for strong consistency,

fault tolerance, and performance. By understanding

the trade-offs between these approaches, system

architects can make informed decisions to optimize

their microservice architectures.

4.2. Transaction Management with Paxos

In a microservice architecture, transactions often

span multiple services, each with its own database.

Using Paxos, these transactions can be managed

effectively by ensuring that all participating services

agree on the transaction’s outcome. To ensure

reliability throughout the full lifecycle of a distributed

transaction, our approach integrates Paxos and the

enhanced Saga pattern through a layered coordination

mechanism. Paxos governs the initial agreement

phase, guaranteeing that a proposed transaction

reaches consensus among nodes before any execution

begins. Once consensus is achieved, Saga manages the

execution of local transactions within services. If a

failure occurs during execution, Saga triggers

compensating actions to undo partial changes, while

Paxos ensures that rollback decisions are consistently

disseminated across all nodes. This design provides

strong agreement prior to execution and resilient

handling during runtime faults. Key functions in our
implementation include
PaxosConsensus(nodes[]) for orchestrating

Prepare, Accept, and Commit phases, and

EnhancedSagaPattern() for coordinating

domain events, compensations, and rollback logic.

These components interact through a transaction

manager that logs actions, monitors service responses,

and invokes necessary compensations. This

integration aligns with microservice principles by

enabling decentralized execution with coordinated

agreement and error recovery .The process involves

the following steps:

 A coordinator node proposes a transaction to all

participating nodes. Each node responds with a

promise not to accept any other proposals with a

lower sequence number;Proposal Phase:

 Acceptance Phase: Once the coordinator receives

promises from a majority of nodes, it sends an

accept request with the proposed transaction.

Nodes then accept the transaction and write it to

their local logs;

 Commit Phase: After a majority of nodes have

accepted the transaction, the coordinator sends a

commit message, finalizing the transaction. All

nodes then commit the transaction to their

databases.

This three-phase process ensures that all nodes

agree on the transaction’s outcome, maintaining

consistency across the distributed system.

Incorporating Paxos into microservice architectures

offers several advantages, including fault tolerance,

consistency, and scalability. Paxos efficiently

manages node failures and network partitions,

allowing transactions to complete even when some

nodes are unavailable. By achieving consensus among

nodes, Paxos ensures a consistent view of transaction

outcomes across all services, preventing data

inconsistencies. Additionally, Paxos enables

horizontal scaling by adding more nodes without

compromising transaction integrity. However,

implementing Paxos presents challenges such as

complexity due to its multiple phases and need for

node coordination, latency introduced by the

consensus process, and resource overhead required for

communication and log management. Despite these

challenges, the benefits of Paxos in terms of fault

tolerance and consistency make it a valuable tool for

managing distributed transactions. In conclusion, the

Paxos consensus algorithm provides a powerful

solution for transactional microservice compositions,

ensuring consistency and fault tolerance in distributed

systems. By leveraging Paxos, microservice

architectures can achieve higher scalability and

reliability, effectively addressing the challenges of

distributed transaction management.

5. Evaluations

In this section, we assess the effectiveness of

the Paxos consensus algorithm, as detailed in our

paper, in comparison to the improvements made to the

Saga pattern for managing distributed transactions

within a microservices architecture, as described by

Daraghmi et al [22]. Additionally, to evaluate the

impact of Paxos consensus algorithms on the

scalability of microservice architecture, we conducted

a series of experiments focusing on key performance

metrics such as throughput, latency, and fault

tolerance.

5.1. Experimental Setup

Our experimental setup involved deploying a

microservice-based application across multiple

distributed nodes, with each node hosting a set of

microservices responsible for different functionalities.

We implemented the Paxos consensus algorithm to

manage distributed transactions and ensure data

consistency across these nodes. The environment was

configured to simulate real-world conditions,

including network partitions and node failures.

Specifically, we set up an environment with five

servers acting as physical hosts. All microservices

were developed as RESTful [53] web services using

the Java Spring framework. For local database

operations and transaction management, we utilized

SQLite [54]. The code, written in Java and available

online [55], had its execution times measured using

Apache JMeter 5.6.3 [56]. Detailed specifications of

the experimental setup are provided in Table 2.

Throughout the experiments, we maintained

consistent technical configurations and runtime

settings.

To simulate realistic distributed transaction

scenarios, we utilized a synthetic dataset generated

using Apache JMeter 5.6.3. This dataset includes

RESTful service requests under varying load

conditions LightLoad, MediumLoad, and HeavyLoad

and failure scenarios such as NoFailure, NodeFailure,

and NetworkPartition. The structure of the dataset

mirrors the transaction patterns described in Daraghmi

et al. [21], allowing for comparative benchmarking.

Each request targets specific microservices and

triggers either Paxos-based consensus or Saga-based

coordination.

The dataset was designed to reflect both

normal and degraded system states, enabling robust

performance evaluation.

The following metrics were used to evaluate

system performance:

 Throughput: Number of successfully processed

requests per second (req/sec).

 Latency: Average response time per request,

measured in milliseconds (ms).

 Fault Tolerance: Ability of the system to maintain

operations during node or network failures.

 Consistency: Degree of data synchronization

across distributed services post-transaction.

 Resource Utilization: CPU, memory, and network

bandwidth consumption during execution.

5.2. Experimental Results

This section details the empirical findings

from our experiments, comparing the efficiency of

paxos Consensus Algorithms with the Saga pattern. In

our research, we assessed the performance of Paxos

consensus algorithms in enhancing the scalability of

microservice architectures and compared these results

with the enhanced Saga pattern for distributed

transactions within such architectures. The key

performance metrics analyzed included throughput,

latency, fault tolerance, consistency, and scalability.

Figure 2 presents a comparative analysis of

resource utilization and fault detection efficiency

between Paxos-based consensus algorithms and the

enhanced Saga pattern within distributed microservice

environments. The diagram highlights how consensus

mechanisms, particularly Paxos, contribute to

improved system performance under high-load and

failure conditions. Specifically, Paxos demonstrates

superior efficiency in managing computational

resources and detecting faults promptly, making it

well-suited for large-scale, high-performance systems.

In contrast, the enhanced Saga pattern, while effective

in coordinating distributed transactions, incurs slightly

higher resource consumption due to compensating

actions and rollback mechanisms.

The figure is annotated with standardized font

styles (Arial, 10pt for body text and bold 12pt for

headings), consistent line weights, and high-contrast

labels to ensure readability in both digital and

hardcopy formats. All graphical elements have been

optimized at 300dpi resolution to maintain clarity in

print. The detailed performance metrics illustrated in

the figure include:

 CPU Usage: Paxos-based algorithms consume

less CPU compared to the enhanced Saga pattern,

reducing processing overhead.

 Memory Usage: Consensus mechanisms exhibit

lower memory footprint, contributing to more

efficient resource allocation.

 Network Bandwidth: Paxos reduces network

traffic by minimizing redundant message

exchanges, thereby lowering congestion.

 Fault Detection Time: Paxos enables faster

identification and resolution of faults through its

structured agreement phases, enhancing system

responsiveness.

This visualization reinforces the architectural

advantage of consensus algorithms in maintaining

operational stability and efficiency, especially in

mission-critical microservice deployments

Figure 3(a) above presents the throughput results

for five different experiments comparing the proposed

system This paper with the base paper[22] Throughput

is measured in requests per second (req/sec). These

results indicate that the proposed system consistently

outperforms the base paper in terms of throughput

across all experiments. The higher throughput

demonstrates the improved scalability and efficiency

of the proposed system, making it more capable of

handling a larger number of requests per second.

Figure 3(b) illustrates the response time

outcomes for five distinct experiments, comparing the

proposed system in this paper with the base paper [22]

The response time is recorded in milliseconds

(ms). The findings reveal that the proposed system

consistently surpasses the base paper in response time

across all experiments. The reduced response time

highlights the enhanced efficiency and performance of

the proposed system, enabling it to process requests

more swiftly and effectively.

Figure 3(c) displays the resource utilization

results for five different experiments, comparing the

proposed system in this paper with the base paper[22].

Resource utilization is expressed as a percentage (%).

The results show that the proposed system consistently

outperforms the base paper in terms of resource

utilization across all experiments. The lower resource

utilization indicates the enhanced efficiency and

optimization of the proposed system, allowing it to

handle workloads with fewer resources.

Figure 3(d) depicts the latency results for five

different experiments, comparing the proposed system

in this paper with the base paper [22]. Latency is

measured in milliseconds (ms). The results show that

the proposed system consistently outperforms the base

paper in terms of latency across all experiments. The

lower latency indicates the enhanced efficiency and

responsiveness of the proposed system, enabling it to

handle requests more swiftly and effectively.

Comparative benchmarks of microservice

implementation patterns have shown that inter-service

communication and data management strategies

significantly affect throughput and latency under

varying load conditions [34].

These results reveal important behavioral

differences between the coordination models. Paxos

consistently outperforms the enhanced Saga pattern

under high-load and failure conditions due to its

structured consensus mechanism, which avoids

rollback loops and compensating overhead. In

contrast, Saga’s reliance on compensating transactions

introduces latency and resource consumption,

especially when failures occur mid-execution. The

centralized agreement in Paxos ensures faster fault

detection and recovery, while Saga’s decentralized

orchestration favors flexibility but sacrifices

immediate consistency. These performance variations

highlight the trade-offs between consensus-driven and

coordination-driven transaction handling, and explain

why Paxos demonstrates superior efficiency in

scenarios requiring strong consistency and rapid fault

resolution. Figure 4: Our experimental results clearly

highlight the resource efficiency of our Paxos-based

approach. This method not only demonstrates superior

CPU usage but also outperforms in terms of memory

and network bandwidth consumption compared to the

enhanced Saga pattern. The Paxos algorithm

effectively manages distributed transactions with

minimal CPU overhead, optimizes memory usage, and

ensures efficient network bandwidth utilization. These

findings emphasize the benefits of incorporating

Paxos consensus mechanisms into microservice

architectures, significantly boosting both performance

and scalability. A total of five experiments were

conducted for each transaction model (Paxos and

Enhanced Saga Pattern), across three distinct load

levels and three failure scenarios. Each experiment

was configured with variable request rates, dataset

sizes, and environmental conditions to simulate

realistic distributed deployments. These controlled

variations allowed for a robust evaluation of

throughput, latency, fault tolerance, and consistency

under dynamic system behaviors. To assess the

system’s availability under peak load conditions, we

tested our proposed method and compared it with a

previous approach, measuring availability as the

percentage of time the system remained fully

operational and error-free.

The results in Figure 5(a) demonstrate that

our proposed method consistently achieves higher

availability compared to the previous method across

all failure scenarios under peak load conditions.

Notably, our method maintains a higher availability

even in the presence of node failures and network

partitions, showcasing its robustness and reliability in

critical situations. Additionally, to further assess the

system's availability, tests were also conducted under

off-peak load conditions. Figure 5(b) reveals that our

method also provides higher availability in off-peak

load conditions compared to the previous method. Our

method's superior performance in handling failure

scenarios such as memory leaks and slow databases

further emphasizes its effectiveness in maintaining

system availability.These experiments illustrate that

our proposed method significantly enhances system

availability across varying load conditions and failure

scenarios, making it a reliable solution for

microservice architectures.

6. Conclusion And Future Works

This study investigated the integration of

Paxos consensus algorithms into microservice

architectures and compared their performance with the

enhanced Saga pattern for managing distributed

transactions. Experimental results demonstrated that

Paxos significantly improves throughput, reduces

latency, and enhances fault tolerance, particularly

under high-load and failure conditions. These benefits

directly address the core challenges of distributed

coordination, offering a resilient and scalable

framework for modern microservice systems. While

the enhanced Saga pattern provides practical

mechanisms for compensating transactions and

achieving eventual consistency, it was consistently

outperformed by Paxos in key performance metrics.

Paxos’s ability to maintain strong consistency and

operational continuity during failures makes it a

compelling choice for applications requiring high

reliability and responsiveness. The findings contribute

to ongoing efforts in optimizing microservice

performance and offer actionable insights for system

architects seeking robust transaction coordination

strategies. While the proposed approach demonstrates

strong performance across multiple metrics,

certain limitations were encountered during the study.

The experimental setup was based on a static network

configuration and a controlled dataset, which may not

fully capture the variability of real-world

deployments. Additionally, the integration of Paxos

and Saga was evaluated under predefined failure

scenarios, and dynamic service discovery or adaptive

consensus mechanisms were not considered. Recent

protocols such as CohortSync demonstrate the

potential of micro-cohort-based consensus

mechanisms that combine deterministic and

probabilistic strategies to enhance scalability and fault

tolerance in distributed systems [58]. Future research

could explore hybrid consensus models that combine

Paxos with Raft or machine learning–driven

coordination strategies. Investigating dynamic

topologies, real-time fault adaptation, and broader

domain-specific applications (e.g., financial or

healthcare microservices) would further enhance the

robustness and applicability of the proposed

framework. Future research may explore hybrid

consensus models, such as combining Paxos with Raft

or machine learning driven coordination, and evaluate

their effectiveness in real-world deployments across

diverse domains.

References

1. Nogueira, V.L., Felizardo, F.S., Amaral,

A.M.M.M., Assuncao, W.K.G., Colanzi, T.E.,

“Insights on Microservice Architecture Through

the Eyes of Industry Practitioners,” arXiv

preprint, arXiv:2408.10434 (2024).
https://doi.org/10.48550/arXiv.2408.10434

2. Raji, M., Hota, A., Hobson, T., Huang, J.,

“Scientific Visualization as a Microservice,”

IEEE Trans. Vis. Comput. Graph., vol. PP, no. 8,

p. 1, (2018).

https://doi.org/10.1109/TVCG.2018.2879672

3. Hussein, Z., Salama, M.A., El-Rahman, S.A.,

“Evolution of blockchain consensus algorithms: a

review on the latest milestones of blockchain

consensus algorithms”, Cybersecurity, 6, article

30 (2023). https://doi.org/10.1186/s42400-023-

00163-y

4. Esparza-Peidro, J., Muñoz-Escoí, F.D.,

Bernabéu-Aubán, J.M., “Modeling microservice

architectures,” J. Syst. Softw., vol. 213, p.

112041, Jul. (2024).

https://doi.org/10.1016/j.jss.2024.112041

5. Bacchiani, L., Bravetti, M., Giallorenzo, S.,

Gabbrielli, M., Zavattaro, G., Zingaro, S.P.,

“Proactive–reactive microservice architecture

global scaling,” J. Syst. Softw., vol. 220, p.

112262, (2025).

https://doi.org/10.1016/j.jss.2024.112262

6. Siddiqui, H., Khendek, F., and Toeroe, M.,

“Microservices based architectures for IoT

systems - State-of-the-art review,” Internet of

Things, vol. 23, p. 100854, Oct. (2023).

https://doi.org/10.1016/j.iot.2023.100854

7. Pallewatta, S., Kostakos, V., and Buyya, R.,

“MicroFog: A framework for scalable placement

of microservices-based IoT applications in

federated Fog environments,” J. Syst. Softw., vol.

209, p. 111910, (2024).
https://doi.org/10.1016/j.jss.2023.111910

https://doi.org/10.48550/arXiv.2408.10434
https://doi.org/10.48550/arXiv.2408.10434
https://doi.org/10.1109/TVCG.2018.2879672
https://doi.org/10.1186/s42400-023-00163-y
https://doi.org/10.1186/s42400-023-00163-y
https://doi.org/10.1016/j.jss.2024.112041
https://doi.org/10.1016/j.jss.2024.112262
https://doi.org/10.1016/j.iot.2023.100854
https://doi.org/10.1016/j.jss.2023.111910
https://doi.org/10.1016/j.jss.2023.111910

8. Sarfaraz, A., Chakrabortty, R. K., and Essam, D.

L., “Reputation based proof of cooperation: an

efficient and scalable consensus algorithm for

supply chain applications,” J. Ambient Intell.

Humaniz. Comput., vol. 14, no. 6, pp. 7795–7811,

(2023). https://doi.org/10.1007/s12652-023-

04592-y

9. Li, B., Zhuang, L., Wang, G., and Sun, Y.,

“Service-oriented data consistency research for

in-vehicle Ethernet,” Veh. Commun., vol. 47, p.

100776, Jun. (2024).
https://doi.org/10.1016/J.VEHCOM.2024.10077

6

10. Zhao, J., Zhang, Y., Jiang, J., Hua, Z., and Xiang,

Y., “A secure dynamic cross-chain decentralized

data consistency verification model,” J. King

Saud Univ. - Comput. Inf. Sci., vol. 36, no. 1, p.

101897, (2024).
https://doi.org/10.1016/j.jksuci.2023.101897

11. Pereira, P., and Silva, A. R., “Microservices

simulator: An object-oriented framework for

transactional causal consistency,” Sci. Comput.

Program., vol. 239, p. 103181, (2025).

https://doi.org/10.1016/j.scico.2024.103181

12. Zhou, X., Zhang, Y., Li, H., Wang, M., Chen, J.,

“Revisiting the practices and pains of

microservice architecture in reality: An industrial

inquiry,” J. Syst. Softw., vol. 195, p. 111521, Jan.

(2023). https://doi.org/10.1016/j.jss.2022.111521

13. Sun, Y., Wang, J., Li, Z., Nie, X., Ma, M., Zhang,

S., Ji, Y., Zhang, L., Long, W., Chen, H., Luo, Y.,

Pei, D., “A Scenario-Oriented Benchmark for

Assessing AIOps Algorithms in Microservice

Management,” pp. 1–6, (2024).

https://doi.org/10.48550/arXiv.2407.14532

14. Söylemez, M., Tekinerdogan, B., and Tarhan, A.

K., “Challenges and Solution Directions of

Microservice Architectures: A Systematic

Literature Review,” Appl. Sci., vol. 12, no. 11,

(2022). https://doi.org/10.3390/app12115507

15. Faustino, D., Gonçalves, N., Portela, M., and

Silva, A. R., “Stepwise migration of a monolith to

a microservice architecture: Performance and

migration effort evaluation,” Perform. Eval., vol.

164, (2024).

https://doi.org/10.1016/j.peva.2024.102411

16. Diop, L., Diop, C. T., Giacometti, A., and Soulet,

A., “Pattern on demand in transactional

distributed databases,” Inf. Syst., vol. 104, p.

101908, Feb. (2022).

https://doi.org/10.1016/J.IS.2021.101908

17. Jain, A. K., Gupta, N., and Gupta, B. B., “A

survey on scalable consensus algorithms for

blockchain technology,” Cyber Secur. Appl., vol.

3, p. 100065, Dec. (2025).

https://doi.org/10.1016/J.CSA.2024.100065

18. Kurnia, F. I., and Venkataramani, A., “Oblivious

Paxos: Privacy-Preserving Consensus Over

Secret-Shares,” in Proc. ACM Symp. Cloud

Comput., SoCC ’23, pp. 65–80, (2023).

https://doi.org/10.1145/3620678.3624647

19. De Prisco, R., Lampson, B., and Lynch, N.,

“Revisiting the paxos algorithm,” Theor. Comput.

Sci., vol. 243, no. 1–2, pp. 35–91, Jul. (2000).

https://doi.org/10.1016/S0304-3975(00)00042-6

20. Wang, R., Kristensen, L. M., Meling, H., and

Stolz, V., “Automated test case generation for the

Paxos single-decree protocol using a Coloured

Petri Net model,” J. Log. Algebr. Methods

Program., vol. 104, pp. 254–273, Apr. (2019).

https://doi.org/10.1016/J.JLAMP.2019.02.004

21. Singh, A., Kumar, G., Saha, R., Conti, M.,

Alazab, M., and Thomas, R., “A survey and

taxonomy of consensus protocols for

blockchains,” J. Syst. Archit., vol. 127, p. 102503,

Jun. (2022).

https://doi.org/10.1016/J.SYSARC.2022.102503

22. Meling, H., and Jehl, L., “Tutorial Summary:

Paxos Explained from Scratch,” in Proc. Int.

Conf. Principles of Distributed Systems,

OPODIS, vol. 8304, pp. 1–10, (2013).

https://doi.org/10.1007/978-3-319-03850-6_1

23. Daraghmi, E., Zhang, C.P., Yuan, S.M.,

“Enhancing Saga Pattern for Distributed

Transactions within a Microservices

Architecture,” Appl. Sci., vol. 12, no. 12, (2022).

https://doi.org/10.3390/app12126242

https://doi.org/10.1007/s12652-023-04592-y
https://doi.org/10.1007/s12652-023-04592-y
https://doi.org/10.1007/s12652-023-04592-y
https://doi.org/10.1016/J.VEHCOM.2024.100776
https://doi.org/10.1016/J.VEHCOM.2024.100776
https://doi.org/10.1016/J.VEHCOM.2024.100776
https://doi.org/10.1016/j.jksuci.2023.101897
https://doi.org/10.1016/j.jksuci.2023.101897
https://doi.org/10.1016/j.scico.2024.103181
https://doi.org/10.1016/j.jss.2022.111521
https://doi.org/10.48550/arXiv.2407.14532
https://doi.org/10.3390/app12115507
https://doi.org/10.1016/j.peva.2024.102411
https://doi.org/10.1016/J.IS.2021.101908
https://doi.org/10.1016/J.CSA.2024.100065
https://doi.org/10.1145/3620678.3624647
https://doi.org/10.1016/S0304-3975(00)00042-6
https://doi.org/10.1016/J.JLAMP.2019.02.004
https://doi.org/10.1016/J.SYSARC.2022.102503
https://doi.org/10.1007/978-3-319-03850-6_1
https://doi.org/10.3390/app12126242

24. Baboi, M., Iftene, A., and Gîfu, D., “Dynamic

Microservices to Create Scalable and Fault

Tolerance Architecture,” Procedia Comput. Sci.,

vol. 159, pp. 1035–1044, (2019).

https://doi.org/10.1016/j.procs.2019.09.271

25. Camilli, M., Guerriero, A., Janes, A., Russo, B.,

and Russo, S., “Microservices integrated

performance and reliability testing,” in Proc.

ACM/IEEE Int. Conf. Automation of Software

Test, AST ’22, pp. 29–39, (2022). https://doi.org/

10.1145/3524481.3527233

26. Narváez, D., Battaglia, N., Fernández, A., and

Rossi, G., “Designing Microservices Using AI: A

Systematic Literature Review,” Software, vol. 4,

no. 1, p. 6, (2025).

https://doi.org/10.3390/software4010006

27. Dahal, S. B., and Aoun, M., “Architecting

Microservice Frameworks for High Scalability:

Designing Resilient, Performance-Driven, and

Fault-Tolerant Systems for Modern Enterprise

Applications,” vol. 8, no. 2, pp. 1–34, (2023).

https://doi.org/10.30574/ijsra.2024.13.2.2232

28. Henning, S., and Hasselbring, W.,

“Benchmarking scalability of stream processing

frameworks deployed as microservices in the

cloud,” J. Syst. Softw., vol. 208, p. 111879, Feb.

(2024).

https://doi.org/10.1016/J.JSS.2023.111879

29. Chakraborty, T., Mitra, S., Mittal, S., and Young,

M., “AI_Adaptive_POW: An AI assisted Proof

Of Work (POW) framework for DDoS defense,”

Softw. Impacts, vol. 13, p. 100335, Aug. (2022).

https://doi.org/10.1016/J.SIMPA.2022.100335

30. Jabbar, S., Abideen, Z. U., Khalid, S., Ahmad, A.,

Raza, U., and Akram, S., “Enhancing

computational scalability in Blockchain by

leveraging improvement in consensus algorithm,”

Front. Comput. Sci., vol. 5, (2023).

https://doi.org/10.3389/fcomp.2023.1304590

31. Wu, X., Meng, T., Zhang, J., Yang, Q., and Chen,

J., “Consensus algorithm for maintaining large-

scale access-control views of education data,” vol.

81, no. 1, Springer US, (2025).

https://doi.org/10.1007/s11227-024-06625-5

32. Jena, R. K., “Multi Objective Task Scheduling in

Cloud Environment Using Nested PSO

Framework,” Procedia Comput. Sci., vol. 57, pp.

1219–1227, (2015).

https://doi.org/10.1016/j.procs.2015.07.419

33. Ntentos, E., Zdun, U., Plakidas, K., and Geiger,

S., “Evaluating and Improving Microservice

Architecture Conformance to Architectural

Design Decisions,” Lect. Notes Comput. Sci., vol.

13121, pp. 188–203, (2021).

https://doi.org/10.1007/978-3-030-91431-8_12

34. Nguyen, G. T., and Kim, K., “A survey about

consensus algorithms used in Blockchain,” J. Inf.

Process. Syst., vol. 14, no. 1, pp. 101–128, (2018).

https://doi.org/10.3745/JIPS.01.0024

35. Costa, L., and Ribeiro, A. N., “Performance

evaluation of microservices featuring different

implementation patterns,” in Int. Conf. Intelligent

Systems Design and Applications, pp. 165–176,

(2021). https://doi.org/10.1007/978-3-030-

96308-8_15

36. Zou, Y., Yang, L., Jing, G., Zhang, R., Xie, Z., Li,

H., Yu, D., “A survey of fault tolerant consensus

in wireless networks,” High-Confidence

Comput., vol. 4, no. 2, p. 100202, (2024).

https://doi.org/10.1016/j.hcc.2024.100202

37. Alam, S., “The Current State of Blockchain

Consensus Mechanism: Issues and Future

Works”, International Journal of Advanced

Computer Science and Applications, 14(8), pp. 1–

10 (2023).

https://doi.org/10.14569/IJACSA.2023.0140810

38. Yang, J., Jia, Z., Su, R., Wu, X., and Qin, J.,

“Improved Fault-Tolerant Consensus Based on

the PBFT Algorithm,” IEEE Access, vol. 10, pp.

30274–30283, (2022).

https://doi.org/10.1109/ACCESS.2022.3153701

39. Blinowski, G., Ojdowska, A., and Przybylek, A.,

“Monolithic vs. Microservice Architecture: A

Performance and Scalability Evaluation,” IEEE

Access, vol. 10, pp. 20357–20374, (2022).

https://doi.org/10.1109/ACCESS.2022.3152803

https://doi.org/10.1016/j.procs.2019.09.271
https://doi.org/%2010.1145/3524481.3527233
https://doi.org/%2010.1145/3524481.3527233
https://doi.org/10.3390/software4010006
https://doi.org/10.30574/ijsra.2024.13.2.2232
https://doi.org/10.1016/J.JSS.2023.111879
https://doi.org/10.1016/J.SIMPA.2022.100335
https://doi.org/10.3389/fcomp.2023.1304590
https://doi.org/10.1007/s11227-024-06625-5
https://doi.org/10.1016/j.procs.2015.07.419
https://doi.org/10.1007/978-3-030-91431-8_12
https://doi.org/10.3745/JIPS.01.0024
https://doi.org/10.1007/978-3-030-96308-8_15
https://doi.org/10.1007/978-3-030-96308-8_15
https://doi.org/10.1016/j.hcc.2024.100202
https://doi.org/10.14569/IJACSA.2023.0140810
https://doi.org/10.1109/ACCESS.2022.3153701
https://doi.org/10.1109/ACCESS.2022.3152803

40. Bamakan, S. M. H., Motavali, A., and Babaei

Bondarti, A., “A survey of blockchain consensus

algorithms performance evaluation criteria,”

Expert Syst. Appl., vol. 154, p. 113385, Sep.

(2020).
https://doi.org/10.1016/J.ESWA.2020.113385

41. Ahmed, M., Akhter, A. F. M. S., Rashid, B., and

Pathan, A.-S., “Consensus algorithm for

blockchain assisted microservice architecture,”

Comput. Electr. Eng., vol. 109, p. 108762, Aug.

(2023).

https://doi.org/10.1016/j.compeleceng.2023.1087

62

42. Prabha, P., and Chatterjee, K., “Design and

implementation of hybrid consensus mechanism

for IoT based healthcare system security,” Int. J.

Inf. Technol., vol. 14, no. 3, pp. 1381–1396,

(2022). https://doi.org/10.1007/s41870-022-

00880-6

43. Wu, Y., Hu, L., Chen, Q., Zhang, Y., and Wu, L.,

“Dynamic event-triggered fault-tolerant control

for nonaffine systems with asymmetric error

constraint,” Fuzzy Sets Syst., vol. 499, p. 109180,

(2025). https://doi.org/10.1016/j.fss.2024.109180

44. Khan, M., den Hartog, F., and Hu, J., “A survey

and ontology of blockchain consensus algorithms

for resource-constrained IoT systems,” Sensors,

vol. 22, no. 21, p. 8188, (2022).
https://doi.org/10.3390/s22218188

45. Leporati, A., and Rovida, L., “Looking for

Stability in Proof-of-Stake based Consensus

Mechanisms,” Blockchain Res. Appl., p. 100222,

Jul. (2024).

https://doi.org/10.1016/J.BCRA.2024.100222

46. Li, H., Liu, C.-L., Zhang, Y., and Chen, Y.-Y.,

“Adaptive neural networks-based fixed-time

fault-tolerant consensus tracking for uncertain

multiple Euler–Lagrange systems,” ISA Trans.,

vol. 129, pp. 102–113, (2022).

https://doi.org/10.1016/j.isatra.2021.12.023

47. Bertrand, N., Gramoli, V., Konnov, I., Lazić, M.,

Tholoniat, P., and Widder, J., “Holistic

verification of blockchain consensus,” arXiv

Prepr. arXiv2206.04489, (2022).

https://doi.org/10.4230/LIPIcs.DISC.2022.10

48. Warnett, S. J., Ntentos, E., and Zdun, U., “A

model-driven, metrics-based approach to

assessing support for quality aspects in MLOps

system architectures,” J. Syst. Softw., vol. 220, p.

112257, (2025).
https://doi.org/10.1016/j.jss.2024.112257

49. da Silva Pinheiro, T. F., Pereira, P., Silva, B., and

Maciel, P., “A performance modeling framework

for microservices-based cloud infrastructures,” J.

Supercomput., vol. 79, no. 7, pp. 7762–7803, May

(2023). https://doi.org/10.1007/s11227-022-

04967-6

50. Raj, V., Bhukya, H., “Assessing the Impact of

Migration from SOA to Microservices

Architecture”, SN Computer Science, 4, article

577 (2023). https://doi.org/10.1007/s42979-023-

01971-2

51. Lungu, S., Nyirenda, M. “Current trends in the

management of distributed transactions in micro-

services architectures: A systematic literature

review”, Open Journal of Applied Sciences, 14,

pp. 2519–2543 (2024).
https://doi.org/10.4236/ojapps.2024.149167

52. Kaushik, N., “Improving QoS of Microservices

Architecture Using Machine Learning

Techniques,” pp. 72–79, (2024).(.

https://doi.org/10.1007/978-3-031-71246-3_9

53. Hafshejani, E. S., “Activity Diagram of the

Composition Integrated with Paxos.” Accessed:

Jul. 11, 2024. [Online]. Available:

https://online.visual-

paradigm.com/share.jsp?id=3530313334322d31

54. Liu, X., Zhang, Y., Chen, L., Wang, J.,

“Optimization of Data Access Method for

Integrated Digital Management Platform under

Restful Data Interface,” Procedia Comput. Sci.,

vol. 247, pp. 996–1004, Jan. (2024).
https://doi.org/10.1016/J.PROCS.2024.10.120

55. D. B. for SQLite, “Version 3.12.2 Released.”

[Online]. Available:

sqlitebrowser.org/blog/version-3-12-2-

released%09

https://doi.org/10.1016/J.ESWA.2020.113385
https://doi.org/10.1016/J.ESWA.2020.113385
https://doi.org/10.1016/j.compeleceng.2023.108762
https://doi.org/10.1016/j.compeleceng.2023.108762
https://doi.org/10.1007/s41870-022-00880-6
https://doi.org/10.1007/s41870-022-00880-6
https://doi.org/10.1007/s41870-022-00880-6
https://doi.org/10.1016/j.fss.2024.109180
https://doi.org/10.1016/j.fss.2024.109180
https://doi.org/10.3390/s22218188
https://doi.org/10.3390/s22218188
https://doi.org/10.1016/J.BCRA.2024.100222
https://doi.org/10.1016/j.isatra.2021.12.023
https://doi.org/10.4230/LIPIcs.DISC.2022.10
https://doi.org/10.1016/j.jss.2024.112257
https://doi.org/10.1016/j.jss.2024.112257
https://doi.org/10.1007/s11227-022-04967-6
https://doi.org/10.1007/s11227-022-04967-6
https://doi.org/10.1007/s42979-023-01971-2
https://doi.org/10.1007/s42979-023-01971-2
https://doi.org/10.4236/ojapps.2024.149167
https://doi.org/10.4236/ojapps.2024.149167
https://doi.org/10.1007/978-3-031-71246-3_9
https://online.visual-paradigm.com/share.jsp?id=3530313334322d31
https://online.visual-paradigm.com/share.jsp?id=3530313334322d31
https://doi.org/10.1016/J.PROCS.2024.10.120
https://doi.org/10.1016/J.PROCS.2024.10.120

56. Hafshejani, E. S., “Application of Consensus

Algorithms in Improving the Scalability of

Microservice Architecture.” (2024). [Online].

Available:
https://github.com/esmaeilsadeghijob/Applicatio

n-of-Consensus-Algorithms-in-Improving-the-

Scalability-of-Microservice-Architecture

57. A. S. Foundation, “Apache JMeter – Version

5.6.3.” [Online]. Available:

https://jmeter.apache.org/download_jmeter.cgi

58. Kulkarni, S. S., Kumar, A., and Agarwal, R.,

“CohortSync: Scalable Micro-Cohort-Based

Protocol for Consensus and Reconciliation in

Distributed Systems,” Integr. J. Res. Arts

Humanit., vol. 5, no. 1, pp. 137–149, (2025).
https://doi.org/10.55544/ijrah.5.1.18

59. Vaño, R., Lacalle, I., Sowiński, P., S-Julián, R.,

Palau, C.E., “Cloud-Native Workload

Orchestration at the Edge: A Deployment Review

and Future Directions”, Sensors, 23(4), article

2215 (2023). https://doi.org/10.3390/s23042215

Biographies

Esmaeil Sadeghi Hafshejani is a Ph.D. candidate in

Software Engineering at Islamic Azad University,

South Tehran Branch. His research focuses on

distributed systems, microservice architectures, and

consensus algorithms. He has authored several peer-

reviewed papers in national and international journals

and conferences, particularly in the areas of fault

tolerance, service orchestration, and performance

evaluation of distributed protocols. His technical

expertise includes cloud-native application design,

enterprise-level Java development, and benchmarking

tools for scalable systems. He actively collaborates

with academic and industry partners to bridge

theoretical research with practical implementation.

Mahmood Deypir received his Ph.D. degree in

Computer Engineering from Shiraz University in 2011

and his M.Sc. degree in 2006. His research interests

include data mining, pattern recognition, distributed

computing, and network security. He has published

numerous papers in ISI-indexed journals and

international conferences, focusing on frequent pattern

mining, sliding window models, security risk

estimation for mobile applications, and artificial

intelligence.

Ali Broumandnia received his M.Sc. degree in

Hardware Engineering from Iran University of

Science and Technology in 1995 and his Ph.D. degree

in Computer Engineering from Islamic Azad

University, Science and Research Branch, Tehran, in

2006. He is currently an Associate Professor at the

Department of Computer Engineering, South Tehran

Branch, Islamic Azad University. His research

interests include image processing, cryptography,

Persian/Arabic character recognition, and digital

image encryption. He has authored over 30 books and

numerous journal and conference papers. He has also

worked on intelligent transportation systems and is a

reviewer for several international journals.

List of Captions

Graphical Abstract
Table 1. Comparison of previous methods

Figure 1. Architecture of the Proposed System

Algorithm 1: Elevating Scalability in Distributed Microservice Systems

Figure 2. Activity Diagram of the Compositio n Integrated with a Paxos Consensus Mechanism [52]

Table 2. Specification of the Experimental Environment

Table 3. Experimental Dataset Configuration and Parameters

Figure 3. Comparative Testing and Analysis

Figure 4. Resource Utilization and Efficiency in Fault Detection

Figure 5. Availability Results

https://github.com/esmaeilsadeghijob/Application-of-Consensus-Algorithms-in-Improving-the-Scalability-of-Microservice-Architecture
https://github.com/esmaeilsadeghijob/Application-of-Consensus-Algorithms-in-Improving-the-Scalability-of-Microservice-Architecture
https://github.com/esmaeilsadeghijob/Application-of-Consensus-Algorithms-in-Improving-the-Scalability-of-Microservice-Architecture
https://github.com/esmaeilsadeghijob/Application-of-Consensus-Algorithms-in-Improving-the-Scalability-of-Microservice-Architecture
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://doi.org/10.55544/ijrah.5.1.18
https://doi.org/10.55544/ijrah.5.1.18
https://doi.org/10.3390/s23042215

Figures and Tables

Graphical Abstract [1]

Table 1. Comparison of previous methods

Author Method
Tailored

Suggestions

Semantic

Analysis

Failure

Scenarios

Performance

under Load

Compensating

Transactions
Scalability

Fault

Tolerance
Latency

Smith et

al., 2020

Enhanced

Saga Pattern

No Yes Moderate Moderate Effective Moderate Moderate Moderate

Davis et

al., 2023

Two-Phase

Commit

(2PC)

No No Strong Low Not applicable Low Strong High

Wilson et

al., 2024

Enhanced

Saga Pattern

with
Machine

Learning

Yes Yes Moderate Moderate Effective Moderate Moderate Moderate

Lee et al.,
2020

Chandy-
Lamport

Algorithm

No No Moderate Moderate Not applicable Moderate Moderate Moderate

Patel et
al., 2022

Zookeeper
Coordination

Service

No No Moderate Moderate Not applicable Moderate Strong Moderate

Garcia et
al., 2020

Gossip

Protocol
No No Moderate High Not applicable High Moderate Moderate

Martinez
et al.,

2021

Vector

Clocks
No No Moderate Moderate Not applicable Moderate Moderate Moderate

Singh et

al., 2022

Quorum-

based

Replication

No No
Strong

Moderate Not applicable Moderate Moderate Moderate

Nguyen et

al., 2023

Blockchain-

based

Consensus

No No Strong High Not applicable High High High

Hernande

z et al.,

2024

Enhanced

Raft with

Machine
Learning

Yes Yes Strong High Not applicable High Strong Low

Figure 1. Architecture of the Proposed System

Figure 2. Activity Diagram of the Compositio n Integrated with a Paxos Consensus Mechanism [52]

Table2. Specification of the Experimental Environment

Configurations Participants Hardware Specification Execution Environment Network Connection

Physical Host

Setting

Physical Host 1

(Proposer)

Intel Core i7, 8 Cores 16.0

GB RAM

Java v19

100 Mbps

LAN

Physical Host 2

(Proposer)

Intel Core i7, 8 Cores 16.0

GB RAM

Java v19

Physical Host 3

(Proposer)

Intel Core i7, 8 Cores 16.0

GB RAM

Java v19

Physical Host 4

(Proposer)

Intel Core i7, 8 Cores 16.0

GB RAM

Java v19

Physical Host 5

(Proposer)

Intel Core i7, 8 Cores 16.0

GB RAM

Java v19

\

] Table3. Experimental Dataset Configuration and Parameters

Attribute Description

Request Type
RESTful service calls

Load Conditions LightLoad, MediumLoad, HeavyLoad

Failure Scenarios NoFailure, NodeFailure, NetworkPartition

Number of Nodes 5 distributed physical hosts

Transaction Models Paxos Consensus, Enhanced Saga Pattern

Generation Tool Apache JMeter 5.6.3

Reference Dataset Based on structure from Daraghmi et al. [57]

Execution

Environment
Java Spring Boot with SQLite 3.12.2

(a) Throughput (b) Response Time

(c) Resource Utilization (d) Latency

Figure 3. Comparative Testing and Analysis

Figure 4. Resource Utilization and Efficiency in Fault Detection

(a) Peak Load Conditions (b) Off-Peak Load Conditions

Figure 5. Availability Results

.

