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Abstract. Microservice architectures are preferred for their scalability and 

flexibility, however, managing distributed transactions in these systems poses 

significant challenges, especially in terms of consistency and fault tolerance.To 

address these issues, this study evaluates two distinct approaches: Paxos, a 

consensus algorithm that ensures agreement among distributed nodes, and the 

enhanced Saga pattern, a transaction coordination framework that manages local 

transactions with compensating actions. We implemented both methods in a 

microservice-based application deployed across distributed nodes and assessed their 

performance under various load conditions and failure scenarios. The results show 

that integrating Paxos significantly improves throughput and reduces latency, 

offering strong consistency and robust fault tolerance. In contrast, the enhanced Saga 

pattern, while effective in managing compensating transactions and maintaining 

eventual consistency, demonstrated lower performance in high-load environments. 
These findings highlight the trade-offs between consensus-based and coordination-

based transaction management in microservice architectures and provide practical 

insights for system designers seeking scalable and reliable solutions. 

 
 
 

1. Introduction 

 

Microservice architecture [1] has emerged as a 

dominant paradigm in modern software engineering, 

enabling the development of modular, independently 

deployable services tailored to specific business 

capabilities[2-4]. This architectural style enhances 

agility and responsiveness, allowing organizations to 

adapt rapidly to evolving requirements and scale 

components independently[5-6]. Unlike monolithic 

systems where transactional integrity is maintained 

within a single database Distributed Transactions often 

span multiple services and data stores, increasing the 

risk of inconsistency and coordination failures[7-10]. 

Ensuring reliable execution across such distributed 

environments requires sophisticated coordination 

mechanisms. Recent industrial inquiries have 

highlighted practical challenges in adopting 

microservices, including architectural migration, 

service orchestration, and operational overhead [11-

12]. A recent systematic literature review further 

categorizes these challenges into architectural, 

operational, and organizational dimensions, offering 

structured solution directions for successful  
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microservice adoption [13] .To address these  

concerns, stepwise migration strategies have been 

proposed to balance performance with implementation 

effort [14][15]. To mitigate coordination and 

reliability issues, researchers have explored consensus 

algorithms and distributed transaction patterns. 

Among these, Paxos stands out as a fault-tolerant 

protocol that ensures agreement among nodes even in 

the presence of failures[16-19]. Paxos operates 

through structured phases proposal, acceptance, and 

commitment enabling systems to recover from node 

failures without compromising integrity[20-21]. 

Despite the availability of various coordination 

models such as 2PC and Saga, and consensus 

protocols like Paxos and Raft, few studies have 

systematically benchmarked their behavior under 

realistic microservice conditions. Specifically, there is 

limited comparative analysis of Paxos and enhanced 

Saga patterns across diverse load levels and failure 

scenarios in distributed architectures. This paper aims 

to address this technical gap by conducting empirical 

evaluations to highlight performance trade-offs and 

guide system designers toward informed coordination 

strategies. In parallel, the Saga pattern provides a  

 

 



 

 

decentralized approach to managing long-running 

transactions through compensating actions, 

emphasizing availability and eventual consistency 

[22]. Recent surveys on scalable consensus 

mechanisms[16][20] and hybrid approaches such as 

reputation-based Proof of Cooperation [7]  and causal  

consistency frameworks [10] further validate the 

relevance of these models in distributed environments. 

These innovations aim to reduce latency, improve 

throughput, and enhance system resilience[23-27]. For 

example, AI-assisted consensus frameworks[28], 

fault-tolerant blockchain protocols[29-30], and 

adaptive scheduling mechanisms[31] have 

demonstrated promising results in distributed 

microservice deployments. Moreover, studies on 

performance benchmarking[27], architectural 

conformance[32], and optimization of access control 

views[30] provide practical insights into designing 

scalable and robust microservice systems. The CAP 

theorem and its modern interpretations also offer a 

theoretical foundation for understanding trade-offs 

between consistency, availability, and partition 

tolerance[7][16][33]. This paper investigates the 

integration of Paxos into microservice architectures 

and compares its effectiveness with the enhanced Saga 

pattern. Through a series of experiments and 

evaluations, we analyze their performance under 

varying load and failure scenarios. Our goal is to 

identify the most efficient coordination mechanism for 

managing distributed transactions in microservice 

environments. The main contributions of this paper are 

as follows: 

 We examine Paxos consensus algorithms to 

improve transactional coordination in 

microservices and compare them with the 

enhanced Saga pattern.  

 We demonstrate that Paxos integration leads to 

measurable improvements in throughput, latency, 

and system resilience.  

 We conduct empirical evaluations incorporating 

Paxos, Saga, and 2PC protocols to assess their 

comparative performance.  

This paper investigates the integration of Paxos 

into microservice architectures and compares its 

effectiveness with the enhanced Saga pattern. Through 

a series of experiments and evaluations, we analyze 

their performance under varying load and failure 

scenarios. Our goal is to identify the most efficient 

coordination mechanism for managing distributed 

transactions in microservice environments. 

The main contributions of this paper are as 

follows: (1) We propose the integration of Paxos 

consensus algorithms into microservice architectures 

to enhance transactional coordination and fault 

tolerance. (2) We present a comparative performance 

evaluation between Paxos, enhanced Saga, and 2PC 

protocols under varying load and failure conditions. 

(3) We demonstrate that Paxos-based coordination 

significantly improves throughput, reduces latency, 

and increases system resilience compared to 

coordination-based alternatives. These contributions 

provide empirical insights into the trade-offs between 

consensus-driven and compensation-driven 

transaction models, offering practical guidance for 

system architects. 

These findings are presented across the following 

structure: Section 2 reviews related work. Section 3 

describes our proposed Paxos-based optimization 

algorithm. Section 4 details the evaluation 

methodology and results. Section 5 discusses 

implications and future directions. Section 6 concludes 

with a summary of key findings. 
 

2. Related works 

 

The application of consensus algorithms in 

improving the scalability[4] of microservice 

architecture has been a topic of significant interest in 

recent years. Various studies have explored different 

consensus mechanisms and their impact on the 

performance and scalability of distributed systems. 

Recent surveys have provided comprehensive 

comparisons of these protocols, Recent comparative 

studies of microservice patterns reinforce these 

findings and highlight trade-offs between 

implementation strategies[34]. highlighting their 

trade-offs in terms of scalability, fault tolerance, and 

latency[35][7]. 

 

2. 1. Consensus Algorithms in Distributed 
Systems  

 

Consensus algorithms such as Paxos, Raft, 

and Practical Byzantine Fault Tolerance (PBFT) have 

been extensively studied for their ability to achieve 

agreement among distributed nodes. These algorithms 

are fundamental in ensuring data consistency and fault 

tolerance in distributed systems. For instance, Raft is 

known for its simplicity and understandability, making 

it a popular choice for many distributed systems [36]. 

PBFT, on the other hand, is designed to tolerate 

Byzantine faults, making it suitable for environments 

where nodes may act maliciously [29]. These 

protocols have been contrasted in recent evaluations 

focusing on blockchain-based and hybrid distributed 

systems [7]. Recent enhancements to PBFT aim to 

balance fault tolerance with network scalability across 

blockchain and microservice contexts[37]. 

 

2. 2. Scalability Challenges in Microservice 
Architecture 
 



 

 

Microservice architecture, characterized by 

its modularity and independence of services, faces 

unique scalability challenges. Each microservice must 

coordinate with others to maintain data consistency 

and system integrity. As the number of services 

increases, managing inter-service communication, 

transaction coordination, and data synchronization 

becomes increasingly complex. This complexity is 

reflected in recent evaluations contrasting scalability 

of monoliths and microservices under high-load 

conditions[38]. Traditional consensus algorithms, 

while effective in ensuring consistency, often struggle 

with scalability due to their high communication 

overhead and latency [30][39][33]. Recent research 

has introduced dependable consensus mechanisms 

specifically designed for blockchain-assisted 

microservice architectures, aiming to enhance both 

security and scalability [40]. This has led to the 

exploration of more scalable consensus mechanisms 

tailored for microservice environments. Recent studies 

have proposed hybrid approaches such as reputation-

based Proof of Cooperation[7] and causal consistency 

simulators [10] to reduce latency and improve fault 

tolerance. Additionally, cloud-native adaptations of 

the Saga pattern have shown promise in optimizing 

distributed transactions while maintaining eventual 

consistency[22]. Hybrid consensus models designed 

for IoT systems further demonstrate the adaptability of 

Paxos-inspired architectures[41]. Dynamic event-

triggered fault-tolerant control frameworks have 

recently been proposed to enhance scalability and 

resilience in distributed systems operating under 

constrained conditions [42]. Ontology-guided surveys 

have further classified consensus algorithms based on 

their suitability for resource-constrained 

environments, offering structured insights into IoT-

integrated microservice deployments [43]. 

 

2.3. Recent Advances in Consensus Algorithms 
 

Microservice architecture, characterized by 

its modularity and independence of services, faces 

unique scalability challenges. Each microservice must 

coordinate with others to maintain data consistency 

and system integrity. Traditional consensus 

algorithms, while effective in ensuring consistency, 

often struggle with scalability due to their high 

communication overhead and latency [30][39][33]. 

This has led to the exploration of more scalable 

consensus mechanisms tailored for microservice 

environments. Another study proposed a hybrid 

consensus algorithm that combines the strengths of 

Proof of Work (PoW) and Proof of Stake (PoS) to 

achieve better efficiency and security[28][29][44]. 

 Adaptive consensus protocols based on 

neural networks have demonstrated fixed-time 

convergence and fault tolerance in multi-agent 

systems, offering promising directions for 

microservice coordination[45]. Holistic verification 

techniques have recently been applied to industrial-

grade consensus protocols, ensuring both safety and 

liveness under Byzantine fault conditions [46]. 

 

 

2.4. Application in Microservice Architecture 
 

The application of these advanced consensus 

algorithms in microservice architecture has shown 

promising results. By integrating scalable consensus 

mechanisms, microservices can achieve higher 

throughput and lower latency, thereby improving the 

overall scalability of the system. For instance, 

leveraging Raft in a microservice environment can 

enhance coordination and data consistency without 

significantly impacting performance [36].  

In conclusion, the integration of advanced 

consensus algorithms in microservice architecture 

holds great potential for improving scalability and 

performance. Model-driven metrics have also been 

applied to assess architectural quality aspects such as 

automation, scalability, and maintainability in 

distributed MLOps systems, offering transferable 

insights for microservice-based environments[47]. 

Ongoing research continues to explore new and 

innovative approaches to address the unique 

challenges posed by microservice environments. 

 Cloud infrastructure studies show how 

modeling frameworks affect performance predictions 

for microservices with consensus layers[48] 

 

3. Preliminaries 

 

3.1. Microservices and Transactions 
 

Microservice architecture is a design approach 

that organizes an application into a set of loosely 

connected services. Each service is finely tuned and 

focuses on a specific business function, which allows 

for independent deployment and scaling. This modular 

structure increases flexibility and agility, enabling 

organizations to swiftly adapt to evolving business 

needs[15]. Managing transactions in a microservice 

architecture introduces distinct challenges. Unlike 

monolithic architectures, where a single transaction 

can encompass multiple components within one 

database, microservices typically involve several 

databases and services. This distribution makes it 

more difficult to maintain data consistency and 

integrity throughout the system[49]. 

Two primary methods for managing transactions 

in microservice architectures are the two-phase 

commit (2PC) protocol and the saga pattern: 



 

 

1. Two-Phase Commit (2PC): This protocol 

guarantees strong consistency by managing a 

global transaction across multiple services. It 

includes a prepare phase, during which all 

participating services get ready to commit, 

followed by a commit phase, where the 

transaction is either finalized or rolled back based 

on the responses from all services. Although 2PC 

ensures consistency, it can cause significant 

latency and decrease system availability, 

particularly when network partitions occur [50]. 

2. Saga Pattern[41]: The saga pattern addresses the 

limitations of 2PC by breaking down a global 

transaction into a series of local transactions, each 

managed by a single service. If a local transaction 

fails, compensating transactions are executed to 

undo the changes made by previous transactions. 

This approach enhances scalability and 

availability but may result in eventual consistency 

rather than strong consistency [49]. 

Recent enhancements to the Saga pattern, as 

proposed by Daraghmi et al.[22], incorporate 

mechanisms such as quota caching and commit-sync 

services to improve execution reliability and reduce 

the overhead of compensating transactions. The 

coordination workflow typically begins with a service 

initiating a local transaction and emitting a domain 

event. Subsequent services then process the event and 

execute their respective tasks. If a step fails, rollback 

signals or compensating actions are triggered to 

reverse prior successful steps using predefined logic. 

This design minimizes global locks, promotes 

asynchronous execution, and significantly enhances 

system resilience. Although it trades off immediate 

consistency, these improvements align well with the 

scalability demands of microservice architectures. 

Building upon this foundation, our study explores 

the use of Paxos consensus algorithms to improve the 

scalability and fault tolerance of microservices. Paxos 

ensures agreement among unreliable nodes, 

guaranteeing strong consistency and resilience even 

during network disruptions. By comparing these two 

approaches, we highlight the trade-offs between 

coordination-based and consensus-based transaction 

management in distributed systems. 
However, managing transactions in a 

microservices architecture presents unique challenges. 

Traditional monolithic applications often rely on 

ACID (Atomicity, Consistency, Isolation, Durability) 

transactions to ensure data integrity. In a 

microservices environment, achieving the same level 

of consistency and reliability is more complex due to 

the distributed nature of the services. 

The paper [22]  addresses these challenges by 

proposing enhancements to the Saga pattern. The Saga 

pattern is a design pattern that manages distributed 

transactions by breaking them into a series of smaller, 

local transactions. Each local transaction updates a 

single service and, if necessary, a compensating 

transaction is used to undo the changes in case of a 

failure. 

In contrast, our paper explores the application of 

Paxos consensus algorithms to improve the scalability 

and fault tolerance of microservices architectures. 

Paxos is a family of protocols for achieving consensus 

in a network of unreliable processors. It ensures that a 

single value is chosen and agreed upon by a majority 

of nodes, providing strong consistency and fault 

tolerance. 

By comparing these two approaches, we aim 

to highlight the trade-offs and benefits of each method 

in managing transactions within a microservices 

architecture. The Saga pattern offers a practical 

solution for handling distributed transactions with 

eventual consistency, while Paxos provides a robust 

mechanism for achieving strong consistency and fault 

tolerance in distributed systems. 

This comparison sets the stage for a deeper evaluation 

of how each approach addresses the challenges of 

microservices and transactions, providing insights into 

their applicability in different scenarios. 

 
3.2. Paxos Consensus Algorithms 

 

Incorporating Paxos consensus algorithms 

into microservice architecture can further improve 

scalability and fault tolerance. Paxos, a family of 

protocols for achieving consensus in a network of 

unreliable processors, can help coordinate state 

changes across distributed services without the need 

for a central coordinator. This decentralized approach 

aligns well with the principles of microservices, 

promoting high availability and resilience. 

The Paxos consensus algorithm outlines several 

essential roles to help achieve agreement among 

distributed nodes. Grasping these roles is vital for 

successfully implementing Paxos in a microservice 

architecture. The roles are: Proposer, Acceptor, 

Learner, and the optional role of Leader. The 

dynamics between these roles are managed through 

specific phases within the Paxos algorithm: 

 Prepare Phase: The proposer sends a prepare 

request with a proposal number to a majority of 

acceptors. Acceptors respond with a promise not 

to accept any proposals with a lower number and 

provide the highest-numbered proposal they have 

accepted so far. 

 Promise Phase: If the proposer receives promises 

from a majority of acceptors, it proceeds to the 

next phase. 

 Accept Phase: The proposer sends an accept 

request with the proposal number and value to the 



 

 

acceptors. Acceptors then decide whether to 

accept the proposal based on the promises they 

have made. Learn Phase: Once a proposal is  

accepted by a majority of acceptors, the value is 

communicated to the learners, completing the 

consensus process. 

In the context of microservice architecture, these 

roles and their interactions ensure that distributed 

transactions are managed efficiently and consistently. 

By leveraging the Paxos algorithm, microservices can 

achieve consensus on critical operations, maintaining 

data integrity and system reliability even in the 

presence of failures. 

To further clarify the logic flow of Paxos, we 

provide a structured overview of its consensus 

procedure with clear input/output roles. The process 

begins when a Proposer initiates a proposal containing 

a unique sequence number and value. This proposal is 

sent to a quorum of Acceptors, who either promise not 

to accept lower-sequence proposals (Promise Phase) 

or acknowledge the request (Accept Phase). If a 

majority of acceptors approve the value, it is 

distributed to Learners, completing the Learn Phase. 

This phased coordination ensures consensus even in 

failure-prone environments. In our implementation, 

inputs to the Paxos function include an array of 

participating nodes and load/failure parameters; the 

outputs consist of decision logs ensuring synchronized 

state across services. This logic is reflected in 

Algorithm 1, which formalizes the process for 

experimental evaluation. 

Table 1 provides a comprehensive comparison of 

various methods used in previous studies to enhance 

scalability and reliability in microservice 

architectures. It includes the following columns: 

 Author and Year of Publication: Lists the authors 

of the papers and the year they were published. 

 Method Used: Describes the method or algorithm 

used in each study. 

 Provide Personalized Recommendations: 

Indicates whether the method includes the 

capability to provide personalized 

recommendations. 

 Semantic Analysis: Indicates whether semantic 

analysis was used in the study. 

 Failure Scenarios: Describes how the method 

handles failure scenarios. 

 Performance under Load: Evaluates the 

performance of the method under various load 

conditions. 

 Compensating Transactions: Indicates whether 

the method effectively manages compensating 

transactions. 

 Scalability: Assesses the scalability of the 

method. 

 Fault Tolerance: Evaluates the fault tolerance of 

the method. 

 Latency: Measures the latency of the method. 

Figure 1 illustrates the layered architecture of the 

proposed microservice-based system, optimized for 

scalability, fault tolerance, and transactional 

reliability. At the top, the Client Layer represents 

diverse end-users interacting concurrently, generating 

requests that initiate distributed transactions. These 

requests are funneled through the API Gateway, which 

serves as the system’s entry point by performing 

request validation, routing, and security filtering. To 

ensure equitable resource utilization and prevent 

congestion, the Load Balancer dynamically distributes 

traffic across the underlying Microservices Layer, 

which houses independently deployable services (such 

as Service A, Service B, and Service C), each 

dedicated to a specific domain function. 

Beneath this layer, the Consensus Layer employs 

the Paxos Algorithm to manage distributed agreement 

among nodes. Through its structured phases Prepare, 

Accept, and Commit Paxos guarantees data 

consistency across services even under failure 

conditions. Coordinated transactional integrity is 

enforced by the Transaction Manager, which 

integrates the Enhanced Saga Pattern to handle long-

running transactions. This component orchestrates 

sequential service interactions and triggers 

compensating actions in response to partial failures, 

promoting eventual consistency and resilience. 

Processed data is stored and managed within the 

Database Layer, where each microservice may access 

its own isolated datastore. Paxos and Saga 

mechanisms ensure synchronized state across 

databases, preserving systemic coherence. 

Furthermore, this modular architecture is 

intentionally designed for maintainability and 

extensibility. The clear delineation of roles across 

layers enables isolated upgrades or refactoring of 

individual services without disrupting system-wide 

functionality. Leveraging standardized interfaces 

between layers facilitates robust coordination and 

simplifies integration. The design aligns with cloud-

native principles and can be deployed in air-gapped 

environments with limited network connectivity such 

as secure industrial or governmental settings. Overall, 

the architecture supports high-throughput transaction 

handling, fault-resilient service composition, and a 

scalable foundation for future development. 
 
 

To address scalability challenges in 

microservice architectures, we propose a method that 

combines the Paxos consensus algorithm with an 

enhanced Saga pattern. This approach ensures strong 

consistency and fault tolerance while maintaining 

flexibility. The process involves initializing and 



 

 

deploying microservices across distributed nodes, 

applying load conditions, simulating failure scenarios, 

and handling transactions using Paxos and Saga 

patterns. Performance metrics such as throughput, 

latency, consistency, and fault tolerance are measured 

and compared.  

The provided in Algorithm 1 pseudo-

code illustrates the proposed approach to enhance 

scalability in microservice architectures using the 

Paxos algorithm and an enhanced Saga pattern. The 

inputs include nodes[], an array of distributed nodes 

where the microservices are deployed; 

LoadConditions[], an array of load conditions 

for testing such as LightLoad, MediumLoad, and 

HeavyLoad; and FailureScenarios[], an array 

of failure scenarios like NoFailure, NodeFailure, and 

NetworkPartition. The output is an object called 

Results, which stores performance metrics for 

comparison, including throughput, latency, 

consistency, and fault tolerance. The pseudo-code 

starts by initializing and deploying microservices with 

functions likeInitializeMicroservices(), 

DeployMicroservices(nodes[]), and 

InitializePaxos(nodes[]). It then iterates 

through the load conditions and failure scenarios, 

applying the load and simulating failures with 

ApplyLoad(LoadCondition) and 

SimulateFailure(FailureScenario). The 

core of the proposed method involves handling 

transactions using the Paxos consensus algorithm with 

PaxosConsensus(nodes[]) and the enhanced 

Saga pattern with EnhancedSagaPattern(). 

Performance metrics are measured with 

MeasureMetrics() and results are logged with 

LogResults(LoadCondition, 

FailureScenario). Finally, the results are 

compared with the enhanced Saga pattern using 

CompareWithEnhancedSaga(Results). This 

structured approach provides a comprehensive 

framework for evaluating and improving scalability in 

microservice architectures. 
 

4. Transactional Microservice Compositions 
 

In microservice architectures, managing 

transactions across distributed services is a complex 

challenge due to the need for maintaining data 

consistency and integrity. Traditional monolithic 

systems handle transactions within a single database, 

but microservices[51] often involve multiple 

databases and services, complicating transaction 

management. Consensus algorithms, particularly 

Paxos, offer a robust solution for achieving distributed 

agreement and ensuring consistency in such 

environments. 

4.1. Paxos Consensus Algorithm 
 

It is essential to distinguish between Paxos 

and Saga, as they serve fundamentally different 

purposes. 

 Paxos is a consensus algorithm designed to 

achieve agreement among distributed nodes, 

ensuring strong consistency even in the presence 

of failures[22]. 

 Saga, on the other hand, is a transaction 

coordination pattern that breaks down a global 

transaction into a series of local transactions, each 

with potential compensating actions.  

This distinction is critical to avoid conflating their 

roles in distributed systems. Paxos is a consensus 

protocol designed to achieve agreement among 

distributed nodes, even in the presence of failures. 

Proposed by Leslie Lamport, Paxos ensures that a 

group of nodes can agree on a single value, which is 

crucial for maintaining consistency in distributed 

systems [21]. The protocol is fault-tolerant and can 

handle network partitions, making it suitable for use in 

microservice architectures where services are 

distributed across different nodes. The primary 

challenge in microservice architectures is to maintain 

consistency and coordination among services while 

scaling horizontally. Traditional consensus 

mechanisms often struggle with the dynamic nature 

and high availability requirements of microservices. 

This case study investigates how Paxos can be 

effectively integrated into a microservice architecture 

to overcome these challenges. The paper [22]  

proposes enhancements to the traditional Saga pattern 

to address the challenges of managing distributed 

transactions. The Saga pattern breaks down a global 

transaction into a series of local transactions, each of 

which updates a single service. If a local transaction 

fails, compensating transactions are executed to undo 

the changes. The key features of the Enhanced Saga 

Pattern can be as follows: 

 Eventual Consistency: The Saga pattern provides 

eventual consistency, which is sufficient for many 

applications but may not be suitable for scenarios 

requiring immediate consistency; 

 Improved Performance: The enhancements 

proposed by Daraghmi et al. include the use of a 

quota cache and commit-sync service to improve 

performance and reliability; 

 Transaction Management: The Saga pattern is 

particularly effective for managing complex 

transactions across multiple services, ensuring 

that each step of the transaction is completed or 

compensated; 

 Consistency: Paxos offers strong consistency, 

ensuring that all nodes have the same view of the 



 

 

data at all times. In contrast, the Saga pattern 

provides eventual consistency, which may lead to 

temporary inconsistencies; 

 Fault Tolerance: Paxos is designed to handle 

faults and ensure data consistency even in the 

presence of failures. The Saga pattern relies on 

compensating transactions to handle failures, 

which may not always guarantee the same level of 

consistency; 

 Scalability: Both Paxos and the enhanced Saga 

pattern can be scaled to handle large numbers of 

nodes and transactions. However, Paxos may 

introduce some performance overhead due to the 

need for multiple rounds of communication to 

achieve consensus; 

 Performance: The enhanced Saga pattern offers 

better performance in terms of transaction 

throughput, as it allows for more parallelism and 

reduces the need for coordination between 

services. Paxos, while providing strong 

consistency, may introduce some latency due to 

the consensus process. 

Both Paxos and the enhanced Saga pattern offer 

valuable solutions for managing transactions in 

microservice architectures. The choice between them 

depends on the specific requirements of the 

application, such as the need for strong consistency, 

fault tolerance, and performance. By understanding 

the trade-offs between these approaches, system 

architects can make informed decisions to optimize 

their microservice architectures. 

 

4.2. Transaction Management with Paxos 
 

In a microservice architecture, transactions often 

span multiple services, each with its own database. 

Using Paxos, these transactions can be managed 

effectively by ensuring that all participating services 

agree on the transaction’s outcome. To ensure 

reliability throughout the full lifecycle of a distributed 

transaction, our approach integrates Paxos and the 

enhanced Saga pattern through a layered coordination 

mechanism. Paxos governs the initial agreement 

phase, guaranteeing that a proposed transaction 

reaches consensus among nodes before any execution 

begins. Once consensus is achieved, Saga manages the 

execution of local transactions within services. If a 

failure occurs during execution, Saga triggers 

compensating actions to undo partial changes, while 

Paxos ensures that rollback decisions are consistently 

disseminated across all nodes. This design provides 

strong agreement prior to execution and resilient 

handling during runtime faults. Key functions in our 
implementation include 
PaxosConsensus(nodes[]) for orchestrating 

Prepare, Accept, and Commit phases, and 

EnhancedSagaPattern() for coordinating 

domain events, compensations, and rollback logic. 

These components interact through a transaction 

manager that logs actions, monitors service responses, 

and invokes necessary compensations. This 

integration aligns with microservice principles by 

enabling decentralized execution with coordinated 

agreement and error recovery .The process involves 

the following steps: 

 A coordinator node proposes a transaction to all 

participating nodes. Each node responds with a 

promise not to accept any other proposals with a 

lower sequence number;Proposal Phase:  

 Acceptance Phase: Once the coordinator receives 

promises from a majority of nodes, it sends an 

accept request with the proposed transaction. 

Nodes then accept the transaction and write it to 

their local logs; 

 Commit Phase: After a majority of nodes have 

accepted the transaction, the coordinator sends a 

commit message, finalizing the transaction. All 

nodes then commit the transaction to their 

databases. 

This three-phase process ensures that all nodes 

agree on the transaction’s outcome, maintaining 

consistency across the distributed system. 

Incorporating Paxos into microservice architectures 

offers several advantages, including fault tolerance, 

consistency, and scalability. Paxos efficiently 

manages node failures and network partitions, 

allowing transactions to complete even when some 

nodes are unavailable. By achieving consensus among 

nodes, Paxos ensures a consistent view of transaction 

outcomes across all services, preventing data 

inconsistencies. Additionally, Paxos enables 

horizontal scaling by adding more nodes without 

compromising transaction integrity. However, 

implementing Paxos presents challenges such as 

complexity due to its multiple phases and need for 

node coordination, latency introduced by the 

consensus process, and resource overhead required for 

communication and log management. Despite these 

challenges, the benefits of Paxos in terms of fault 

tolerance and consistency make it a valuable tool for 

managing distributed transactions. In conclusion, the 

Paxos consensus algorithm provides a powerful 

solution for transactional microservice compositions, 

ensuring consistency and fault tolerance in distributed 

systems. By leveraging Paxos, microservice 

architectures can achieve higher scalability and 

reliability, effectively addressing the challenges of 

distributed transaction management. 

 
 
 



 

 

5. Evaluations  
 

In this section, we assess the effectiveness of 

the Paxos consensus algorithm, as detailed in our 

paper, in comparison to the improvements made to the 

Saga pattern for managing distributed transactions 

within a microservices architecture, as described by 

Daraghmi et al [22]. Additionally, to evaluate the 

impact of Paxos consensus algorithms on the 

scalability of microservice architecture, we conducted 

a series of experiments focusing on key performance 

metrics such as throughput, latency, and fault 

tolerance. 

 

5.1. Experimental Setup 
 

Our experimental setup involved deploying a 

microservice-based application across multiple 

distributed nodes, with each node hosting a set of 

microservices responsible for different functionalities. 

We implemented the Paxos consensus algorithm to 

manage distributed transactions and ensure data 

consistency across these nodes. The environment was 

configured to simulate real-world conditions, 

including network partitions and node failures. 

Specifically, we set up an environment with five 

servers acting as physical hosts. All microservices 

were developed as RESTful [53] web services using 

the Java Spring framework. For local database 

operations and transaction management, we utilized 

SQLite [54]. The code, written in Java and available 

online [55], had its execution times measured using 

Apache JMeter 5.6.3 [56]. Detailed specifications of 

the experimental setup are provided in Table 2. 

Throughout the experiments, we maintained 

consistent technical configurations and runtime 

settings. 

To simulate realistic distributed transaction 

scenarios, we utilized a synthetic dataset generated 

using Apache JMeter 5.6.3. This dataset includes 

RESTful service requests under varying load 

conditions LightLoad, MediumLoad, and HeavyLoad 

and failure scenarios such as NoFailure, NodeFailure, 

and NetworkPartition. The structure of the dataset 

mirrors the transaction patterns described in Daraghmi 

et al. [21], allowing for comparative benchmarking. 

Each request targets specific microservices and 

triggers either Paxos-based consensus or Saga-based 

coordination.  

The dataset was designed to reflect both 

normal and degraded system states, enabling robust 

performance evaluation. 

The following metrics were used to evaluate 

system performance: 

 Throughput: Number of successfully processed 

requests per second (req/sec). 

 Latency: Average response time per request, 

measured in milliseconds (ms). 

 Fault Tolerance: Ability of the system to maintain 

operations during node or network failures. 

 Consistency: Degree of data synchronization 

across distributed services post-transaction. 

 Resource Utilization: CPU, memory, and network 

bandwidth consumption during execution. 

 

5.2. Experimental Results 
 

This section details the empirical findings 

from our experiments, comparing the efficiency of 

paxos Consensus Algorithms with the Saga pattern. In 

our research, we assessed the performance of Paxos 

consensus algorithms in enhancing the scalability of 

microservice architectures and compared these results 

with the enhanced Saga pattern for distributed 

transactions within such architectures. The key 

performance metrics analyzed included throughput, 

latency, fault tolerance, consistency, and scalability.  

Figure 2 presents a comparative analysis of 

resource utilization and fault detection efficiency 

between Paxos-based consensus algorithms and the 

enhanced Saga pattern within distributed microservice 

environments. The diagram highlights how consensus 

mechanisms, particularly Paxos, contribute to 

improved system performance under high-load and 

failure conditions. Specifically, Paxos demonstrates 

superior efficiency in managing computational 

resources and detecting faults promptly, making it 

well-suited for large-scale, high-performance systems. 

In contrast, the enhanced Saga pattern, while effective 

in coordinating distributed transactions, incurs slightly 

higher resource consumption due to compensating 

actions and rollback mechanisms. 

The figure is annotated with standardized font 

styles (Arial, 10pt for body text and bold 12pt for 

headings), consistent line weights, and high-contrast 

labels to ensure readability in both digital and 

hardcopy formats. All graphical elements have been 

optimized at 300dpi resolution to maintain clarity in 

print. The detailed performance metrics illustrated in 

the figure include: 

 CPU Usage: Paxos-based algorithms consume 

less CPU compared to the enhanced Saga pattern, 

reducing processing overhead. 
 

 Memory Usage: Consensus mechanisms exhibit 

lower memory footprint, contributing to more 

efficient resource allocation. 
 

 Network Bandwidth: Paxos reduces network 

traffic by minimizing redundant message 

exchanges, thereby lowering congestion. 
 

 Fault Detection Time: Paxos enables faster 

identification and resolution of faults through its 



 

 

structured agreement phases, enhancing system 

responsiveness. 

This visualization reinforces the architectural 

advantage of consensus algorithms in maintaining 

operational stability and efficiency, especially in 

mission-critical microservice deployments 

Figure 3(a)  above presents the throughput results 

for five different experiments comparing the proposed 

system This paper with the base paper[22] Throughput 

is measured in requests per second (req/sec). These 

results indicate that the proposed system consistently 

outperforms the base paper in terms of throughput 

across all experiments. The higher throughput 

demonstrates the improved scalability and efficiency 

of the proposed system, making it more capable of 

handling a larger number of requests per second. 

Figure 3(b) illustrates the response time 

outcomes for five distinct experiments, comparing the 

proposed system in this paper with the base paper [22] 

The response time is recorded in milliseconds 

(ms). The findings reveal that the proposed system 

consistently surpasses the base paper in response time 

across all experiments. The reduced response time 

highlights the enhanced efficiency and performance of 

the proposed system, enabling it to process requests 

more swiftly and effectively. 

Figure 3(c) displays the resource utilization 

results for five different experiments, comparing the 

proposed system in this paper with the base paper[22]. 

Resource utilization is expressed as a percentage (%). 

The results show that the proposed system consistently 

outperforms the base paper in terms of resource 

utilization across all experiments. The lower resource 

utilization indicates the enhanced efficiency and 

optimization of the proposed system, allowing it to 

handle workloads with fewer resources. 

Figure 3(d) depicts the latency results for five 

different experiments, comparing the proposed system 

in this paper with the base paper [22]. Latency is 

measured in milliseconds (ms). The results show that 

the proposed system consistently outperforms the base  

paper in terms of latency across all experiments. The 

lower latency indicates the enhanced efficiency and 

responsiveness of the proposed system, enabling it to 

handle requests more swiftly and effectively. 

Comparative benchmarks of microservice 

implementation patterns have shown that inter-service 

communication and data management strategies 

significantly affect throughput and latency under 

varying load conditions [34].  

These results reveal important behavioral 

differences between the coordination models. Paxos 

consistently outperforms the enhanced Saga pattern 

under high-load and failure conditions due to its 

structured consensus mechanism, which avoids 

rollback loops and compensating overhead. In 

contrast, Saga’s reliance on compensating transactions 

introduces latency and resource consumption, 

especially when failures occur mid-execution. The 

centralized agreement in Paxos ensures faster fault 

detection and recovery, while Saga’s decentralized 

orchestration favors flexibility but sacrifices 

immediate consistency. These performance variations 

highlight the trade-offs between consensus-driven and 

coordination-driven transaction handling, and explain 

why Paxos demonstrates superior efficiency in 

scenarios requiring strong consistency and rapid fault 

resolution. Figure 4: Our experimental results clearly 

highlight the resource efficiency of our Paxos-based 

approach. This method not only demonstrates superior 

CPU usage but also outperforms in terms of memory 

and network bandwidth consumption compared to the 

enhanced Saga pattern. The Paxos algorithm 

effectively manages distributed transactions with 

minimal CPU overhead, optimizes memory usage, and 

ensures efficient network bandwidth utilization. These 

findings emphasize the benefits of incorporating 

Paxos consensus mechanisms into microservice 

architectures, significantly boosting both performance 

and scalability. A total of five experiments were 

conducted for each transaction model (Paxos and 

Enhanced Saga Pattern), across three distinct load 

levels and three failure scenarios. Each experiment 

was configured with variable request rates, dataset 

sizes, and environmental conditions to simulate 

realistic distributed deployments. These controlled 

variations allowed for a robust evaluation of 

throughput, latency, fault tolerance, and consistency 

under dynamic system behaviors. To assess the 

system’s availability under peak load conditions, we 

tested our proposed method and compared it with a 

previous approach, measuring availability as the 

percentage of time the system remained fully 

operational and error-free. 

The results in Figure 5(a) demonstrate that 

our proposed method consistently achieves higher 

availability compared to the previous method across 

all failure scenarios under peak load conditions. 

Notably, our method maintains a higher availability 

even in the presence of node failures and network 

partitions, showcasing its robustness and reliability in 

critical situations. Additionally, to further assess the 

system's availability, tests were also conducted under 

off-peak load conditions. Figure 5(b) reveals that our 

method also provides higher availability in off-peak 

load conditions compared to the previous method. Our 

method's superior performance in handling failure 

scenarios such as memory leaks and slow databases 

further emphasizes its effectiveness in maintaining 

system availability.These experiments illustrate that 

our proposed method significantly enhances system 

availability across varying load conditions and failure 



 

 

scenarios, making it a reliable solution for 

microservice architectures. 
 

6. Conclusion And Future Works 
 

This study investigated the integration of 

Paxos consensus algorithms into microservice 

architectures and compared their performance with the 

enhanced Saga pattern for managing distributed 

transactions. Experimental results demonstrated that 

Paxos significantly improves throughput, reduces 

latency, and enhances fault tolerance, particularly 

under high-load and failure conditions. These benefits 

directly address the core challenges of distributed 

coordination, offering a resilient and scalable 

framework for modern microservice systems. While 

the enhanced Saga pattern provides practical 

mechanisms for compensating transactions and 

achieving eventual consistency, it was consistently 

outperformed by Paxos in key performance metrics. 

Paxos’s ability to maintain strong consistency and 

operational continuity during failures makes it a 

compelling choice for applications requiring high 

reliability and responsiveness. The findings contribute 

to ongoing efforts in optimizing microservice 

performance and offer actionable insights for system 

architects seeking robust transaction coordination 

strategies. While the proposed approach demonstrates  

 

 

strong performance across multiple metrics, 

certain limitations were encountered during the study. 

The experimental setup was based on a static network 

configuration and a controlled dataset, which may not 

fully capture the variability of real-world 

deployments. Additionally, the integration of Paxos 

and Saga was evaluated under predefined failure 

scenarios, and dynamic service discovery or adaptive 

consensus mechanisms were not considered. Recent 

protocols such as CohortSync demonstrate the 

potential of micro-cohort-based consensus 

mechanisms that combine deterministic and 

probabilistic strategies to enhance scalability and fault 

tolerance in distributed systems [58]. Future research 

could explore hybrid consensus models that combine 

Paxos with Raft or machine learning–driven 

coordination strategies. Investigating dynamic 

topologies, real-time fault adaptation, and broader 

domain-specific applications (e.g., financial or 

healthcare microservices) would further enhance the 

robustness and applicability of the proposed 

framework. Future research may explore hybrid 

consensus models, such as combining Paxos with Raft 

or machine learning driven coordination, and evaluate 

their effectiveness in real-world deployments across 

diverse domains. 
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Table 1. Comparison of previous methods 

Author Method 
Tailored 

Suggestions 

Semantic 

Analysis 

Failure 

Scenarios 

Performance 

under Load 

Compensating 

Transactions 
Scalability 

Fault 

Tolerance 
Latency 

Smith et 

al., 2020

  

Enhanced 

Saga Pattern

  

No Yes Moderate Moderate Effective Moderate Moderate Moderate 

Davis et 

al., 2023

  

Two-Phase 

Commit 

(2PC) 

No No Strong Low Not applicable Low Strong High 

Wilson et 

al., 2024
  

Enhanced 

Saga Pattern 

with 
Machine 

Learning  

Yes Yes Moderate Moderate Effective Moderate Moderate Moderate 

Lee et al., 
2020

  

Chandy-
Lamport 

Algorithm 

No No Moderate Moderate Not applicable Moderate Moderate Moderate 

Patel et 
al., 2022

  

Zookeeper 
Coordination 

Service  

No No Moderate Moderate Not applicable Moderate Strong Moderate 

Garcia et 
al., 2020

  

Gossip 

Protocol 
No No Moderate High Not applicable High Moderate Moderate 

Martinez 
et al., 

2021

  

Vector 

Clocks 
No No Moderate Moderate Not applicable Moderate Moderate Moderate 

Singh et 

al., 2022

  

Quorum-

based 

Replication 

No No 
Strong
  

Moderate Not applicable Moderate Moderate Moderate 

Nguyen et 

al., 2023

  

Blockchain-

based 

Consensus 

No No Strong High Not applicable High High High 

Hernande

z et al., 

2024
  

Enhanced 

Raft with 

Machine 
Learning 

Yes Yes Strong High Not applicable High Strong Low 

 
 
 

 

 
 



 

 

 
Figure 1. Architecture of the Proposed System 
 
 
 

 
 

 



 

 

 

 

Figure 2. Activity Diagram of the Compositio n Integrated with a Paxos Consensus Mechanism [52] 

 

 

Table2. Specification of the Experimental Environment 

Configurations Participants Hardware Specification Execution Environment Network Connection 

Physical Host 

Setting 

Physical Host 1 

(Proposer) 

Intel Core i7, 8 Cores 16.0 

GB RAM 

Java v19 

100 Mbps 

LAN 

Physical Host 2 

(Proposer) 

Intel Core i7, 8 Cores 16.0 

GB RAM 

Java v19 

Physical Host 3 

(Proposer) 

Intel Core i7, 8 Cores 16.0 

GB RAM 

Java v19 

Physical Host 4 

(Proposer) 

Intel Core i7, 8 Cores 16.0 

GB RAM 

Java v19 

Physical Host 5 

(Proposer) 

Intel Core i7, 8 Cores 16.0 

GB RAM 

Java v19 

 
 

\ 

] Table3. Experimental Dataset Configuration and Parameters 

Attribute Description 

Request Type 
RESTful service calls 

 

Load Conditions LightLoad, MediumLoad, HeavyLoad   

Failure Scenarios NoFailure, NodeFailure, NetworkPartition 

Number of Nodes 5 distributed physical hosts 

Transaction Models Paxos Consensus, Enhanced Saga Pattern 

Generation Tool Apache JMeter 5.6.3 

Reference Dataset Based on structure from Daraghmi et al. [57] 

Execution 

Environment 
Java Spring Boot with SQLite 3.12.2 

 
 
 



 

 

  
(a) Throughput (b) Response Time 

  
(c) Resource Utilization (d) Latency 

 

Figure 3. Comparative Testing and Analysis 
 

 

 
 

 

 

 

 
Figure 4. Resource Utilization and Efficiency in Fault Detection 

 

 

 

 



 

 

 
 

(a) Peak Load Conditions (b) Off-Peak Load Conditions 

 

Figure 5. Availability Results  
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