Boosting Scalability in Microservice Architectures with Consensus Mechanisms

Esmail Sadeghi Hafshejani!, Mahmood Deypir?*, Ali Broumandnia3

123 Department of Computer Engineering, ST.C., Islamic Azad University, Tehran, Iran.

Keywords: Abstract. Microservice architectures are preferred for their scalability and
Microservices flexibility, however, managing distributed transactions in these systems.poses
Distributed Transactions significant challenges, especially in terms of consistency and fault toIer@o
Paxos address these issues, this study evaluates two distinct approgches’ S, a

Saga Pattern

Fault Tolerance
Scalability

Consensus Mechanisms

consensus algorithm that ensures agreement among distributed nd the
enhanced Saga pattern, a transaction coordination framework t
transactions with compensating actions. We implemented
microservice-based application deployed across distributed
performance under various load conditions and failuge s

that integrating Paxos significantly improves t
offering strong consistency and robust fault tolerance. |
pattern, while effective in managing compens
eventual consistency, demonstrated lower perf
These findings highlight the trade-offs b

manages local
ethods in a
d assessed their
. The results show

and reduces latency,
trast, the enhanced Saga
ing transactions and maintaining
ce in high-load environments.
nsensus-based and coordination-
architectures and provide practical

a

based transaction management in micr i
insights for system designers seekin@ble and reliable solutions.

1. Introduction : )
a

Microservice architecture [1] has emer
dominant paradigm in modern softwarg,engige

enabling the development of modular, indgpendeftly
deployable services tailored to “Specific “business
capabilities[2-4]. This architectur, le enhances

agility and responsiveness, allgwi ganizations to
adapt rapidly to evolving emments and scale

components independently[S§6]. Unlike monolithic
systems where transa @ integrity is maintained
within a single database“@istributed Transactions often

span multiple ser:i nddata stores, increasing the

risk of inconsistency and coordination failures[7-10].
Ensuring r xecution across such distributed
environme@requires sophisticated coordination
mechafi Recent industrial inquiries have
highlighted practical challenges in adopting
microservices, including architectural migration,
service orchestration, and operational overhead [11-
12]. A recent systematic literature review further
categorizes these challenges into architectural,
operational, and organizational dimensions, offering
structured solution directions for successful
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microservice adoption [13] .To address these

concerns, stepwise migration strategies have been
proposed to balance performance with implementation
effort [14][15]. To mitigate coordination and
reliability issues, researchers have explored consensus
algorithms and distributed transaction patterns.
Among these, Paxos stands out as a fault-tolerant
protocol that ensures agreement among nodes even in
the presence of failures[16-19]. Paxos operates
through structured phases proposal, acceptance, and
commitment enabling systems to recover from node
failures without compromising integrity[20-21].

Despite the availability of various coordination
models such as 2PC and Saga, and consensus
protocols like Paxos and Raft, few studies have
systematically benchmarked their behavior under
realistic microservice conditions. Specifically, there is
limited comparative analysis of Paxos and enhanced
Saga patterns across diverse load levels and failure
scenarios in distributed architectures. This paper aims
to address this technical gap by conducting empirical
evaluations to highlight performance trade-offs and
guide system designers toward informed coordination
strategies. In parallel, the Saga pattern provides a



decentralized approach to managing long-running
transactions  through ~ compensating  actions,
emphasizing availability and eventual consistency
[22]. Recent surveys on scalable consensus
mechanisms[16][20] and hybrid approaches such as
reputation-based Proof of Cooperation [7] and causal

consistency frameworks [10] further validate the
relevance of these models in distributed environments.
These innovations aim to reduce latency, improve
throughput, and enhance system resilience[23-27]. For
example, Al-assisted consensus frameworks[28],
fault-tolerant  blockchain  protocols[29-30], and
adaptive  scheduling mechanisms[31] have
demonstrated promising results in distributed
microservice deployments. Moreover, studies on
performance benchmarking[27], architectural
conformance[32], and optimization of access control
views[30] provide practical insights into designing
scalable and robust microservice systems. The CAP
theorem and its modern interpretations also offer a
theoretical foundation for understanding trade-offs
between consistency, availability, and partition
tolerance[7][16][33]. This paper investigates the
integration of Paxos into microservice architectures
and compares its effectiveness with the enhanced Saga
pattern. Through a series of experiments and
evaluations, we analyze their performance under

varying load and failure scenarios. Our goal is
identify the most efficient coordination mechanism f
ce

managing distributed transactions in microservi
environments. The main contributions of this papéRare
as follows:

e We examine Paxos consensus Ws 0
improve transactional ordin in

microservices and compare m with the
enhanced Saga pattern.

e We demonstrate that Paxgs” integration leads to
measurable improvem& roughput, latency,
and system resilien

valuations incorporating
rotocols to assess their

This p investigates the integration of Paxos
into micr@ce architectures and compares its
effeativenessSWith the enhanced Saga pattern. Through
a serlgs”of"experiments and evaluations, we analyze
their performance under varying load and failure
scenarios. Our goal is to identify the most efficient
coordination mechanism for managing distributed
transactions in microservice environments.

The main contributions of this paper are as
follows: (1) We propose the integration of Paxos
consensus algorithms into microservice architectures
to enhance transactional coordination and fault
tolerance. (2) We present a comparative performance
evaluation between Paxos, enhanced Saga, and 2PC

protocols under varying load and failure conditions.
(3) We demonstrate that Paxos-based coordination
significantly improves throughput, reduces latency,
and increases system resilience compared to
coordination-based alternatives. These contributions
provide empirical insights into the trade-offs between
consensus-driven and compensation-driven
transaction models, offering practical guidance for
system architects.

These findings are presented across the fWg
structure: Section 2 reviews related worke na3
describes our proposed Paxos-basé iphization
algorithm.  Section 4  details t!%evaluation

methodology and results. Segtio discusses
implications and future directi ion 6 concludes
with a summary of key findj g@

2. Related works

The‘ap ication of consensus algorithms in
improving alability[4] of microservice

architec'[ur&asé en a topic of significant interest in
recent ygags. Various studies have explored different
conser@ %echanisms and their impact on the
o PEN ce and scalability of distributed systems.
surveys have provided comprehensive
%parisons of these protocols, Recent comparative
udies of microservice patterns reinforce these
findings and highlight  trade-offs  between
implementation strategies[34]. highlighting their
trade-offs in terms of scalability, fault tolerance, and
latency[35][7].

2. 1. Consensus Algorithms in Distributed
Systems

Consensus algorithms such as Paxos, Raft,
and Practical Byzantine Fault Tolerance (PBFT) have
been extensively studied for their ability to achieve
agreement among distributed nodes. These algorithms
are fundamental in ensuring data consistency and fault
tolerance in distributed systems. For instance, Raft is
known for its simplicity and understandability, making
it a popular choice for many distributed systems [36].
PBFT, on the other hand, is designed to tolerate
Byzantine faults, making it suitable for environments
where nodes may act maliciously [29]. These
protocols have been contrasted in recent evaluations
focusing on blockchain-based and hybrid distributed
systems [7]. Recent enhancements to PBFT aim to
balance fault tolerance with network scalability across
blockchain and microservice contexts[37].

2. 2. Scalability Challenges in Microservice
Architecture



Microservice architecture, characterized by
its modularity and independence of services, faces
unique scalability challenges. Each microservice must
coordinate with others to maintain data consistency
and system integrity. As the number of services
increases, managing inter-service communication,
transaction coordination, and data synchronization
becomes increasingly complex. This complexity is
reflected in recent evaluations contrasting scalability
of monoliths and microservices under high-load
conditions[38]. Traditional consensus algorithms,
while effective in ensuring consistency, often struggle
with scalability due to their high communication
overhead and latency [30][39][33]. Recent research
has introduced dependable consensus mechanisms
specifically — designed  for  blockchain-assisted
microservice architectures, aiming to enhance both
security and scalability [40]. This has led to the
exploration of more scalable consensus mechanisms
tailored for microservice environments. Recent studies
have proposed hybrid approaches such as reputation-
based Proof of Cooperation[7] and causal consistency
simulators [10] to reduce latency and improve fault
tolerance. Additionally, cloud-native adaptations of
the Saga pattern have shown promise in optimizing
distributed transactions while maintaining eventual
consistency[22]. Hybrid consensus models designed
for 10T systems further demonstrate the adaptability
Paxos-inspired architectures[41]. Dynamic even
triggered fault-tolerant control frameworks have
recently been proposed to enhance scalabili

constrained conditions [42]. Ontology-
have further classified consensus algori
their suitability for reso
environments, offering structured
integrated microservice deploy

2.3. Recent Advances i nsus Algorithms

Mlcroserv cture, characterized by
its modularlty pendence of services, faces
unique scalabil allenges Each microservice must
coordinate (with others to maintain data consistency
and st integrity.  Traditional  consensus
algo hile effective in ensuring consistency,
often \struggle with scalability due to their high
communication overhead and latency [30][39][33].
This has led to the exploration of more scalable
consensus mechanisms tailored for microservice
environments. Another study proposed a hybrid
consensus algorithm that combines the strengths of
Proof of Work (PoW) and Proof of Stake (PoS) to
achieve better efficiency and security[28][29][44].
Adaptive consensus protocols based on
neural networks have demonstrated fixed-time

convergence and fault tolerance in multi-agent
systems, offering promising directions  for
microservice coordination[45]. Holistic verification
techniques have recently been applied to industrial-
grade consensus protocols, ensuring both safety and
liveness under Byzantine fault conditions [46].

2.4. Application in Microservice Architecture

The application of these advanceg<eo sus
algorithms in microservice architeétyre shown
promising results. By integrating s @consensus
mechanisms, microservices ¢ eve higher
throughput and lower latency improving the
overall scalability of th For instance,

leveraging Raft in ervice environment can
enhance coordination a ta consistency without

significantly impacting performance [36].

In soncﬁl& the integration of advanced
consensus  a in microservice architecture
holds gream ial for improving scalability and

odel-driven metrics have also been
sess architectural quality aspects such as
scalability, and maintainability in
% ted MLOps systems, offering transferable
hts for microservice-based environments[47].
ngomg research continues to explore new and
innovative approaches to address the unique
challenges posed by microservice environments.

Cloud infrastructure studies show how
modeling frameworks affect performance predictions
for microservices with consensus layers[48]

3. Preliminaries
3.1. Microservices and Transactions

Microservice architecture is a design approach
that organizes an application into a set of loosely
connected services. Each service is finely tuned and
focuses on a specific business function, which allows
for independent deployment and scaling. This modular
structure increases flexibility and agility, enabling
organizations to swiftly adapt to evolving business
needs[15]. Managing transactions in a microservice
architecture introduces distinct challenges. Unlike
monolithic architectures, where a single transaction
can encompass multiple components within one
database, microservices typically involve several
databases and services. This distribution makes it
more difficult to maintain data consistency and
integrity throughout the system[49].

Two primary methods for managing transactions
in microservice architectures are the two-phase
commit (2PC) protocol and the saga pattern:



1. Two-Phase Commit (2PC): This protocol
guarantees strong consistency by managing a
global transaction across multiple services. It
includes a prepare phase, during which all
participating services get ready to commit,
followed by a commit phase, where the
transaction is either finalized or rolled back based
on the responses from all services. Although 2PC
ensures consistency, it can cause significant
latency and decrease system availability,
particularly when network partitions occur [50].

2. Saga Pattern[41]: The saga pattern addresses the
limitations of 2PC by breaking down a global
transaction into a series of local transactions, each
managed by a single service. If a local transaction
fails, compensating transactions are executed to
undo the changes made by previous transactions.
This approach enhances scalability and
availability but may result in eventual consistency
rather than strong consistency [49].

Recent enhancements to the Saga pattern, as
proposed by Daraghmi et al.[22], incorporate
mechanisms such as quota caching and commit-sync
services to improve execution reliability and reduce
the overhead of compensating transactions. The
coordination workflow typically begins with a service
initiating a local transaction and emitting a domain
event. Subsequent services then process the event an
execute their respective tasks. If a step fails, rollba
signals or compensating actions are triggered to
reverse prior successful steps using predefined logic.
This design minimizes global locks,
asynchronous execution, and significa anges
system resilience. Although it trad
consistency, these improvements alig
scalability demands of microservic tectures.

Building upon this foundation, pur study explores
the use of Paxos consensus% ithms to improve the
scalability and fault tole microservices. Paxos
ensures  agreement g unreliable nodes,
guaranteeing stron S cy and resilience even

during netwo@ ons. By comparing these two

p well with the

approaches, ghlight the trade-offs between
coordinatioh-based and consensus-based transaction
managementaift distributed systems.
er, managing transactions in a
microServices architecture presents unique challenges.
Traditional monolithic applications often rely on
ACID (Atomicity, Consistency, Isolation, Durability)
transactions to ensure data integrity. In a
microservices environment, achieving the same level
of consistency and reliability is more complex due to
the distributed nature of the services.

The paper [22] addresses these challenges by
proposing enhancements to the Saga pattern. The Saga
pattern is a design pattern that manages distributed

=

transactions by breaking them into a series of smaller,
local transactions. Each local transaction updates a
single service and, if necessary, a compensating
transaction is used to undo the changes in case of a
failure.

In contrast, our paper explores the application of
Paxos consensus algorithms to improve the scalability
and fault tolerance of microservices architectures.
Paxos is a family of protocols for achieving consensus
in a network of unreliable processors. It ensurés/that a
single value is chosen and agreed upon b rity
of nodes, providing strong consistepc fault
tolerance.

By comparing these two
to highlight the trade-offs and
in managing transactions gwWi a microservices

architecture. The S offers a practical
solution for handling distributed transactions with

eventual consistencE, whife Paxos provides a robust

mechanism for a ing strong consistency and fault
tolerance in diéfributed systems.

This comp@ ts the stage for a deeper evaluation
of ho pproach addresses the challenges of
micr. icés and transactions, providing insights into

o theirapplicability in different scenarios.

G. . Paxos Consensus Algorithms

Incorporating Paxos consensus algorithms
into microservice architecture can further improve
scalability and fault tolerance. Paxos, a family of
protocols for achieving consensus in a network of
unreliable processors, can help coordinate state
changes across distributed services without the need
for a central coordinator. This decentralized approach
aligns well with the principles of microservices,
promoting high availability and resilience.

The Paxos consensus algorithm outlines several

essential roles to help achieve agreement among

distributed nodes. Grasping these roles is vital for
successfully implementing Paxos in a microservice
architecture. The roles are: Proposer, Acceptor,

Learner, and the optional role of Leader. The

dynamics between these roles are managed through

specific phases within the Paxos algorithm:

e Prepare Phase: The proposer sends a prepare
request with a proposal number to a majority of
acceptors. Acceptors respond with a promise not
to accept any proposals with a lower number and
provide the highest-numbered proposal they have
accepted so far.

e Promise Phase: If the proposer receives promises
from a majority of acceptors, it proceeds to the
next phase.

e Accept Phase: The proposer sends an accept
request with the proposal number and value to the



acceptors. Acceptors then decide whether to

accept the proposal based on the promises they

have made. Learn Phase: Once a proposal is
accepted by a majority of acceptors, the value is
communicated to the learners, completing the

CONSeNsuUs process.

In the context of microservice architecture, these
roles and their interactions ensure that distributed
transactions are managed efficiently and consistently.
By leveraging the Paxos algorithm, microservices can
achieve consensus on critical operations, maintaining
data integrity and system reliability even in the
presence of failures.

To further clarify the logic flow of Paxos, we
provide a structured overview of its consensus
procedure with clear input/output roles. The process
begins when a Proposer initiates a proposal containing
a unique sequence number and value. This proposal is
sent to a quorum of Acceptors, who either promise not
to accept lower-sequence proposals (Promise Phase)
or acknowledge the request (Accept Phase). If a
majority of acceptors approve the value, it is
distributed to Learners, completing the Learn Phase.
This phased coordination ensures consensus even in
failure-prone environments. In our implementation,
inputs to the Paxos function include an array of
participating nodes and load/failure parameters; the
outputs consist of decision logs ensuring synchronize
state across services. This logic is reflected
Algorithm 1, which formalizes the process for
experimental evaluation.

Table 1 provides a comprehensive compal of

various methods used in previous studie % hance

scalability and reliability migraservice

architectures. It includes the followiagycolumns:

e Author and Year of Publicatio s the authors
of the papers and the year ere published.

e Method Used: Describg§,théethod or algorithm
used in each study.

e Provide Per Recommendations:

Indicates whether method includes the
personalized

e Sema nalysis: Indicates whether semantic
SiS ' Was used in the study.

. ure Scenarios: Describes how the method
handles failure scenarios.

e Performance under Load: Evaluates the
performance of the method under various load
conditions.

e Compensating Transactions: Indicates whether
the method effectively manages compensating
transactions.

e Scalability: Assesses the scalability of the
method.

capability provide
recom ions.
r@

e Fault Tolerance: Evaluates the fault tolerance of
the method.
e Latency: Measures the latency of the method.
Figure 1 illustrates the layered architecture of the
proposed microservice-based system, optimized for
scalability, fault tolerance, and transactional
reliability. At the top, the Client Layer represents
diverse end-users interacting concurrently, generating
requests that initiate distributed transactions. _These

requests are funneled through the API Gatewa ich
serves as the system’s entry point by ing
request validation, routing, and secufi |ng To

ensure equitable resource utilization d prevent
congestion, the Load Balancer dy%{ distributes
traffic across the underlyin ervices Layer,
which houses mdependent ble services (such
as Service A, Servi &Qnd Service C), each
dedicated to a specific function.

Beneath this IEer, the Consensus Layer employs

the Paxos Algori manage distributed agreement
among node % h its structured phases Prepare,
Accept, ommit Paxos guarantees data
consist; ross services even under failure
condi Coordinated transactional integrity is

eenforcefl * by the Transaction Manager, which

es the Enhanced Saga Pattern to handle long-
r ing transactions. This component orchestrates
quentlal service interactions and  triggers
compensating actions in response to partial failures,
promoting eventual consistency and resilience.
Processed data is stored and managed within the
Database Layer, where each microservice may access
its own isolated datastore. Paxos and Saga
mechanisms ensure synchronized state across
databases, preserving systemic coherence.
Furthermore, this modular architecture is
intentionally designed for maintainability and
extensibility. The clear delineation of roles across
layers enables isolated upgrades or refactoring of
individual services without disrupting system-wide
functionality. Leveraging standardized interfaces
between layers facilitates robust coordination and
simplifies integration. The design aligns with cloud-
native principles and can be deployed in air-gapped
environments with limited network connectivity such
as secure industrial or governmental settings. Overall,
the architecture supports high-throughput transaction
handling, fault-resilient service composition, and a
scalable foundation for future development.

To address scalability challenges in
microservice architectures, we propose a method that
combines the Paxos consensus algorithm with an
enhanced Saga pattern. This approach ensures strong
consistency and fault tolerance while maintaining
flexibility. The process involves initializing and



deploying microservices across distributed nodes,
applying load conditions, simulating failure scenarios,
and handling transactions using Paxos and Saga
patterns. Performance metrics such as throughput,
latency, consistency, and fault tolerance are measured
and compared.

The provided in Algorithm 1 pseudo-
code illustrates the proposed approach to enhance
scalability in microservice architectures using the
Paxos algorithm and an enhanced Saga pattern. The
inputs include nodes [ ], an array of distributed nodes
where  the microservices  are deployed;
LoadConditions/[], an array of load conditions
for testing such as LightLoad, MediumLoad, and
HeavylLoad; and FailureScenarios/[], an array
of failure scenarios like NoFailure, NodeFailure, and
NetworkPartition. The output is an object called
Results, which stores performance metrics for
comparison, including  throughput, latency,
consistency, and fault tolerance. The pseudo-code
starts by initializing and deploying microservices with
functions likeInitializeMicroservices (),
DeployMicroservices (nodes/[]), and
InitializePaxos (nodes[]). It then iterates
through the load conditions and failure scenarios,
applying the load and simulating failures with

SimulateFailure (FailureScenario). T

core of the proposed method involves handlin
transactions using the Paxos consensus algorithmAyith
PaxosConsensus (nodes[]) and the e ed

Saga pattern with EnhancedSag nf.
Performance metrics are easu with

MeasureMetrics () and resul e logged with
LogResults (LoadConditio

FailureScenario). Fin% e results are
compared with the enhange ga pattern using
CompareWithEnhang@®@@dSaGa (Results). This
structured approach des a comprehensive

framework for eval@ and improving scalability in
microservice ar@ es.

4. Transa‘tio’al Microservice Compositions

. ing
ApplylLoad(LoadCondition) an Qechanisms often struggle with the dynamic nature
g

microservice architectures, managing
transagtions across distributed services is a complex
challenge due to the need for maintaining data
consistency and integrity. Traditional monolithic
systems handle transactions within a single database,
but microservices[51] often involve multiple
databases and services, complicating transaction
management. Consensus algorithms, particularly
Paxos, offer a robust solution for achieving distributed
agreement and ensuring consistency in such
environments.

4.1. Paxos Consensus Algorithm

It is essential to distinguish between Paxos
and Saga, as they serve fundamentally different
purposes.

e Paxos is a consensus algorithm designed to
achieve agreement among distributed nodes,
ensuring strong consistency even in the presence

of failures[22].
tra@on
obal

e Saga, on the other hand, is a
s, each

coordination pattern that breaks do

transaction into a series of local tfans

with potential compensating actions®

This distinction is critical to a@mﬂaﬁng their
roles in distributed systems. 097is a consensus
protocol designed to a '@greement among
distributed nodes, e i presence of failures.
Proposed by Leslie La , Paxos ensures that a
group of nodes cap agree‘on a single value, which is
crucial for mai@g consistency in distributed
systems [ evprotocol is fault-tolerant and can
handle net rtitions, making it suitable for use in

micros architectures where services are
across different nodes. The primary

distgi
o challenge” in microservice architectures is to maintain

sistency and coordination among services while
horizontally. ~ Traditional ~ consensus
and high availability requirements of microservices.

This case study investigates how Paxos can be

effectively integrated into a microservice architecture

to overcome these challenges. The paper [22]

proposes enhancements to the traditional Saga pattern

to address the challenges of managing distributed
transactions. The Saga pattern breaks down a global
transaction into a series of local transactions, each of
which updates a single service. If a local transaction
fails, compensating transactions are executed to undo
the changes. The key features of the Enhanced Saga

Pattern can be as follows:

e Eventual Consistency: The Saga pattern provides
eventual consistency, which is sufficient for many
applications but may not be suitable for scenarios
requiring immediate consistency;

e Improved Performance: The enhancements
proposed by Daraghmi et al. include the use of a
quota cache and commit-sync service to improve
performance and reliability;

e Transaction Management: The Saga pattern is
particularly effective for managing complex
transactions across multiple services, ensuring
that each step of the transaction is completed or
compensated;

e Consistency: Paxos offers strong consistency,
ensuring that all nodes have the same view of the



data at all times. In contrast, the Saga pattern

provides eventual consistency, which may lead to

temporary inconsistencies;

e Fault Tolerance: Paxos is designed to handle
faults and ensure data consistency even in the
presence of failures. The Saga pattern relies on
compensating transactions to handle failures,
which may not always guarantee the same level of
consistency;

e Scalability: Both Paxos and the enhanced Saga
pattern can be scaled to handle large numbers of
nodes and transactions. However, Paxos may
introduce some performance overhead due to the
need for multiple rounds of communication to
achieve consensus;

e Performance: The enhanced Saga pattern offers
better performance in terms of transaction
throughput, as it allows for more parallelism and
reduces the need for coordination between
services. Paxos, while providing strong
consistency, may introduce some latency due to
the consensus process.

Both Paxos and the enhanced Saga pattern offer
valuable solutions for managing transactions in
microservice architectures. The choice between them
depends on the specific requirements of the
application, such as the need for strong consistency,
fault tolerance, and performance. By understandi
the trade-offs between these approaches, syste
architects can make informed decisions to opti
their microservice architectures.

4.2. Transaction Management w1th

In a microservice architecture, tlons often
span multiple services, each w, n database.
Using Paxos, these transacn@can be managed
effectively by ensuring th ticipating services
agree on the transac utcome To ensure
lifecycle of a distributed
transaction, our a integrates Paxos and the
enhanced Saga rough a layered coordination
mechanism governs the initial agreement
phase, gu@emg that a proposed transaction
reac sus among nodes before any execution
begi e consensus is achieved, Saga manages the
execution of local transactions within services. If a
failure occurs during execution, Saga triggers
compensating actions to undo partial changes, while
Paxos ensures that rollback decisions are consistently
disseminated across all nodes. This design provides
strong agreement prior to execution and resilient
handling during runtime faults. Key functions in our
implementation include
PaxosConsensus (nodes[]) for orchestrating
Prepare, Accept, and Commit phases, and

EnhancedSagaPattern() for coordinating
domain events, compensations, and rollback logic.
These components interact through a transaction
manager that logs actions, monitors service responses,
and invokes necessary compensations.  This
integration aligns with microservice principles by
enabling decentralized execution with coordinated
agreement and error recovery .The process involves

the following steps:

e A coordinator node proposes a transacti@all
participating nodes. Each node gesponds With a
promise not to accept any other p with a
lower sequence number;Propo hase:

e Acceptance Phase: Once the grgﬁator receives
promises from a majori des, it sends an
accept request with posed transaction.

Nodes then acc e saction and write it to
their local Iogs;
e Commit Phas fter a majority of nodes have

accepted the r action, the coordinator sends a
comm ge, finalizing the transaction. All
nod commit the transaction to their
s%ree phase process ensures that all nodes

n the transaction’s outcome, maintaining

corporating Paxos into microservice architectures
offers several advantages, including fault tolerance,
consistency, and scalability. Paxos efficiently
manages node failures and network partitions,
allowing transactions to complete even when some
nodes are unavailable. By achieving consensus among
nodes, Paxos ensures a consistent view of transaction
outcomes across all services, preventing data
inconsistencies.  Additionally, Paxos enables
horizontal scaling by adding more nodes without
compromising  transaction integrity. However,
implementing Paxos presents challenges such as
complexity due to its multiple phases and need for
node coordination, latency introduced by the
consensus process, and resource overhead required for
communication and log management. Despite these
challenges, the benefits of Paxos in terms of fault
tolerance and consistency make it a valuable tool for
managing distributed transactions. In conclusion, the
Paxos consensus algorithm provides a powerful
solution for transactional microservice compositions,
ensuring consistency and fault tolerance in distributed
systems. By leveraging Paxos, microservice
architectures can achieve higher scalability and
reliability, effectively addressing the challenges of
distributed transaction management.

d&stency across the  distributed  system.



5. Evaluations

In this section, we assess the effectiveness of
the Paxos consensus algorithm, as detailed in our
paper, in comparison to the improvements made to the
Saga pattern for managing distributed transactions
within a microservices architecture, as described by
Daraghmi et al [22]. Additionally, to evaluate the
impact of Paxos consensus algorithms on the
scalability of microservice architecture, we conducted
a series of experiments focusing on key performance
metrics such as throughput, latency, and fault
tolerance.

5.1. Experimental Setup

Our experimental setup involved deploying a
microservice-based application across multiple
distributed nodes, with each node hosting a set of
microservices responsible for different functionalities.
We implemented the Paxos consensus algorithm to
manage distributed transactions and ensure data
consistency across these nodes. The environment was
configured to simulate real-world conditions,
including network partitions and node failures.
Specifically, we set up an environment with five
servers acting as physical hosts. All microservices
were developed as RESTful [53] web services usi
the Java Spring framework. For local databa
operations and transaction management, we utiljzed
SQL.ite [54]. The code, written in Java and available

online [55], had its execution times measui g
5.2. Experimental Results
rical findings

the efficiency of

This section details t
from our experiments, co
paxos Consensus Algorith
our research, we asses e “performance of Paxos
consensus algorith ancing the scalability of
microservice architgetudes gnd compared these results
aga pattern for distributed
such architectures. The key
trics analyzed included throughput,
olerance, consistency, and scalability.

re” 2 presents a comparative analysis of
resourge utilization and fault detection efficiency
between Paxos-based consensus algorithms and the
enhanced Saga pattern within distributed microservice
environments. The diagram highlights how consensus
mechanisms, particularly Paxos, contribute to
improved system performance under high-load and
failure conditions. Specifically, Paxos demonstrates
superior efficiency in managing computational
resources and detecting faults promptly, making it
well-suited for large-scale, high-performance systems.

Apache JMeter 5.6.3 [56]. Detailed specifications of
the experimental setup are provided in Table 2.
Throughout the experiments, we maintained
consistent technical configurations and runtime
settings.

To simulate realistic distributed transaction
scenarios, we utilized a synthetic dataset generated
using Apache JMeter 5.6.3. This dataset includes
RESTful service requests under varying load
conditions LightLoad, MediumLoad, and He d
and failure scenarios such as NoFailure, eRailure,
and NetworkPartition. The structuré of dataset
mirrors the transaction patterns descri %} Daraghmi
et al. [21], allowing for comparativ chmarking.
Each request targets specifi oservices and
triggers either Paxos-based g@’sus or Saga-based
coordination.

The dataset signed to reflect both
normal and degraded system states, enabling robust
performancegva

g metrlcs were used to evaluate

system perw
Number of successfully processed

per second (reg/sec).

oo (Aatency: Average response time per request,

asured in milliseconds (ms).

‘ ’ Fault Tolerance: Ability of the system to maintain

operations during node or network failures.

e Consistency: Degree of data synchronization
across distributed services post-transaction.

e Resource Utilization: CPU, memory, and network
bandwidth consumption during execution.

In contrast, the enhanced Saga pattern, while effective

in coordinating distributed transactions, incurs slightly

higher resource consumption due to compensating

actions and rollback mechanisms.

The figure is annotated with standardized font
styles (Arial, 10pt for body text and bold 12pt for
headings), consistent line weights, and high-contrast
labels to ensure readability in both digital and
hardcopy formats. All graphical elements have been
optimized at 300dpi resolution to maintain clarity in
print. The detailed performance metrics illustrated in
the figure include:

e CPU Usage: Paxos-based algorithms consume
less CPU compared to the enhanced Saga pattern,
reducing processing overhead.

e Memory Usage: Consensus mechanisms exhibit
lower memory footprint, contributing to more
efficient resource allocation.

e Network Bandwidth: Paxos reduces network
traffic by minimizing redundant message
exchanges, thereby lowering congestion.

e Fault Detection Time: Paxos enables faster
identification and resolution of faults through its



structured agreement phases, enhancing system

responsiveness.

This visualization reinforces the architectural
advantage of consensus algorithms in maintaining
operational stability and efficiency, especially in
mission-critical microservice deployments

Figure 3(a) above presents the throughput results
for five different experiments comparing the proposed
system This paper with the base paper[22] Throughput
is measured in requests per second (reg/sec). These
results indicate that the proposed system consistently
outperforms the base paper in terms of throughput
across all experiments. The higher throughput
demonstrates the improved scalability and efficiency
of the proposed system, making it more capable of
handling a larger number of requests per second.

Figure 3(b) illustrates the response time
outcomes for five distinct experiments, comparing the
proposed system in this paper with the base paper [22]

The response time is recorded in milliseconds
(ms). The findings reveal that the proposed system
consistently surpasses the base paper in response time
across all experiments. The reduced response time
highlights the enhanced efficiency and performance of
the proposed system, enabling it to process requests
more swiftly and effectively.

Figure 3(c) displays the resource utilization

Resource utilization is expressed as a percentage (%
The results show that the proposed system consisteptly

outperforms the base paper in terms of ce
utilization across all experiments. The ousce
utilization indicates the enhanced effi y and

optimization of the proposed systeay allowing it to
handle workloads with fewer resou

Figure 3(d) depicts th@ results for five
different experiments, com& e proposed system
in this paper with the per [22]. Latency is
measured in milliseco s). The results show that
the proposed syste tly outperforms the base
paper in terms across all experiments. The
lower latenc @ates the enhanced efficiency and
responsive!essr the proposed system, enabling it to
handle s more swiftly and effectively.

benchmarks of microservice

communication and data management strategies
significantly affect throughput and latency under
varying load conditions [34].

These results reveal important behavioral
differences between the coordination models. Paxos
consistently outperforms the enhanced Saga pattern
under high-load and failure conditions due to its
structured consensus mechanism, which avoids
rollback loops and compensating overhead. In

contrast, Saga’s reliance on compensating transactions
introduces latency and resource consumption,
especially when failures occur mid-execution. The
centralized agreement in Paxos ensures faster fault
detection and recovery, while Saga’s decentralized
orchestration favors flexibility but sacrifices
immediate consistency. These performance variations
highlight the trade-offs between consensus-driven and
coordination-driven transaction handling, and explain
why Paxos demonstrates superior effici in
scenarios requiring strong consistency an ault
resolution. Figure 4: Our experimental rm clearly
highlight the resource efficiency of ouRMPaxos-based
approach. This method not only demonstrates superior
CPU usage but also outperforpas,i ms of memory
and network bandwidth con n compared to the
enhanced Saga p Paxos algorithm
effectively manages ted transactions with
minimal CPU overhead, optimizes memory usage, and
ensures efficient %rk bandwidth utilization. These
findings em ize/ the benefits of incorporating
Paxos co@ mechanisms into microservice

, Sfgnificantly boosting both performance
ity. A total of five experiments were
for each transaction model (Paxos and
ed Saga Pattern), across three distinct load

h
U%‘Ts and three failure scenarios. Each experiment

results for five different experiments, comparing t
proposed system in this paper with the base paper[2
).

as configured with variable request rates, dataset
sizes, and environmental conditions to simulate
realistic distributed deployments. These controlled
variations allowed for a robust evaluation of
throughput, latency, fault tolerance, and consistency
under dynamic system behaviors. To assess the
system’s availability under peak load conditions, we
tested our proposed method and compared it with a
previous approach, measuring availability as the
percentage of time the system remained fully
operational and error-free.

The results in Figure 5(a) demonstrate that
our proposed method consistently achieves higher
availability compared to the previous method across
all failure scenarios under peak load conditions.
Notably, our method maintains a higher availability
even in the presence of node failures and network
partitions, showcasing its robustness and reliability in
critical situations. Additionally, to further assess the
system's availability, tests were also conducted under
off-peak load conditions. Figure 5(b) reveals that our
method also provides higher availability in off-peak
load conditions compared to the previous method. Our
method's superior performance in handling failure
scenarios such as memory leaks and slow databases
further emphasizes its effectiveness in maintaining
system availability. These experiments illustrate that
our proposed method significantly enhances system
availability across varying load conditions and failure



scenarios, making it a reliable solution for
microservice architectures.

6. Conclusion And Future Works

This study investigated the integration of
Paxos consensus algorithms into microservice
architectures and compared their performance with the
enhanced Saga pattern for managing distributed
transactions. Experimental results demonstrated that
Paxos significantly improves throughput, reduces
latency, and enhances fault tolerance, particularly
under high-load and failure conditions. These benefits
directly address the core challenges of distributed
coordination, offering a resilient and scalable
framework for modern microservice systems. While
the enhanced Saga pattern provides practical
mechanisms for compensating transactions and
achieving eventual consistency, it was consistently
outperformed by Paxos in key performance metrics.
Paxos’s ability to maintain strong consistency and
operational continuity during failures makes it a
compelling choice for applications requiring high
reliability and responsiveness. The findings contribute
to ongoing efforts in optimizing microservice
performance and offer actionable insights for system
architects seeking robust transaction coordination
strategies. While the proposed approach demonstrate
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Table 1. Comparison of previous methods

Tailored Semantic Failure Performance ~ Compensating - Fault

Author Method Suggestions  Analysis Scenarios  under Load Transactions Scalability Tolerance Latency

Smithet  Enhanced ‘b

al., 2020 Saga Pattern ~ No Yes Moderate Moderate Effective Moderate Mod@ Moderate

o

Davis et Two-Phase /\

al., 2023 Commit No No Strong Low Not applicable Low ng High
(2PC)
Enhanced (b

Wilsonet  Saga Pattern

al., 2024 with Yes Yes Moderate Moderate Effective odé€rate Moderate Moderate
Machine
Learning

o

Leeetal, Chandy- Q

2020 Lamport No No Moderate Moderate wa le  Moderate Moderate Moderate
Algorithm

Patel et Zookeeper

al., 2022 Coordination ~ No No Moderate Moderat, ot applicable ~ Moderate Strong Moderate
Service o

Garcia et Gossi \

al., 2020 P No No Moderat igh Not applicable  High Moderate Moderate
Protocol

Martinez

etal, Vector .

2021 Clocks No No derate Moderate Not applicable ~ Moderate Moderate Moderate

Singh et Quorum- Str

al., 2022 based No 0 4 Moderate Not applicable Moderate Moderate Moderate
Replication

Nguyen et  Blockchain-

al., 2023 based No Strong High Not applicable  High High High
Consensus &

Hernande  Enhanced

;g;zl., Raft with Yes Strong High Not applicable ~ High Strong Low

Machine
Learning

O
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Figure 1. Architecture of the Proposed System

Algorithm 1:  Elevating Scalability in Distributed
Microservice Systems

BEGIN

// Inputs

INPUT: nodes[], LoadConditions[],
FailureScenarios[]

OUTPUT: Results

// Initialize and deploy microservices
InitializeMicroservices()
DeployMicroservices( nodes[] )
InitializePaxos(  nodes[] )

// Loop through load conditions and
failure scenarios
FOR each Load IN LoadConditions[]
FOR each Scenario IN

FailureScenarios[] ’
ApplyLoad(  Load)
SimulateFailure( Scenar io)

// Handle transactions and measure

performance
PaxosConsensus( nodes[] )
EnhancedSagaPattern()

MeasureMetrics()

// Log results
LogResults( Load, Scenario )
END FOR
END FOR

C)V
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Table2. Specification of the Experim

Configurations

Participants Hardware Specification °

Physical Host
Setting

Physical Host 1 Intel Core i7, 8 Cores 16.0

(Proposer) GB RA

Physical Host 3
(Proposer)

Physical Host 4
(Proposer)

Physical Host 5 Intel Core i7, 8 Cores 16.0
(Proposer) GB RAM

@/ironment
E@o Environment Network Connection
N Java v19

(Proposer) GB RAM O
Physical Host 2 Intel Core i7, 8 Cfes 1

Java v19

Java v19 100 Mbps
LAN

Java v19

Java v19

, Table3. Experimental D, &:onfiguration and Parameters

Attribute

ion

Request Type O
Load Condi

Transaction Models
Generation Tool
Reference Dataset

Execution
Environment

RES service calls

LightLoad, MediumLoad, HeavyLoad
NoFailure, NodeFailure, NetworkPartition
5 distributed physical hosts

Paxos Consensus, Enhanced Saga Pattern
Apache JMeter 5.6.3

Based on structure from Daraghmi et al. [57]

Java Spring Boot with SQLite 3.12.2
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